搞懂为什么协方差Cov(X,Y)为0时,不能推出X,Y相互独立。

文章探讨了协方差为零并不意味着变量X和Y相互独立的情况。通过单位圆的例子说明,尽管X和Y的线性相关系数为0,即它们非线性相关,但它们并不相互独立,因为X的改变会相应地引起Y的改变,两者的平方和恒为1。这展示了一种非独立但协方差为零的特殊情形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课本上给的求协方差公式Cov(X,Y)=E(XY)-E(X)E(Y)。此时,当X,Y相互独立时,我们还可以得到Cov(X,Y)=E(XY)-E(X)E(Y)=0

但为什么反过来就不能推出X,Y相互独立呢?这里我们以单位圆举例,假设X,Y都分布在圆上。

它们呈线性关系吗?明显不是。由于x^2+y^2=1,两者不是线性相关的,我们可得x和y的线性相关系数为0,同时还可以得到它们的协方差Cov(X,Y)=0。(由相关系数的定义的来)

但它们相互独立吗?随着X的变化Y也在不断变化,X增大Y就减小,X减小Y就增大,两者各自平方后相加和为1。很明显两者不相互独立。

此时X,Y不相互独立,但它们的协方差和相关系数都为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值