ICA特征提取

本文详细介绍了ICA(独立成分分析)的基本原理,包括数据预处理、模型转化和最大似然估计。在图像特征提取方面,ICA通过学习正交基来实现线性无关的特征,并通过迭代优化确保W矩阵的正交性。文中提到了代价函数的构建、优化过程中的问题以及如何引入稀疏约束来改进模型。此外,还纠正了相关代码中的错误。
摘要由CSDN通过智能技术生成

看完了ICA的一整套原理介绍后,感觉完整的介绍和andrew ng的课程中的ICA特征提取关系不是很大;在ICA的理论中,主要用于盲源分离的,也就是混合的观测数据X,通过一个正交的且其范数为1的分离矩阵W(其实是实现旋转变换),分解为相互独立的原始信号数据S=WX。(这里要求S,W,X都为n*n的矩阵)

学习完成后自己有一些理解和不解。

数据处理

在实际的造作过程中,先通过均值削减和白化操作(也可通过PCA降维),把观测数据X变为一个,各个维数之间相互独立的新数据Z;让Z通过矩阵W分解为S,S=WZ;这样处理数据可以加快数据的收敛性;减低计算的复杂度。

模型转化

1,感觉利用极大似然估计算法时,利用sigmoid函数特有的性质,来近似代替原始数据的的概率分布Ps(t),感觉这个很神奇,以前只知道期望均值,可以用平均数来代替,例如本例中也通过均值来近似估计对数似然期望;没想到连概率密度函数都可以“蒙”;通过转化把一个函数优化问题,最后通过梯度下降算法来求解最优值。

2,利用负熵转化时,感觉这个也很神奇,通过信息论中熵的概念,中心极限定理,最大熵原理,KL散度,互信息定义出了变量间相互独立行

ICA(Independent Component Analysis)是一种经典的信号处理算法,用于对多通道混合信号进行分离,提取出其中独立的成分。 ICA特征提取的代码主要分为两个步骤:预处理和ICA分解。 预处理:包括信号读取、信号归一化、信号采样、滤波、降采样等操作,目的是获取高质量的信号数据。 ICA分解:通过矩阵运算和优化算法,将多通道混合信号分离成互相独立的成分。 以下是简单的ICA特征提取代码示例: ```python #导入ICA的相关库 from sklearn.decomposition import FastICA import numpy as np #读取信号数据 data = np.loadtxt("signal.txt") #归一化信号 mean_data = np.mean(data, axis=1) std_data = np.std(data, axis=1) data_centered = (data - mean_data[:, np.newaxis]) / std_data[:, np.newaxis] #设定ICA分解相关参数 n_components = len(data[0]) #设置分解后的成分数 algorithm = 'deflation' #选择优化算法,可以是'parallel'或'deflation' whitening = True #进行白化处理 max_iter = 200 #设置迭代次数 #进行ICA分解 ica = FastICA(n_components=n_components, algorithm=algorithm, whiten=whitening, max_iter=max_iter) S_ = ica.fit_transform(data_centered.T) A_ = ica.mixing_ #输出分解后的独立成分数据 for i in range(n_components): print(f"Component {i+1}:\n") print(S_[:, i]) ``` 在以上代码中,首先用numpy库读取信号数据,然后进行归一化,接着利用sklearn库中的FastICA方法进行ICA分解,最后输出分解后的独立成分数据。通过以上代码,我们可以进行多通道混合信号的ICA特征提取,提取出信号中有用的独立成分信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值