阅读时长:10分钟
本文内容: cursor 太贵?如何科学的使用cursor 平替编辑器.
介绍:本文首先介绍了在 VS Code 中使用插件 Roo Cline 以达到和 Cursor 类似功能的方法。接着,介绍了如何使用 Repo Prompt 这款软件,在网页版 Claude Pro 中体验类 Cursor 的功能(相比调用 API ,使用网页版费用更加可控)。最后,以一个 AI 辅助编程实例讨论了这类工具的局限性,最终提出三点结论:
- (一)小型项目使用 AI 事半功倍,但是每一个 prompt 不应提出太多需求,复杂需求应在多轮对话中逐步提出;
- (二)对复杂项目而言,市面上的 AI 暂难以处理;
- (三)在 AI 实际操作中,“人类能够精准指出问题所在”这一点,十分重要。
Cursor 是什么?
2023 年初,四名麻省理工的学生 Michael Truell、Andrew Brown、Aman Sanger 和 Alex Gu 创立了 Cursor。这款编辑器一经推出就引起了开发者的强烈关注。
截止到24年末,该公司已经估值25亿美元
Cursor 本质上是在 VS Code 的基础上深度定制的代码编辑器。它继承了 VS Code 的所有优点,包括插件生态和熟悉的界面,但在此基础上通过集成 Claude 等大语言模型,创造了更智能的编程体验。
与 GitHub Copilot 等代码补全工具不同,Cursor 开创性地引入了"对话式编程"概念。你不仅能获得智能代码提示,更能与 AI 进行多轮对话,让它理解完整的业务上下文。这种革新让它远超 GitHub Copilot 、豆包 MarsCode 等竞品,成为真正的"AI 结对编程"工具。
Cline 和 Roo Cline
然而 Cursor 的高昂订阅费让许多开发者望而却步。在社区的不断探索下,一个名为 Cline 的开源项目应运而生。
Roo Cline 是 Cline 的改进版本,它巧妙地将多个大语言模型(如 DeepSeek、Claude、Gemini)整合进了 VS Code。用户只需安装这个插件,就能在熟悉的编辑器中获得类似 Cursor 的 AI 辅助体验。
这种方案既保留了开源的灵活性,又让开发者能够自由选择不同的 AI 模型。虽然在集成度上可能略逊于 Cursor,但"一分钱一分货",对于个人开发者来说已经足够实用。
此外,无需额外维护一个 IDE 也是 Cline 相比 Cursor 更具吸引力的地方。
如何“免费”使用?
Google Gemini 2.0 flash
Google 为所有开发者提供了 Gemini 的免费调用方式:只要频率不高于每分钟 15 次即可——对于 AI 辅助编程而言足矣。在 gemini-api 中可以获取免费的密钥。
DeepSeek-v3
作为国产之光,相信关注科技新闻的朋友都会听过国内的 DeepSeek 模型,其编码能力远超国内一众大模型,超过openai,直逼 claude.
进入 deepseek 注册登陆,即可获得 500 万 tokens 的免费额度,对于“重度”编程而言,也够用好几天的了。
当然我充了20R,足够用很久很久了.
在 Roo Cline 中使用
在 VS Code 中 安装 Roo Cline 后,在设置中,选择相应的模型,输入 API Key 即可。
接下来只需要和 Cursor Composer 一样,在 VS Code 中输入你的需求,充分利用好 @
功能即可。
Roo Cline 的玩法很多,与 Cursor 一样,配置了合适的 Rule 的 Roo Cline 能力会大大增强!在我之前的分享文章中有通用版rule, 当然你要根据具体的语言和项目进行设置,能力还能提升至少30%!群中有rule免费分享。
RepoPrompt 在网页版中使用 Claude 3.5 Sonnet
尽管因为太昂贵,我们不想接入 Claude API ,但是我们可以在网页版中使用付费额度固定的 Claude Pro 来使用“最适合编程”的 Claude 3.5 Sonnet 模型。
在 repoprompt 下载 Repo Prompt 。
用 Repo Prompt 打开你的项目,在其中选择你要附带上的(你要给 AI 阅读/修改的)文件,接着书写提示语,如下图所示。
如上:
- 首先我在 Repo Prompt 中打开我的项目
- 我在 Instructions 中,勾选了
File Tree
、XML Whole
以及Project Manager
三个前置 Prompt File Tree
将整个项目的目录结构自动整理成文本XML Whole
是 Repo Prompt 这个软件的精髓,它会要求 Claude 输出一个 xml 格式的内容,之后我们可以直接拿这个 xml 格式输入回 Repo - — –Prompt
,从而方便地将 Claude 带来的代码修改 code diff 应用到我们的项目中- Project Manager 是我自定义的提示语
- 接着我在下方粘贴了 pytest 的报错
- 在下半部分 Selected Files 中,我勾选了一些我想上传的文件
这些都完成后,点击下方 Copy ,你的剪贴板中即获得了上面所说的全部内容,直接粘贴给网页版 Claude Pro 即可。
如上, Claude 产生了一个 XML 代码块,我们只需要将其 Copy 到 Repo Prompt 的 Apply > XML Input
中即可。
Repo Prompt 自动解析该 XML ,与本地文件对比,并且将代码对比展示给我们。我们审核代码后,即可选择是否应用这些改动。
总结
- 小型项目使用 AI 事半功倍,但是每一个 prompt 不应提出太多需求,复杂需求应在多轮对话中逐步提出;
- 对复杂项目而言,市面上的 AI 暂难以处理,但若是项目解耦较好,能够拆解成一个一个的小部分,应用 AI 辅助是可观的选择。并且对于一些业务代码, AI “照猫画虎”的能力往往是惊人的:它所提供的 “添加一条新业务的方案” 往往很优雅,其能很好地使用你项目中的自定义的 utils (前提是你有其他业务代码也应用了这些 utils ,相当于给 AI 举了个例子如何使用),开发者仅需 review + fix lint 即可;
- 在 AI 实际操作中,“人类能够精准指出问题所在”这一点,十分重要,无需赘言。非专业人士写一个玩具 APP 是可行的,但是实际工程化的项目没有专业人士指引, AI 依然很难完成。
码农,不必担心失业,AI目前仅能作为辅助提效,还无法完全替代.