数学分析复习:三角函数的周期性

本篇文章适合个人复习翻阅,不建议新手入门使用

三角函数的周期性

本节的主题是研究三角函数的周期性,我们之前已经解析地定义三角函数为
cos ⁡ x = ∑ k = 0 ∞ ( − 1 ) k x 2 k ( 2 k ) ! , sin ⁡ x = ∑ k = 0 ∞ ( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! \cos{x}=\sum\limits_{k=0}^{\infty}\frac{(-1)^kx^{2k}}{(2k)!},\sin{x}=\sum\limits_{k=0}^{\infty}\frac{(-1)^kx^{2k+1}}{(2k+1)!} cosx=k=0(2k)!(1)kx2k,sinx=k=0(2k+1)!(1)kx2k+1

设函数
F : R → R 2 , x ↦ F ( x ) = ( sin ⁡ x cos ⁡ x ) F:\mathbb{R}\to\mathbb{R}^2,x\mapsto F(x)=\begin{pmatrix} \sin{x}\\\cos{x}\\ \end{pmatrix} F:RR2,xF(x)=(sinxcosx)

S ( x ) = sin ⁡ x , C ( x ) = cos ⁡ x S(x)=\sin{x},C(x)=\cos{x} S(x)=sinx,C(x)=cosx

记矩阵 J = ( 0 1 − 1 0 ) J=\begin{pmatrix} 0&1\\ -1&0 \end{pmatrix} J=(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值