文章目录
本篇文章适合个人复习翻阅,不建议新手入门使用
三角函数的周期性
本节的主题是研究三角函数的周期性,我们之前已经解析地定义三角函数为
cos x = ∑ k = 0 ∞ ( − 1 ) k x 2 k ( 2 k ) ! , sin x = ∑ k = 0 ∞ ( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! \cos{x}=\sum\limits_{k=0}^{\infty}\frac{(-1)^kx^{2k}}{(2k)!},\sin{x}=\sum\limits_{k=0}^{\infty}\frac{(-1)^kx^{2k+1}}{(2k+1)!} cosx=k=0∑∞(2k)!(−1)kx2k,sinx=k=0∑∞(2k+1)!(−1)kx2k+1
设函数
F : R → R 2 , x ↦ F ( x ) = ( sin x cos x ) F:\mathbb{R}\to\mathbb{R}^2,x\mapsto F(x)=\begin{pmatrix} \sin{x}\\\cos{x}\\ \end{pmatrix} F:R→R2,x↦F(x)=(sinxcosx)
记 S ( x ) = sin x , C ( x ) = cos x S(x)=\sin{x},C(x)=\cos{x} S(x)=sinx,C(x)=cosx
记矩阵 J = ( 0 1 − 1 0 ) J=\begin{pmatrix} 0&1\\ -1&0 \end{pmatrix} J=(