GAMES 图形学系列笔记(四十七)

GAMES302-等几何分析 - P11:11. 基于体细分的等几何建模仿真优化一体化框架 - GAMES-Webinar - BV1dM4y117PS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好我们正式开始,啊不好意思啊,今天因为这个出差来北京啊,所以这个时间上有点晚了,那么就是说我们这次课呢,主要给大家介绍这个基于体系分的啊,等几何建模与仿真优化一体化框架啊。

实际上前面我们也是给大家上过十次课了是吧,上说十次课,我觉得基本上应把我们这个等级和分析的一些,主干的一些内容给大家介绍完了啊,给大家介绍完了,所以说呢我们呃,后面呢可能还有大概两次课的时间啊。

啊就给大家介绍一下这个呃比较高级的一部分,以上就是我今天汇报的这些内容,应该是给呃在一些呃其他场合呢,或者会议上也都那个讲过啊,可能有些老师同学或者已经听过了,如果如果大家觉得这个已经听过的话。

这样就是也可以呃这个选择性的听一下啊,那么我们呃应该我记得,像在这个GDC的会议上啊,还有在这个呃山东大学,包括浙大,还有中科大呃,呃大大工啊,这几个学校应该我记得应该都讲过啊。

我们这个呃体系分的这个工作啊,那么也是呢我这边呢也是把这部分工作啊,作为我们呃这个灯球课程的啊,其中一部分,那么我们这个这个这部分内容呢,主要是介绍我们基于我们在体系分方面的,一个呃一个贡献。

然后把怎么样把体积分啊,作为一个非常重要的一个工具,和我们的啊躯体建模啊,仿真啊,物理仿真,还有这个结构优化呃,能够把它连接起来,形成这么一个基于体系分表示的啊,这么一个建模。

仿真优化的一个一体化的一个框架啊,那么实际上就是说呃,主要是有这么三大部分内容啊,第一部分内容呢,就是介绍这种基于体系分的复杂取题建模啊,复杂取题建模这部分啊,第二部分介绍基于体系分的高精度。

IG物理仿真啊,那么第三部分呢,介绍这个基于体系分的IJ形状啊,这个拓扑优化方法,那么实际上这三部分啊,这三部分啊,我想最主要的这个部分呢,应该是在这个躯体建模这一块啊,就是这个基于体系分的啊。

复杂具体建模这一块啊,然后这一块呢也是主要就是给大家介绍了,就是这个介绍一些体系分的一些基础知识啊,包括我们怎么样把这个体系分啊,作为一个公工具啊,然后能够和我们的这个呃等以后啊。

这个领域呢啊它具体是怎么结合起来的啊,我想这个呢是最重要的啊,那其实后面的这个基于这个IJA物理仿真啊,包括它的形状特别优啊,方法呢实际上就是四九是来的比较顺其自然啊。

那么实际上我们在前面介绍有两次课啊,实际上给大家介绍了面向整理和分析的这个,参数化的工作对吧啊,参数化的工作啊,实际上就是说包括这个平面参数化和体,参数化啊,那我们说呢参数化呢。

实际上就是可以看作是有限园里面的这么一个,网格生成的这么一个过程对吧,网格生成的这么一个过程啊,那么也就是说,等几何是不是不需要网格生成的啊,不是的对吧,它本质上还是需要类似于一个高阶网格生成的。

这么一各阶段对吧啊,所以说在我们等级和里面的非,一般都把它称为是叫做呃这个参数化问题啊,参数化问题,那么实际上也有说等几何分析啊,等几何分析啊,它不仅仅不仅仅是把我们这个CGD里面的,这个曲线曲面啊。

这些基础的知识是吧,相当于这么一个老的原型领域啊,把它应用到一个新的方向,就是这个计算力学里面啊,也就是说它不仅仅是给CGD啊,开辟了一个一个新的新的一个方向啊,而且呢实际上也是给我们这个计算几何。

