Toeplitz定理推广和应用
Toeplitz定理
设 n , k ∈ N n,k \in \mathbb{N} n,k∈N, t n k ≥ 0 t_{nk}\ge0 tnk≥0 且 ∑ k = 1 n t n k = 1 \sum_{k=1}^{n}t_{nk}=1 ∑k=1ntnk=1, lim n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn→+∞tnk=0。如果 lim n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn→+∞an=a,则
lim n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n→+∞limk=1∑ntnk⋅ak=a
证略
推广 把和为1改为和的极限为1
设 n , k ∈ N n,k \in \mathbb{N} n,k∈N, t n k ≥ 0 t_{nk}\ge0 tnk≥0 且 lim n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n → +\infty}\sum_{k=1}^{n}t_{nk}=1 limn→+∞∑k=1ntnk=1, lim n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn→+∞tnk=0。如果 lim n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn→+∞an=a,则
lim n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n→+∞limk=1∑ntnk⋅ak=a
证明:
设 S n = ∑ k = 1 n t n k S_n=\sum_{k=1}^{n}{t_{nk}} Sn=∑k=1ntnk
因为 lim n → + ∞ t n k = 1 > 0 \lim_{n→ +\infty}t_{nk}=1 \gt 0 limn→+∞tnk=1>0,因此 ∃ N 1 ∈ N \exist N_1∈ \mathbb{N} ∃N1∈N,当 n > N 1 n \gt N_1 n>N1时, S n > 0 S_n \gt 0 Sn>0
当 n > N 1 n \gt N_1 n>N1时,令 b n k = t n k / S n b_{nk}=t_{nk}/S_n bnk=tnk/Sn,则
b n k ≥ 0 b_{nk} \ge 0 bnk≥0并且
∑ k = 1 n b n k = 1 \sum_{k=1}^n{b_{nk}=1} ∑k=1nbnk=1, lim n → + ∞ b n k = 0 \lim_{n→ +\infty}b_{nk}=0 limn→+∞bnk=0
根据Toeplitz定理
lim n → + ∞ ∑ k = 1 n b n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}b_{nk} \cdot a_k=a n→+∞limk=1∑n