逻辑哲学第二章

一. 推理,真值

推理(inference)是逻辑学里最重要的核心,什么是推理,推理是一个论证的过程,即一个论证是我们认为某个事情是对的到另一个事情是对的过程.

例子1:
句子A:所有的人类都有俩腿 [前提,陈述句]
句子B:运动员是人类 [前提,陈述句]
句子C:运动员有俩腿 [结论,陈述句]

在上述例子1中,句子A和句子B是我们论证推理的前提,句子C是论证推理的结论.换句话说我们的论证(argument)=前提(premise)+结论(conclusion). 而从前提得到结论这个过程就是推理.

大家会发现,上述例子1中的所有句子均是陈述句,没错,在逻辑学中,疑问句,反问句,总之除了陈述句,剩下的各种句子是很难用作推理的.有人可能说感叹句呢,嗯你把感叹号换成句号就又成了陈述句了.因为除了陈述句,像疑问句这种句子它本身就有不确定的因素很难判断. 所以在逻辑学中,我们经常会使用的是陈述句. 陈述句是有自己的真值,即对(T)和错(F),这其实是句子的语义(semantic),语义这个事情小弟后续详讲,但小弟在这里稍微提两句,无论你是用英语还是汉语还是日语,总之你之所以能听懂是因为你明白了这个句子的意义,而英语汉语日语这就是个书写符号,它就是个符号它没有任何意义,你用土著语,错别字写也是没问题的因为这就是个书写符号本身它自己没有任何意义, 在逻辑学中只有赋予这些符号意义这个句子才会有自己的意义,而这里的意义即为赋值,赋予句子真值(T或F),那么句子才会有自己的意义.

句子的真值对错即: 如果全世界都认同或者尝试那么这个句子就是对的具有T值,如果全世界都不认同那么这个句子就是错的即F值.

什么是命题,命题就是由一个或多个陈述句组成的陈述句,陈述句之间是要用连接词组成的或不用当一个陈述句它自己就是一个命题时,这些连接词将这些陈述句组成一个大的陈述句,这就是我们的命题,那什么是连接词,连接词就是∧(与),∨(或),→(那么),¬(否).就这些连接词.既然如果一个陈述句有自己的真值,那么多个陈述句由连接词组成的一个大的陈述句也便有了自己的真值,而这个大的陈述句即为我们的命题,所以命题是有真值的(T或F). 大家可能有点懵,举个例子大家就明白了:

例子2
p ∧ q 论证了 q ∧p

例子2有俩命题分别是p ∧ q 和q ∧p,p ∧ q作为论证的前提,q ∧p作为论证的结论,p和q自己本身就是个陈述句,这种陈述句被称为原子,即最基本的单元,即该句字为最简单的陈述句,无任何镶嵌语句的陈述句.当该原子和另外一个原子连接(连接词)组成一个全新的陈述句即为命题,命题即为多个原子加多个连接词组成的更长陈述句.

给大家介绍个符号: “⊢”,这个符号被其他学课的老师经常写成"➾",这其实是不规范的,学逻辑这门课希望大家要习惯写"⊢"这个符号,这叫有效论证,即为我们从前提推理到结论这整个过程都是完美的,是对的,是符合我们逻辑的,是有效的. 当有效论证前提到结论时,如果前提对(T),结论必然对(T). 如果前提错(F),必然结论是错(F). 切记这个性质,因为如果前提对,结论对,是不一定说明我们的论证是有效的. 在论证里,我们不会讲"对的论证或者错的论证",对错只是用来描述句子,我们会用有效或无效来描述论证是对或错. 如果是无效论证,会产生对的前提推理到对的结论,或者对的前提推理到错误结论,或者错的前提推理到对的结论. 所以在逻辑学中,我们根本不关心前提或结论是对还是错,我们只关心它的论证有效不有效.

那么我们可以将例子2写成:
p ∧ q ⊢ q ∧p

即p ∧ q 有效论证了q ∧p

我们再练几个例子,巩固下什么是命题什么是论证前提和论证结论

例子3
p,q,p ∧ q ⊢p∧q∧(p ∧ q)

例子3一共有4个命题,p,q,p ∧ q 这仨命题作为有效论证的前提,p∧q∧(p ∧ q)这个命题作为有效论证的结论. p,q,p ∧ q和p∧q∧(p ∧ q)均为陈述句.其中p,q是原子陈述句,作为命题,p ∧ q是由p,q俩个原子陈述句加上连接词组成的大的陈述句即命题.p∧q∧(p ∧ q)是由p,q俩个原子陈述句加上连接词组成的大的陈述句即命题. 所以这就是我们常说的命题逻辑(Proposition logic).

小弟来举几个有效论证和无效论证的例子:

论证例子4:
所有的猫都是爬行动物 [正确论证前提]
苦洲(小弟网名)是只猫 [错误论证前提,因为小弟我是个人]
因此我是爬行动物 [错误论证结论]

上述论证例子虽然论证结论是错误的,但是它的论证是对.

