在数学期望的性质里有一个性质:随机变量X和Y相互独立,有:E(XY) = E(X)E(Y).
事实上这里成立的充要条件是X和Y不相关即可。
那么问,相互独立与不相关的关系是什么呢?
独立性是指两个变量的发生概率一点关系没有;而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。
即:独立一定不相关,不相关不一定独立
举个例子吧
Y = X 2 X ∈ [ − 1 , 1 ] Y = X^2 \ \ \ \ \ \ \ X∈ [-1,1] Y=X2 X∈[−1,1]
思考一下:x和y相关吗?相互独立吗?
我们很容易看出来x和y显然是不独立的。因为y的值会随着x而改变。
是否相关呢?
我们可以用协方差来证明!
C o v ( X , Y ) = 1 N − 1 ∑ i = 1 N ( x i − x ˉ ) ( y i − y ˉ ) Cov(X,Y) = \frac{1}{N-1}\sum_{i=1}^N(x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=N−11i=1∑N(xi−xˉ)(yi−yˉ)
观察图二,我们的图像是关于x=0对称的,因此容易得知x的平均值 x ˉ \bar{x} xˉ就是为0。进而容易知道Cov(X,Y)=0,即X,Y不相关!!!