Repeated subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image resolution.
We present RefineNet, a generic multi-path refinement network that explicitly exploit all the information available alone the down-sampling process to enable high-resolution prediction using long-range residual connections.
模型
- 说明
- 图a)代表的是标准的CNN结构
- 图b)代表的是带孔卷积dilated convolutions
- 图c)代表的是RefineNet的思路
- 每一个小模块是一个RefineNet
- 融合了不同尺度下的RefineNet结果
- 最终upsample到原图的1/4大小
- 每一个RefineNet是多个残差模块作为输入
- RefineNet-4的filter个数为512
- 其他残差模块的filter个数为256
- 每一个基础模型中的输出,进行两次残差计算RCU模块
- 每一个RCU输出结果,都经过Multi-resolution Fusion模块
- 3x3conv+upsample,上采样到该层最大的分辨率
- 将不同的输入进行求和
- 上一层融合的结果进行CRP模块【默认采用2个pool层】
- 经过一次ReLU非线性激活
- 证明该操作对于后面的pool操作非常有用
- 使得模型对于学习率变的没有那么敏感了
- 该操作没有是的网络的梯度传递变的效率低
- 经过3次pool+conv然后sum融合操作
- 每一次pool为上一层pool+conv的结果
- pool操作的步长为1
注:CRP模块的作用:能够捕获背景纹理
- 经过一次ReLU非线性激活
- 最后接一个RCU模块【残差模块】作为输出
- RefineNet-1中在softmax之前,采用了2个RCU模块作为输出
- 每一个RefineNet是多个残差模块作为输入
不同的网络结构
效果
VOC数据集上的效果
其他数据集效果
总结
本文提出了一种multi-path refinement的网络结构,通过long-range和short-range的残差模型的多层连接,能够将high-level semantics和low-level features有效的融合映射到原图高分辨的分割信息上。