矩阵的最小多项式求解

矩阵的最小多项式求解方法


方法一:直接求解

直接求解法不易求出,略


方法二:通过矩阵若尔当标准型观察得出

设最小多项式为\psi (\lambda ),则其表达式为:

\psi \left ( \lambda \right )=\prod \left ( \lambda -\lambda _{i})^{\bar{n_{i}}}

其中:\bar{n_{i}}\lambda _{i}对应的若尔当块的最大阶数。

方法三:(简便)

(sI-A)^{-1}=\frac{Adj(sI-A)}{\Delta (s)},设m(s)Adj(sI-A)所有元素的首一最大公因式,则最小多项式\psi (s)为:

\psi (s)=\frac{\Delta (s)}{m(s)}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值