Pytorch实现ResNet V2-Pre-activation ResNet

论文地址:Identity Mappings in Deep Residual Networks
参考链接:https://blog.csdn.net/wspba/article/details/60750007
该文针对原始的残差单元提出了改进的残差单元,如下所示:
在这里插入图片描述
从图中(b)可以看出,将激活函数(ReLU 和 BN) 看作是权重层的 “pre-activation”,而不是传统的“post-activation”。通过这个观点产生了一个新的残差单元。基于这个单元构建的1001层ResNet在CIFAR-10/100上展现了更具竞争力的结果,并且与原始的ResNet相比,也更容易训练,泛化能力更强。这些结果表明了,作为深度学习成功的关键,模型的深度仍然具有很大的可拓展空间。
在Pytorch实现上,相比于原始的ResNet, Pre-activation ResNet只需要改变forward函数的内容即可,原始的ResNet代码实现可见:https://blog.csdn.net/winycg/article/details/86709991

'''Pre-activation ResNet in PyTorch.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv:1603.05027
'''
import torch
import torch.nn as nn
import torch.nn.functional as F


class PreActBlock(nn.Module):
    '''Pre-activation version of the BasicBlock.'''
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(PreActBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, 
                               stride=1, padding=1, bias=False)

        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False)
            )

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))
        out += shortcut
        return out


class PreActBottleneck(nn.Module):
    '''Pre-activation version of the original Bottleneck module.'''
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(PreActBottleneck, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes,
                               kernel_size=1, bias=False)

        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False)
            )

    def forward(self, x):
        out = F.relu(self.bn1(x))
        shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
        out = self.conv1(out)
        out = self.conv2(F.relu(self.bn2(out)))
        out = self.conv3(F.relu(self.bn3(out)))
        out += shortcut
        return out


class PreActResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(PreActResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1,
                               padding=1, bias=False)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def PreActResNet18():
    return PreActResNet(PreActBlock, [2,2,2,2])

def PreActResNet34():
    return PreActResNet(PreActBlock, [3,4,6,3])

def PreActResNet50():
    return PreActResNet(PreActBottleneck, [3,4,6,3])

def PreActResNet101():
    return PreActResNet(PreActBottleneck, [3,4,23,3])

def PreActResNet152():
    return PreActResNet(PreActBottleneck, [3,8,36,3])


def test():
    net = PreActResNet18()
    y = net((torch.randn(1,3,32,32)))
    print(y.size())

# test()


已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页