Eigen入门之密集矩阵 1 -- 类Matrix介绍

简介

本篇介绍Eigen中的Matrix类。在Eigen中,矩阵和向量的类型都用Matrix来表示。向量是一种特殊的矩阵,其只有一行或者一列。

Matrix构造

Matrix.h中,定义了Matrix类,
其中的构造器包括如下的5个,可以看到定义Vector也是使用Matrix。


    /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
    EIGEN_DEVICE_FUNC
    explicit Matrix(const Scalar *data);


    /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
      *
      * This is useful for dynamic-size vectors. For fixed-size vectors,
      * it is redundant to pass these parameters, so one should use the default constructor
      * Matrix() instead.
      * 
      * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
      * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
      * For fixed-size \c 1x1 matrices it is therefore recommended to use the default
      * constructor Matrix() instead, especially when using one of the non standard
      * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
      */
    EIGEN_STRONG_INLINE explicit Matrix(Index dim);

    /** \brief Constructs an initialized 1x1 matrix with the given coefficient */
    Matrix(const Scalar& x);
    /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
      *
      * This is useful for dynamic-size matrices. For fixed-size matrices,
      * it is redundant to pass these parameters, so one should use the default constructor
      * Matrix() instead.
      * 
      * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
      * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
      * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default
      * constructor Matrix() instead, especially when using one of the non standard
      * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
      */
    EIGEN_DEVICE_FUNC
    Matrix(Index rows, Index cols);
    
    /** \brief Constructs an initialized 2D vector with given coefficients */
    Matrix(const Scalar& x, const Scalar& y);


    //......

简化Matrix和Vector定义

还有使用macro定义的一些简化类名定义,用于固定column 或者Row的方阵,以及向量。比如在一些项目中看到的 Matrix3f, Matrix4i, Vector4f……。

这些macro如下:


#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)   \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, 1>    Vector##SizeSuffix##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, 1, Size>    RowVector##SizeSuffix##TypeSuffix;

#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size)         \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix;  \
/** \ingroup matrixtypedefs */                                    \
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;

如上的定义,则有:


// 定义一个浮点型的4X4的方阵类型。
typedef Matrix<float, 4, 4> Matrix4f;

// 定义一个浮点型的3行的列向量类型。
typedef Matrix<float, 3, 1> Vector3f;

// 定义一个整形的长度为2的行向量类型。
typedef Matrix<int, 1, 2> RowVector2i;

特殊值 Dynamic

上面都是固定大小的矩阵或者向量。Eigen不仅支持在编译时指定了维度的矩阵Matrix,而且支持使用一个特殊值Dynamic来指定Rows或(和)Columns,指示编译时大小并不知道。而在运行时,才会真正地处理其大小尺寸。

template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
  : public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >

就如上面固定大小的矩阵,有其简化定义形式。Dynamic指示的非固定的Matrix也有简化定义形式。如:

// 定义一个double型的,行数和列数均编译时未知的Matrix。
typedef Matrix<double, Dynamic, Dynamic> MatrixXd;

// 定义一个向量,但编译时还不知道其长度。
typedef Matrix<int, Dynamic, 1> VectorXi;

当然行数或者列数可以知道其中之一。如下:

Matrix<float, 3, Dynamic> matrixA;

Matrix<float, Dynamic, 4> matrixB;

示例

如下示例,使用构造器定义一下Matrix

使用默认构造器

这时,不会执行内存分配,也不会初始化矩阵参数,仅定义了一个Matrix变量。


Matrix3f a;
MatrixXf b;

构造器指定大小尺寸

此时,指定了大小,将分配内存空间,但是并不初始化各个矩阵或者向量参数。


MatrixXf a(8,15);

VectorXf b(30);

Eigen中提到,为统一固定大小或者Dynamic类型的Matrix的定义,可以在构造器参数中指定大小值,但这些值可能并不需要,也没有用处。比如:

// 这里构造器上的rows =3, columns = 3并不需要
Matrix3f a(3,3);

指定Matrix系数的构造器

对具有较少系数的Matrix,可以在构造时指定这些系数。比如:


// 定义具有长度为2的整形向量
Vector2i a(5, 6);

// 定义具有长度为3的double型向量
Vector3d b(5.0, 6.0, 7.0);

// 定义具有长度为4的浮点向量
Vector4f c(5.0, 6.0, 7.0, 8.0);

对Matrix的系数访问

在使用Matrix或者Vector时,一定要有系数Coefficient。如何操作/访问这些系数呢?

