继上篇文章提出的两种预训练模型的修改方法外,今天在这里推荐我新学习到的一种方法:
那么,接下来就可以构建我们的网络了:
这里还是以resnet模型为参考,在去掉预训练resnet模型的后两层(fc层和pooling层)后,新添加一个反卷积层、池化层和分类层。
那么对于网络的修改怎样可以快速的去除model本身的网络层呢?
一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):
resnet_layer = nn.Sequential(*list(model.children())[:-2])
那么,接下来就可以构建我们的网络了:
class Net(nn.Module):
def __init__(self , model):
super(Net, self).__init__()
#取掉model的后两层
self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
self.transi