论证例子5:
所有逻辑学家都很有理性 [正确论证前提]
罗素(一个很著名的逻辑学家)是个理性的人 [正确论证前提]
因此罗素是个逻辑学家 [正确论证结论]

大家可以思考下,虽然前提没错,结论也没错,罗素确实是个著名逻辑学家,就是提出集合悖论的那个人. 但上述论证正确么,很显然不正确,很简单,有理性的人不一定是逻辑学家.

所以,本质在于,我们根部不关心是不是前提或结论是对还是错,我们只关心它的论证对不对。 如果论证有效,前提正确,那结论必然正确,即使结论很奇怪那也是正确.

二. 有效论证

小弟再深入的讲下有效论证, 有效论证是前提和结论的关系. 那么我们一般就会写成”前提有效论证结论",而这个式子叫做相继式(sequent):
X ⊢ A X⊢A XA
X : X: X:即为前提,是一组公式,你可以认为把多个前提公式放入到一个集合里.
A : A: A: 即为结论,是一个公式,你可以认为它就是个结论公式.

你可以读作 A A A X X X中推导而来,或者X有效论证了 A A A.

回到例子3, “⊢"有效论证的左侧为p,q,p ∧ q,它们你可以看作是集合 X X X里的元素即为多个前提公式. 结论 A A A为一个结论公式p∧q∧(p ∧ q). 在例子3里,前提是可能有多个前提组成的.大家也能看到中间由逗号连接,这个逗号称为"和”.

大家切记这里的"和"跟"∧"是两码事情,"⊢"跟"→"也是两码事情,"∧"跟"→"是连接词,它就是公式里的一部分,例如某个前提公式为p∧q,或者某个结论公式p→q,它就是个公式. 而"和"跟"⊢"意味着这个论证的场外信息,例子3里被翻译成:

p前提公式和q前提公式和p ∧ q前提公式可以有效论证(⊢)出p∧q∧(p ∧ q)结论公式.

前提(premises)支撑结论,如果论证有效,接受前提,则意味着接受结论。反对结论则是反对至少其中一个前提. 在计算机科学中,可以类比成premises(前提)=database(数据库) conclusion(结论)=query(查询).这类比其实在说,假如数据库里有A,B,C,D四个数据,那么我们肯定能从中拿到这四个数据中的其中一个,对这就是一个有效论证,即: 数据库⊢查询一个数据.

但大家要记住,小弟目前讲的均是命题逻辑的相继式,之后大家会看到一阶逻辑相继式等等.希望讲到后面大家不要搞混了.

小弟现在介绍下相继式的结果关系(consequence relation),相继式的结果关系指的是反身性(reflexivity),单调性(monotonicity)和传递性((transitivity)

(1) 反身性(reflexivity):

如果 A A A属于 X X X集合里的一员,那么会有 X ⊢ A X⊢A XA,当然了如果 A A A本身就是 A A A,那么会有 A ⊢ A A⊢A AA

例子: 郑智是足球运动员,(有效论证了) 因此郑智是足球运动员
这就是反身性,或者自身性.大家是不是觉得这是句废话,没错,很无聊,但你不得不说这是对的.在之后小弟会叫大家发现这个性质的重要性,在自然演绎中起到关键作用.

(2)单调性(monotonicity):
如果 X ⊢ A X⊢A XA,如果有个集合 Y Y Y X X X集合更大,即 X X X Y Y Y的子集, 那么会得到 Y ⊢ A Y⊢A YA,当然了 X X X Y Y Y你也可以把它们和成一个更大的集合,那么会有 X , Y ⊢ A X,Y⊢A X,YA

例子:
郑智是足球运动员
王治郅是篮球运动员
所有足球运动员都有俩脚
上海比澳门大
因此郑智有俩脚

上述例子,除了最后一句是结论,其余都是前提,大家发现了么,我们其实得到结论根本没用上所有前提,我们就用到了第1个和第3个前提句子.对没错,如果X作为集合={句子1,句子3}可以有效论证最后一个句子,那么X为Y集合子集即{句子1,2,3,4}那肯定也能有效论证最后一个句子即结论句子.

(3)传递性(Transitivity)
如果 X ⊢ A X⊢A XA Y , A ⊢ B Y,A⊢B Y,AB,那么自然我们会得到 X , Y ⊢ B X,Y⊢B X,YB

例子:
郑智是足球运动员
所有足球运动员有俩脚
所以郑智有俩脚

上述这个论证没问题吧,我们叫它论证A,我们再来个论证B

郑智有俩脚
没有狗是有俩脚(狗有四只脚)
因此郑智不是狗

这个论证B也没问题吧,现在论证A和论证B放一起得:
郑智是足球运动员
所有足球运动员有俩脚
没有狗是有俩脚(狗有四只脚)
因此郑智不是狗

三. 连接词

Atoms(原子结构):每个陈述句就是一个原子,一个单元.且该陈述句为最简单的陈述句无任何镶嵌语句即看作一个原子,当该原子和另外一个原子连接(连接词)组成一个全新的陈述句即为命题,命题即为多个原子加多个连接词组成的更长陈述句.