Matrix类重载了括号操作符(),提供对系数的访问。针对矩阵,参数为(row, column),而针对Vector,则只有一个参数index了。这些参数都是以0作为起始的整数。

注意:
对矩阵访问,单个参数也是允许的,但其操作是按照矩阵的系数数组来进行操作的。而这会有个内存存储顺序的问题,Eigen按照Column为主的顺序进行存储,但可以更改设置,变为以Row为主序。

如有有源程序 matrix_1.cpp:

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;

int main()
{
  // 定义matrix
  MatrixXd m(2,2);
  m(0,0) = 3;
  m(1,0) = 2.5;
  m(0,1) = -1;
  m(1,1) = m(1,0) + m(0,1);
  std::cout << "The matrix m:\n" << m << std::endl;

  std::cout << "The matrix m(1):\n" << m(1) << std::endl;

  // 定义vector
  VectorXd v(2);
  v(0) = 4;
  v(1) = v(0) - 1;
  std::cout << "The vector v:\n" << v << std::endl;
}


编译:

$ g++ matrix_1.cpp -o matrix_1  -I /usr/local/include/eigen3
$ 

输出:

$ ls matrix_1
The matrix m:
  3  -1
2.5 1.5
The matrix m(1):
2.5
The vector v:
4
3

初始化: Comma_initializtion

在Eigen内,使用comma-initializer的语法来进行matrix、vector的初始化。

**注意:**使用comma-initializer来初始化matrix时,是以row为主序来进行输入的。这和上面提到的访问时的顺序可能不一致。
如下的示例:

// matrix_2.cpp
#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;

int main()
{
  // 定义matrix
  Matrix3f m;
  m << 1, 2, 3,
       4, 5, 6,
       7, 8, 9;
  std::cout << "The matrix m:\n" << m << std::endl;

  // 定义vector
  VectorXd v(2);
  v<< 1,2;
  
  std::cout << "The vector v:\n" << v << std::endl;
}

编译一下,执行后,可以看到结果。

$ g++ matrix_2.cpp -o matrix_2 -I /usr/local/include/eigen3
$ ./matrix_2
The matrix m:
1 2 3
4 5 6
7 8 9
The vector v:
1
2

size及赋值

对一个matrix的row,column数量的访问,Eigen中的Matrix提供了row(), columns(), size()函数。

Matrix<double, 4, 3> m;
std::cout << "rows: " << m.rows() ;                     //  rows: 4
std::cout << "columns: " << m.cols() << std::endl;       //  columns: 3

std::cout << "It has " << m.size() << " coefficients" << std::endl;     // It has 12 coefficients

对一个Matrix的大小可以使用resize(int rows,int columns)来修改其大小。

Matrix<double, 4, 3> m;

可以把一个Matrix/Vector变量赋值给另一个对应的变量,而对他们的Size并没有限制,如:

Matrix4d md4;
Matrix2f mf2;

mf2 = md4;
mf2.size();

resize & conservativeResize

只有Dynamic类型的Matrix可以改变大小。固定大小的matrix调用resize,执行时也会出错。


    MatrixXf a(2,2);
    a.resize(5,5);

resize()一个matrix,可以想象,其系数可能会发生变化,所以此函数是有破坏性的。Eigen中还提供了conservativeResize()函数,用于保护其系数。

对比 fixed、Dynamic对matrix的大小影响

有这样一个问题: 我们应该使用固定大小的matrix、还是选择使用不固定的Dynamic大小的matrix呢?Eigen官方对此问题的答案是: 如果你的matrix尺寸大小很小,不超过16,就使用固定尺寸的,否则使用浮动的不固定尺寸的matrix。固定大小尺寸的matrix有性能上的极大优势。因为在内部实现上,固定尺寸大小的matrix简单地使用了数组Array来管理系数。而使用Dynamic的matrix,会使用动态内存分配,而且存在系数访问时的展开位计算。

比如:Matrix4f mymatrix;就相当于float mymatrix[16];;而MatrixXf mymatrix(rows,columns); 相当于float *mymatrix = new float[rows*columns];

可选构造器参数

模板类Matrix,保护了6个参数,后3个参数具有缺省的参数,如下:

Matrix<typename Scalar,
       int RowsAtCompileTime,
       int ColsAtCompileTime,
       int Options = 0,
       int MaxRowsAtCompileTime = RowsAtCompileTime,
       int MaxColsAtCompileTime = ColsAtCompileTime>
  • Options参数
    这个参数使用使用bit为标识的一些选项。这里只介绍一下最重要的RowMajor,其标识Matrix使用行优先策略来存储系数数据。缺省下,其值为0,为列优先(column-major)策略。
  • MaxRowsAtCompileTime 和 MaxColsAtCompileTime
    在你不知道matrix具体大小时,但知道你大小的最大尺寸,使用此参数来指定编译时其最大值。如果合适,Eigen会创建固定尺寸大小的Matrix来替代。

简化Matrix类名

在第一篇中,介绍了使用Macro定义了一些简化Matrix类型和类名。

  • MatrixNt --> Matrix<type, N, N>. 比如: MatrixXi 即为 Matrix<int, Dynamic, Dynamic>.
  • VectorNt --> Matrix<type, N, 1>. 比如: Vector2f 即为 Matrix<float, 2, 1>.
  • RowVectorNt --> Matrix<type, 1, N>. 比如: RowVector3d 即为 Matrix<double, 1, 3>.

这里的

  • N 表示数量,可以1,2,3……,或者代表Dynamic的不固定大小的X
  • t 表示系数的数据类型,可以是 i(int), f(float), d(double), cf(complex) cd(complex)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值