序
声明:以下是博主精心整理的机器学习和AI系列文章,博主后续会不断更新该领域的知识:
有需要的小伙伴赶紧订阅吧。
人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)。不少人对这些高频词汇的含义及其背后的关系总是似懂非懂、一知半解。

人工智能的研究领域也在不断扩大,上图展示了人工智能研究的各个分支,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。
人工智能一定程度上来说是机器学习喝深度学习的深层次应用,要想学好人工智能,我们需要掌握的哪些经典算法呢?
一起来看看吧。
前言
深度学习是很多人面临的一个挑战,因为它在过去的十年中已经慢慢地改变了形式。为了在视觉上设置深度学习,下图展示了AI,机器学习和深度学习三者之间关系的概念。

人工智能领域广泛,已经有很长一段时间了,深度学习是机器学习领域的一个子集,AI的一个子领域。
一般将深度学习网络与“典型”前馈多层网络(FP)区分开来的方面如下:
比以前的网络更多的神经元
更复杂的连接层的方式
“寒武纪大爆炸”的计算训练能力
自动特征提取
当我说“更多的神经元”,意思是神经元数量已经上升了多年来表达更复杂的模型。
然后,深度学习可以被定义为具有四个基本网络体系结构之一中的:大

本文介绍了人工智能、机器学习和深度学习的关系,强调掌握深度学习的经典算法对人工智能的重要性。文中详细讲解了卷积神经网络、回归神经网络和递归神经网络,并列举了10种深度学习经典算法,包括反向传播、随机梯度下降、学习率衰减、Dropout等,阐述了它们的作用和应用场景。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