承接句子的词语叫做连接词:
…和… ∧
…或… ∨
如果…那么… →
不是… ¬
…当且仅当…↔

连接词优先级:高:¬,∧,∨,→,↔ :低

我们来看看连接词对于真值表的效果:

p¬
T
T

T:恒对的意思,就是对(1)
⊥: 恒错的意思,就是错(0)

pq
T
T
TTT
pq
TT
TT
TTT
pq
T
TT
T
TTT

有的同学会问p↔q呢,其实它等价于(p→q)∧(q→p)

四. 理论(Theorem)

现在小弟感觉大家明白什么是相继式了,相继式就是有效论证的具体写法X ⊢ A,即为A从X中推导出来或者有效论证出来.

那么小弟给大家来举个例子:
p ∧ q , r ∧ s ⊢ ( p ∧ r ) ∧ ( q ∧ s ) p ∧ q, r ∧ s ⊢ (p ∧ r) ∧ (q ∧ s) pq,rs(pr)(qs)

来我们来温习下,很明显上述例子是个命题逻辑的相继式,有三个命题,p ∧ q,r ∧ s 和 (p ∧ r) ∧ (q ∧ s),有p,q,r,s这么几个原子结构的陈述句,仅仅有 ∧这个连接词,那么我们的X其实就是p ∧ q和r ∧ s作为俩前提命题有限论证了 (p ∧ r) ∧ (q ∧ s). 可能大家很奇怪为什么p ∧ q和r ∧ s作为俩前提命题有限论证了 (p ∧ r) ∧ (q ∧ s)结论,这个小弟后续会教给大家推导方法这其实就是自然演绎的推导方法,但目前大家先相信小弟这确实是有效论证的.

上述例子是可以将我们的前提放到结论里去的,放到结论里去是要用连接词"→",那么上述例子会变成:
⊢ ( p ∧ q ) → ( r ∧ s ) → ( ( p ∧ r ) ∧ ( q ∧ s ) ) ⊢ (p ∧ q)→(r ∧ s )→((p ∧ r) ∧ (q ∧ s)) (pq)(rs)(pr)(qs)

来我们翻译下这个相继式,我们会发现,没有前提了,对这就是个理论,直接有效论证出这个 (p ∧ q)→(r ∧ s )→((p ∧ r) ∧ (q ∧ s))结论公式,什么是理论,大家可以试着将p,q,r,s赋值,根据小弟前面讲的连接词真值表,你们会发现这个结论公式是恒对的,永远都对,无论你怎么赋值给原子p,q,r,s. 理论在逻辑哲学角度中就是恒对的.

这就是理论,理论即为 ⊢ A ⊢A A,其实它侧面的反映出了小弟例子原相继式 p ∧ q , r ∧ s ⊢ ( p ∧ r ) ∧ ( q ∧ s ) p ∧ q, r ∧ s ⊢ (p ∧ r) ∧ (q ∧ s) pq,rs(pr)(qs)其实是有效的,即确实前提p ∧ q, r ∧ s有效论证了(p ∧ r) ∧ (q ∧ s). 当然了,一般情况下我们会用自然演绎推导(一种有效推理的系统)由前提p ∧ q, r ∧ s,推出(p ∧ r) ∧ (q ∧ s),我们才会说 p ∧ q , r ∧ s ⊢ ( p ∧ r ) ∧ ( q ∧ s ) p ∧ q, r ∧ s ⊢ (p ∧ r) ∧ (q ∧ s) pq,rs(pr)(qs),但小弟在此按下不表,否则这一章讲的东西太多了.小弟再引申下,还记得小弟在本章前面有讲过,赋值其实是一种语义,没错,我们判断理论通过真值表,其实我们就是再给我们的原子p,q,r,s赋值,也就是通过公式的语义来判断,如果不恒对,说明不是理论,也就是说原相继式 p ∧ q , r ∧ s ⊢ ( p ∧ r ) ∧ ( q ∧ s ) p ∧ q, r ∧ s ⊢ (p ∧ r) ∧ (q ∧ s) pq,rs(pr)(qs)其实是无效的.如果恒对,说明是理论,也就是说原相继式 p ∧ q , r ∧ s ⊢ ( p ∧ r ) ∧ ( q ∧ s ) p ∧ q, r ∧ s ⊢ (p ∧ r) ∧ (q ∧ s) pq,rs(pr)(qs)其实是有效的论证. 之后小弟会详细讲下除了自然演绎,语义树也是一种判断相继式是否有效论证的方法.

五. 结语(Summary)

若有谬误请指出,小弟在此多谢了.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值