pandas——改写pandas源文件以实现:使用pd.DataFrame.itertuples但不自动修正列名

本文介绍了pandasDataFrame.itertuples函数的工作原理,它使用namedtuple返回按行遍历的迭代器。问题在于默认的rename参数会自动修正无效字段名,为保持原名需设置rename=False。友情提示:谨慎处理列名规则以避免错误。
摘要由CSDN通过智能技术生成

何为pandas.DataFrame.itertuples?

相较于 pandas.DataFrame.iterrows而言,pandas.DataFrame.itertuples更好地提供了按行遍历DataFrame 的功能,详见pandas——按行遍历dataframe的优选方法(itertuples,iterrows)

这这里,我们需要了解的是,itertuples返回的是一个namedtuple迭代器。同时可以传递两个参数:name和index。其中,index决定了是否包含索引,而name决定了namedtuple的名称。

何为namedtuple?

那么到这里,就需要提到关于namedtuple的基本信息。
可以查看python——什么是namedtuple?了解它,理解它,掌握它

一旦了解过namedtuple后,我们就可以知道namedtuple有一个参数:rename。这个参数决定了是否将无效的字段名自动替换为位置名称

问题所在

先看一下pandas.DataFrame.itertuples的源代码,方便起见我只摘取需要关注的一部分:

def itertuples(
        self, index: bool = True, name: str | None = "Pandas", rename: bool = True
    ) -> Iterable[tuple[Any, ...]]:
    arrays = []
        fields = list(self.columns)
        if index:
            arrays.append(self.index)
            fields.insert(0, "Index")
            arrays.extend(self.iloc[:, k] for k in range(len(self.columns)))

        if name is not None:
            # https://github.com/python/mypy/issues/9046
            # error: namedtuple() expects a string literal as the first argument
            itertuple = collections.namedtuple(  # type: ignore[misc]
                name, fields, rename=True
            )
            return map(itertuple._make, zip(*arrays))

        # fallback to regular tuples
        return zip(*arrays)

如上所示,它直接定义了rename=True,也就默认让itertuples自动修正无效的字段名。

那么我们就需要将rename参数重新在itertuples中恢复,同时也不能影响pandas的正常使用

解决办法

直接将 rename=True改为rename=False即可。

友情提示

rename这个参数为True时,可以自动修正。但为False时,如果列名不符合python的命名规则,直接报错,并不是按照原名称进行输出。所以在使用时谨慎使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ALittleHigh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值