函数的连续性与间断点

目录

函数的连续性

连续的定义

左右连续的定义

函数的间断点

函数的间断

间断点的类型

第一类间断点与第二类间断点

例题


函数的连续性

连续的定义

连续的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果\lim_{\Delta x->0 }\Delta y=\lim_{\Delta x->0}[f(x_0+\Delta x)-f(x_0)]=0,那么称函数y=f(x)在点x_0连续。

此时的\Delta表示变化量,相当于当x发生非常小的变化时,用变化后的函数值减去变化前的函数值极限应当为0。

已知f(x_0)是一个常数,所以这条式子可以化成\lim_{\Delta x_0->0}f(x_0+\Delta x)=f(x_0),又因为x是变化后的x值,且有\Delta x=x-x_0,所以\lim_{x-x_0->0}f(x_0+\Delta x)=f(x_0)。最后得到式子

                                             \boldsymbol{\lim_{x->x_0}f(x)=f(x_0)}

 从这条式子我们可以看出函数连续的三个条件

  1. x->x_0处函数极限存在。
  2. x_0处函数有定义。
  3. 函数在x->x_0处的极限应该等于此处的函数值。

左右连续的定义

左连续:\lim_{x->x_0^-}f(x)=f(x_0)

右连续: \lim_{x->x_0^+}f(x)=f(x_0)

此处和极限存在类型,连续的充分必要条件为左右都连续。

值得一提的是,课本上提到过

如果区间包括端点,那么函数在右端点连续是指左连续,在左端点连续是指右连续

这里的左右连续都是相对于端点而言的。假设给了一个右端点,此时该点只有左边是属于函数区间内的,那么函数在该点连续则应当判断该点是否左连续。

附:连续的几何含义就是”一笔画“问题,即你能不能只用一笔画出该函数。

函数的间断点

函数的间断

根据上面连续存在的条件,我们可以推出函数间断的条件

  1. x->x_0处函数极限不存在
  2. x_0处函数没有定义。
  3. 函数在x->x_0处的极限不等于此处的函数值。

 如果函数在x_0处间断,则x_0 为函数的不连续点或间断点。 

需要注意的是,三个条件满足其中一个就行。

间断点的类型

课本上给了不同间断点的一些函数和函数图像,这里就不详细讲了。

  1. 无穷间断点 函数:tanx(当x=\frac{\pi}{2},此时极限为∞)
  2. 振荡间断点 函数:sin\frac{1}{x}(当x趋向于0时,函数值在-1到1之间变动)
  3. 可去间断点 函数\frac{x^2-1}{x-1}(x=1时函数没有定义,对应上面判断条件2)
  4. 跳跃间断点 函数f(x)\left\{\begin{matrix} x-1, \ \ \ x<0 & & \\ 0, \ \ \ x=0 & & \\ x+1, \ \ \ x>0 & & \end{matrix}\right.(当x趋向于0时,可以看到左右极限都存在。但左极限为-1右极限为1,左右极限并不相等。且极限值不等于该点的函数值,对应判断条件3)

 

第一类间断点与第二类间断点

左右极限存在(不一定相等),为第一类间断点:可去间断点,跳跃间断点。

左右极限至少有一个不存在,为第二类间断点:振荡间断点,无穷间断点。

例题

例1:讨论函数f(x)=\lim_{n->\infty}{\frac{1-x^{2n}}{1+x^{2n}}x} \ \ (n\in N_+)的连续性,若有间断点,则判别其类型。

由于n是正整数,那么\frac{1-x^{2n}}{1+x^{2n}}这块,当x->\infty时,极限都为-1。根据极限运算法则,f(x)=-1 \times \lim_{n->\infty}{x}。又因为x是一个常数,所以可得f(x)=-x

再去寻找f(x)=0的点,可得x=0,x=\pm \ 1f(x)=0

 由上可得

f(x)=\left\{\begin{matrix} -x,x<-1 \\ 0,x=-1 \\ 0,x=0 \\0,x=1 \\-x,x>1 \end{matrix}\right.

那么接下来就是去判断x在(-1,1)区间内的取值了。

直接观察,发现由于x的区间是(-1,1),那么x^{2n}的极限为0(因为n{->}\infty,即使是x=0.999到最后值也趋向于0)。可得\frac{1-x^{2n}}{1+x^{2n}}的极限为1,那么函数在这段区间的极限就为x。

由上可得

f(x)\left\{\begin{matrix} -x,x<-1 & & \\0,x=-1 & & \\ x,-1<x<1 & & \\0,x=1 & & \\-x,x>1 \end{matrix}\right.

至此我们得到了f(x)的函数表达式,这里画图和直接观察都能发现间断点为x= \pm 1。且两者都是第一类间断点--跳跃间断点(左右极限存在但不相等)。

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值