Descent Method for 最小化(最优化)问题 (二)

本文深入探讨了非线性共轭梯度下降法,包括问题形式、共轭性定义、共轭方向算法、共轭梯度算法及其收敛性。介绍了Fletcher-Reeves方法,该方法将共轭梯度法扩展到非线性函数的优化问题中,通过线性搜索确定步长并用梯度替代残差。
摘要由CSDN通过智能技术生成

4 Nonlinear conjugate gradient (非线性共轭梯度下降法)

先从(线性)CG 算法说起:

以下摘自:数值优化(Numerical Optimization)学习系列-共轭梯度方法(Conjugate Gradient)

4.0 问题形式

(线性)CG算法求解问题的两种形式:
1. 线性方程 Ax=b 并且要求矩阵 A 对称正定矩阵
2. 最优化问题:

minxϕ(x)=12xTAxbTx

要求矩阵 A 对称正定,这样该问题是一个凸问题并且有最优解。根据最优解满足 ϕ(x)=Axb=0 ,一般记为 r(x) 。在迭代过程中,第 K 步的残差表示为 rk=Axkb

(注:向量积对列向量 X 求导运算法则:
d(UVT)/dX=(dU/dX)VT+U(dVT/dX)
d(UTV)/dX=(dUT/dX)V+(dVT/dX)U
则有:
d(XTA)/dX=(dXT/dX)A+(dA/dX)XT=IA+0XT=A
d(AX)/dXT=(d(XTAT)/dX)T=(AT)T=A
d(XTAX)/dX=(dXT/dX)AX+(d(AX)T/dX)X=AX+ATX

共轭性

给定一个非零向量集合 { p0,p1,,pn1} 和一个对称正定矩阵 A ,如果向量集合相对于 A 是共轭的,当且仅当 pTiApj=0,ij

如果向量集合是共轭的,则他们之间是相互线性独立的。

4.1 共轭方向算法

共轭方向算法 (Conjugate direction method) 不同于共轭梯度算法,共轭向量提前给出。共轭梯度算法则给出了共轭向量(方向)的计算方法。

(即假定共轭方向已知的情况下,如何计算最优化问题)

算法描述:
1. 给定共轭方向集合 { p0,p1,,pn1} 和任意初始点 x0
2. 计算 xk+1=xk+αkpk
3. 计算最优步长 α :此时假定 xk 为已知量(定值),通过优化 ϕ(xk+αpk)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值