提出了一些更新的一些问题啊,更新的一些问题,比如说这个复杂具体建模的这么一个问题对吧,啊,比如说我怎么样啊实现啊一种方便的啊,直观的这种具体建模的功能啊,也说特别是对于这种复杂形状的物体。

我怎么样能够实现,实际上是一个非常重要的啊,对我们的一个分析来讲啊,因为我们无论在大部分的这个结构啊,一些计算啊,仿真啊方面方面,我们还是希望能够实现对吧,呃这种躯体的直接建模啊。

因为像呃我记得是前面几年啊,就是说啊经常有这个计算力学的同学来问我说,徐老师啊,有没有我想做一个等几何的问题对吧,我这个求解器基本上都已经写好了啊,但是我想做一些更复杂的一些模型啊。

或者我想自己去设计一些理,而不是只是用那个力这个计算力学呃,里面比较经典的一些benchmark的一些例子来做,对吧啊,我想做一些更复杂的任意的形状的这种例子啊,那我有没有一些这种躯体建模的工具啊。

那其实就是当时确实比较少是吧,嗯很多时候你需要很多很多的这种,要懂很多的这个计算机和样条方面的知识对吧,你才能够写这么一个程序啊,然后呢去把啊这个相应的这个还有因为你复杂,具体嘛你肯定是要多快的对吧。

然后我这些怎么去设计啊,什么等等啊,都是还挺挺复杂的一个问题啊,那么实际上这也是我想在一定程度上,也是限制了这个等级和分析的发展对吧,等几个分析的发展也是我怎么样实现呃,这种面向登记和分析的呃。

这种复杂群体建模的要需求啊,实际上就显得非常的重要啊,非常重要,那么实际上我们这边呢,主要是做了这么一个问题,就是说啊,给我们一个复杂拓扑的一个六面体的控制网格,我怎么样去基于。

就像我们这个右下角的这么一个,类似于兔子的模型对吧,比如说我们图形学中常用的一个例子啊,就是说我怎么样能够去构造相应的一个样式的,群体的表示呢,啊那么这就是我们想呃,现在来做了这么一件事情啊。

就假设我们已经有了这么一个呃,复杂top的六面体的控制网格,我怎么样去构造相应的样条,具体的表示,所以这边有两个关键词,第一个是复杂对吧,另外一个就是这个top复杂对吧,那top复杂三角也有外服。

我肯定是多快的才能够去完成啊,然后呢又能够实现这种来带动啊,或者之类的这种复杂的这种拓扑啊,那么实际上这边有这么几种方法啊,那么实在我们体操的话里面,我们在前面给大家讲过啊,就是说目前这种全自动化的。

高质量的六面体网格的生成啊,目前应该还算是一个呃对圣杯问题对吧,或者是一个平静的问题啊,一个开放性的一个问题啊,那么实际上我们呢就在21年的时候做的,这个工作啊,就是说啊目前上是相对于像这种八叉树啊。

这种方法相对来说比较暴力,比较鲁邦的这种方法还是比较呃,可以做到自动化的对吧,那实际上也就是说我们可以曲线救国啊,曲线救国,比如说我们可以先利用这种八叉树的方法,去生成一个初始的地面体网格对吧啊。

然后它所形成的这种其结构啊,什么叫做奇异结构啊,实际上也就是说在我们的一般的大大多大,大家的这个认知里面,这个绿面体网格,它肯定是在大部分的地方都是什么,从一个点出发对吧,应该和它相邻有八个cell。

就是八个体的单元对吧,然后应该有六条边对吧,应该有六条边啊,但是可能会在一些特殊的地方,它可能嗯不是满足这个数量的要求的啊,就是出现所谓的奇异点对吧,那可能从这个点出发,可能不是有六条边了啊。

