(继)pytorch中的pretrain模型网络结构修改

本文介绍了如何在PyTorch中修改预训练的ResNet模型,具体方法是移除原始模型的fc层和pooling层,新增反卷积层、池化层和分类层。通过调用model.children()来获取并修改模型结构,构建新的Net类,实现网络的前向传播功能,并加载预训练权重。
摘要由CSDN通过智能技术生成
继上篇文章提出的两种预训练模型的修改方法外,今天在这里推荐我新学习到的一种方法:
这里还是以resnet模型为参考,在去掉预训练resnet模型的后两层(fc层和pooling层)后,新添加一个反卷积层、池化层和分类层。
那么对于网络的修改怎样可以快速的去除model本身的网络层呢?
一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):
resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:
class Net(nn.Module):
    def __init__(self , model):
        super(Net, self).__init__()
        #取掉model的后两层
        self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
        
        self.transi
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值