上下双正则补偿器设计

上下双正则补偿器设计


例:考虑传递函数为\hat{g}(s)=\frac{1}{s-1}的被控对象,假设扰动的形式为幅度a和相位\theta未知的\omega (t)=asin(2t+\theta )。试设计反馈系统中的3次上下双正则补偿器,使得输出可以渐近跟踪任意阶跃参考输入并抑制该扰动。将期望极点配置在-1\pm j2-2\pm j1处。


方法一:

STEP1:求参考信号r(t)和扰动w\left ( t \right )的拉氏变换

\hat{r}(s)=\frac{a}{s}

\hat{w}(s)=\frac{2ae^{-\frac{\theta }{2}s}}{s^{2}+4}

STEP2:求\hat{r}\left ( s \right )\hat{w}\left ( s \right )不稳定极点的最小公分母\phi (s)

\phi \left ( s \right )=s\left ( s^{2} +4\right )

注:若D(s)已经包含不稳定极点分母,则可以不加入{\color{Red} \phi (s)}

STEP3:确定正则补偿器次数m,设期望极点个数为lD(s)的次数为n,则正则补偿器次数m为:m=l-n

本题中,l,m,n均已知。m=3,l=4,n=1。

STEP4:求期望极点特征多项式F(s)

F(s)=\left ( s+1-j2 \right )\left ( s+1+j2 \right )\left ( s+2-j1 \right )\left ( s+2+j1 \right )

=s^{4}+6s^{3}+18s^{2}+30s+25

STEP5:设A\left ( s \right )=\tilde{A}_{0}\phi \left ( s \right )\tilde{D}\left ( s \right )=D\left ( s \right )\phi \left ( s \right ),构造矩阵

\begin{bmatrix} \tilde{A} _{0}& B_{0}& B_{1}& B_{2} \end{bmatrix}\begin{bmatrix} \tilde{D} _{0}& \tilde{D} _{1}& \tilde{D} _{2}&\tilde{D} _{3} \\ N_{0}& N_{1} & 0& 0\\ 0 & N_{0}& N_{1} &0 \\ 0& 0 & N_{0} & N_{1} \end{bmatrix}=\begin{bmatrix} F_{0} & F_{1} & F_{2} & F_{3} \end{bmatrix}

STEP6:解出参数,得出C\left ( s \right )

C(s)=\frac{B(s)}{A(s)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值