Toeplitz定理推广和应用

本文探讨了Toeplitz定理的推广,将和为1的条件替换为和的极限为1,并证明了这个推广定理。进一步,文章展示了这个推广定理在多个极限求和问题中的应用,包括不同类型的数列极限和乘积极限问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Toeplitz定理推广和应用

Toeplitz定理

n , k ∈ N n,k \in \mathbb{N} n,kN t n k ≥ 0 t_{nk}\ge0 tnk0 ∑ k = 1 n t n k = 1 \sum_{k=1}^{n}t_{nk}=1 k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn+tnk=0。如果 lim ⁡ n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn+an=a,则

lim ⁡ n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n+limk=1ntnkak=a

证略

推广 把和为1改为和的极限为1

n , k ∈ N n,k \in \mathbb{N} n,kN t n k ≥ 0 t_{nk}\ge0 tnk0 lim ⁡ n → + ∞ ∑ k = 1 n t n k = 1 \lim_{n → +\infty}\sum_{k=1}^{n}t_{nk}=1 limn+k=1ntnk=1 lim ⁡ n → + ∞ t n k = 0 \lim_{n\rightarrow +\infty}t_{nk}=0 limn+tnk=0。如果 lim ⁡ n → + ∞ a n = a \lim_{n \rightarrow + \infty}a_n=a limn+an=a,则

lim ⁡ n → + ∞ ∑ k = 1 n t n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}t_{nk} \cdot a_k=a n+limk=1ntnkak=a

证明:

S n = ∑ k = 1 n t n k S_n=\sum_{k=1}^{n}{t_{nk}} Sn=k=1ntnk
因为 lim ⁡ n → + ∞ t n k = 1 > 0 \lim_{n→ +\infty}t_{nk}=1 \gt 0 limn+tnk=1>0,因此 ∃ N 1 ∈ N \exist N_1∈ \mathbb{N} N1N,当 n > N 1 n \gt N_1 n>N1时, S n > 0 S_n \gt 0 Sn>0

n > N 1 n \gt N_1 n>N1时,令 b n k = t n k / S n b_{nk}=t_{nk}/S_n bnk=tnk/Sn,则

b n k ≥ 0 b_{nk} \ge 0 bnk0并且
∑ k = 1 n b n k = 1 \sum_{k=1}^n{b_{nk}=1} k=1nbnk=1 lim ⁡ n → + ∞ b n k = 0 \lim_{n→ +\infty}b_{nk}=0 limn+bnk=0

根据Toeplitz定理

lim ⁡ n → + ∞ ∑ k = 1 n b n k ⋅ a k = a \lim_{n \rightarrow +\infty} \sum_{k=1}^{n}b_{nk} \cdot a_k=a n+limk=1n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值