可能是呃有有七条边,五条边对吧啊,那么也可能不是八个八个单元了对吧,也可能是五个单元,四个单元四对吧之类的六个单元,所以说这样的话呃这个这个地方点呢,我把它称为是七一点啊,那么相对而言,也就是说我。

我实际上是我知道这个奇异点来讲啊,咱对于曲面,二维的曲面的情况来讲就就可以了对吧,但实际上对我们这个体网格,特别是六面体网格的而言的,它还有一个叫做起义线的概念对吧,起以线的概念啊。

也就是说从沿着这条曲线啊,他上次和我们一般的这种规则的,情况也是不一样的,是吧啊,那么双爷爷说呢,呃如果我们把这些奇异点奇异线画出来啊,就把它连起来,就会得到一个相应的奇异结构,只要大家可以发现。

就是说呃,如果我用传统的这种基于八叉树的方法,让它在它的表面啊,或者表面附近会有非常复杂的这种气息结构啊,那么这边呢就是我这个不同颜色,就是我的这个这个这个作为一个技术型,或者这种快也好,对吧啊。

正是因为他的呃其实结构非常复杂,所以说啊所以说它相应的这么一个呃,形成了这个分块也是块是非常多的对吧,那么上我们算一下它的各种指标,无论是这个平均价格比还是最小雅各比的。

实际上就是它的指标都是质量都是不高的,不高的啊,像我们这边呢,就是说呃用了一个曲线救国的一个思路,也就是说我可以先用巴萨树的,基于巴萨树方法,先生成一个初始的一个六面体网格,但是它质量不高对吧。

但是我可以用通过一些拓扑简化的一些方法,把这么一个不好的唉,不是一个复杂的一个拓扑的东西啊,把它简化成这种区域结构啊,比一个比较比较干净的啊一个器结构啊,然后这样的话我就会在上面生成网格。

就会生成一个高质量的一个网格,实际上就是说这样的话,我们会得到一个非常质量,高质量的一个呃一个一个一个拓扑结构,对一个起结构,而且它的快速大家可以看到啊,我这个快速都比较大了,现在的快速还比较少对吧。

而且相应的我这个质量,无论是它的这个平均价格比还是最小雅阁比啊,这样这个质量呢都会得到比较大的提升啊,那么而且他这个地方的快速,已经从原来的2万5000多块,减少到了134块。

那啥我就可以记着134块来进行,来进行什么啊,来进行这么一个它的一个呃题材化,或者一些cad的一些重建,对吧啊,也就是说实际上的话,这后面我们通过这种拖布简化的方法啊,来得到的,这种结构。

实际上是非常适合于我们登记和分析的啊,都没有分析的,那么也就是说我们这边的主要是采用了一个,基于加权排序的一个方式啊,也就实际上我们考虑了在拓扑简简化前后,他的这个相应的一些一些比较啊。

那么实际上就是在这个里面啊,在这个里面我们非常重要的一点啊,非常重要的一点呢,就是说呃,我们实际上不仅仅考虑到我这个,我要去删除哪些大块,删除哪些块对吧,少在这个里面,我不仅仅考虑到他的这些呃宽度啊。

这样我先删除这个宽的,现在是小窄的,我也考虑到它这个呃拓扑简简化,前扣他的这个拓扑,这个对哪些啊,删掉哪些快对我的拓扑的这个信息啊,它是有用的,那么这边呢就是我做了一个演示啊。

这个实际上就是我我现在呃输入的啊,呃这么一个原始的奇异拓扑结构,现在看到这个快速是非常多的对吧啊,快速是非常多的,现在我就可以做一些这个拓扑的这个简化啊,top的简化。

这边就是我显示了之后的简化之后的图片结构,它这个快速啊就是少了很多,是少了很多,那么像这么一个这么一个分块啊,实际上也是非常适合我们来做这个呃题材的话,说出这种问题对吧,但我们说的这还是一种。

