不独立 ≠ 不相关 (Independent ≠ Uncorrelated)

在数学期望的性质里有一个性质:随机变量X和Y相互独立,有:E(XY) = E(X)E(Y).

事实上这里成立的充要条件是X和Y不相关即可。

那么问,相互独立与不相关的关系是什么呢?

独立性是指两个变量的发生概率一点关系没有;而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。

即:独立一定不相关,不相关不一定独立

举个例子吧

Y = X 2         X ∈ [ − 1 , 1 ] Y = X^2 \ \ \ \ \ \ \ X∈ [-1,1] Y=X2       X[1,1]

在这里插入图片描述

思考一下:x和y相关吗?相互独立吗?

我们很容易看出来x和y显然是不独立的。因为y的值会随着x而改变。

是否相关呢?

我们可以用协方差来证明!

C o v ( X , Y ) = 1 N − 1 ∑ i = 1 N ( x i − x ˉ ) ( y i − y ˉ ) Cov(X,Y) = \frac{1}{N-1}\sum_{i=1}^N(x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=N11i=1N(xixˉ)(yiyˉ)

观察图二,我们的图像是关于x=0对称的,因此容易得知x的平均值 x ˉ \bar{x} xˉ就是为0。进而容易知道Cov(X,Y)=0,即X,Y不相关!!!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值