基本上是一种呃曲线救国的一个思路,也就是说我们还是需要对它的内部做这种拓扑,划分对吧,而现在呃上次对做这种top划分来讲的话,呃上还是比较困难的一件事情啊,特别是这种全自动的。

高质量的这种拓扑区域的划分,那么实际上我们呢这边呢就是说啥,还有一个解决方案就是什么呢啊,我们可以利用细分建模的这个思路啊,细分建模的思路只要在大家如果学过通讯学,都知道,像这个细分曲线曲面啊。

在我们这个图形学里面是非常经典的一种,建模的方法对吧,特别是在这个动画造型领域啊,实际上是呃非常重要的啊,因为它这个建模起来非常简单,它的基本思想呢,就是说我给你一个初始的控制多边形。

或者一个初始的一个粗糙的控制网格,我按照一定的这个细分规则对吧啊,也是每一步我这个插入新的顶点啊,插入新的面对吧,那么这些新的顶点的插入都是满足一定的,事先规定好的这个规则是吧啊。

那么插入这些新的顶点之后啊,我再重新生成这些曲线啊,就变最后对吧,我听过一次两次,三次或者无穷多次之后,就会得到一条光滑的曲线对吧,或者一张光滑的曲面对吧,也就是说实际上这个上次我们在呃。

计算机呃领域里面是非常喜欢的对吧,实际上它就是一个可以看着理解成一种递归嘛,对吧,一种递归,所以说实际上是计算机呢,他是非常喜欢这种递归实现的对吧啊,递归实现,而且他这个实现起来也非常稳定对吧,鲁邦啊。

那么十二十细分曲线曲面对吧啊,特别是细分曲面,在我们整个的动画领域是大行其道啊,也是非常重要的一种做这种角色的建模,三维建模造型的一种方法,那么曾经也获得获得过什么啊,奥斯卡奖之类的对吧。

那么实际上就是说我们在想,就是说能不能啊,把细分曲线曲面这一套东西推广到体啊,也是形成一种新的建模方法,就是呃体系分啊,体系分好,大家都知道细分曲线曲面,它实际上是突破了我们传统的这种变条。

这个北约numbers这种拓扑上的限制,对吧啊特别是对于细分曲面来讲对吧,我可以实现这种任意拓扑的这种局面,的这种建模啊,那实际上我们如果啊要想回答回答我们的初心,想去解决这种复杂具体建模的问题的话。

就说我能不能实现这种呃气氛躯体的造型呢,啊当然是可以的啊,而且我们也不是第一个来做这件事情的人,来做这件事情啊,那上对于我们cc细分啊,实际上是他的co clark对吧,这个细分啊。

实际上是在我们图形学里面,是非常经典的一种行为方式啊,啊那么它的呃实际上在正规的情况下,就对应于我们的三次变样条曲面啊,三次变量曲面也说他在正规的regular的地方啊,规则的地方都是c two的啊。

都是C2连续的啊,那么上啊只是在七点地方,它是这个呃G的对吧啊,也就是实际上就是说呃,在这个我们的这个cc细分这个规则里面啊,实际上是它是对应于和我们的这个,regular case的话。

后面的样条三次B样条是紧密联系在一起啊,紧密联系在一起啊,而且呢对于这个cc细分曲面,我们有一个非常方便的啊,非常经典的一个极限点公式啊,极限公式啊,也就是说我初始的这个控制网格上的这个顶点。

我按照呃任意识的无穷多次的细分之后,他最终的这个极限点的位置在哪儿啊,这个实际上是可以可以推导出来的啊,可以推导出来的,也就是说我实际上是可以通过呃一种啊,显示的极限公式啊,但是这个显示的节点公式啊。

就是和我们细分一次或者新顶点,新编点和新变点是有关系的啊,所以说我通过这么一个非常简单的一个公式,就可以算出来最终这个vi这个初始的控制节点,它最终的这个节点位置在哪,我是可以通过这个显示的基本公式啊。

把它给算出来啊,也就是说这是对我们呃细分的领域,是非常重要的一个一个理论上的一个贡献啊,理论上的贡献,那么我们刚才讲了,实际上做这个cc体系分cc提分并并不,我们并不是第一个来做的啊。

那上次在1996年啊,啊那么那时候呢这个就提出了,我用这个体验方法来做这个自由变形对吧,哎,那么自由变形实际是最早是那个,1986年的时候有CD burger对吧,提出来的啊。

也是一集升到我们很多的这个动画的,这个建模的这个商业软件里面是吧,那么商这边呢他就是把这种呃FFD啊,自由变形和体积分结合起来,也是我用体积分呢作为我这个嵌入了一个空间,然后来做这个自由点电型。

主要来做这个用处啊,那么这个应该是第一次啊,把这个提分这个东西提出来啊,那么说到了02年的时候,在will computer这个这个期刊上呢,呃我们那个巴甲啊,还有我们我们特训学里面的几个。

非常著名的学者对吧,还有我们的学,我们中科院计算所的徐国良老师啊,提上上对我们这个六面体网格的细分模式,也是提出了这个呃,做了一些相应的这个规则啊,学习相应的这个工作,那么上这个这个工作。

也是我给你一个初始的一个六面体网格的,粗糙的一个模型,我按照一定的规则细分,然后就会得到一个光滑的一个体的表示,那么杀了它的细分规则呢,呃和这个曲面相比啊,新闻曲面相比当然是复杂了很多了,复杂了很多了。

也说我实际上就是说呃,我要比如我也是需要去,怎么样生成一些新的单元点是吧,新的这个面点,新的边点啊,啊你看我都有一些呃计算的一些公式,计算的一些公式,当然这个具体代表什么意义,我这边就不仔细讲了啊。

那比如说对这个SL点对吧,对这个CE点,实际上他就说我对于每一个绿面体的这个SEL,我都要查到一个新的一个save点,第三点是什么呢,就说是这些呃,在这个cell里面所有点的这个平均啊,重心在哪里啊。

那么在那个面点啊,P面点新面点呢它是对于每一个fish啊,原来的每一个这个fish上面,他都要呃插入一个新的面点啊,这个新的面点就是C1加C2,加上这个C1C2。

就是哎就是原来这个计算出来的这个SL点啊,比如说你因为我对于每一个每一个面来讲,一般来说肯定是我有两个对应两个CEL,那么这两个CEL都有两个SL点对吧,C 1c2。

然后这个A呢就是这个这个face的这个重心啊,这个中心对吧,相当于这个呃你如果是个四边的对吧,那就是呃这是个点的加权平均,那么所以呢就是他就做了一个计算公式啊,但它对于新的边点啊也是一样的啊。

那么你得到这个三三重点之后,你就可以把它按照一定的连接把它连起来啊,你这个连接呢,我也是有一定的这个相连的一些规则的啊,这样的话我身上就会得到一个新的,一个六面体网格,那么这个新的六面体网格呢。

肯定比原来的这个呃六面体网格呢,也是在这个单元数目要多了对吧,一般来说就说肯定是要乘以八了啊,那么大了之后呢,我再插入新的顶点啊,新的顶点啊,这个形变新的顶点的这个更新的商。

就是我可以根据呃这边的一些像这个SL点啊,face fs点,还有这个新编点啊,包括你这个初始的这个新景点啊,然后做一个做一个除以八,然后做一个平均,只要这样的话,它相应的这个呃我对这个所有的这个顶点啊。

也就做了一个更新,所以说这边就是他的这个cc细分规体系,分的规则,这边就简单介绍一下啊,有新人也可以呃,课下再在此好好的这个研究一下啊,那么实际上我们说刚才对于这个曲面来讲,我们有一个显示的极限的公式。

对吧啊,那么现在我们上就是说,我们希望能够把这个曲面啊啊,这个情形弄到这个推广到体上去,对吧啊,所以说对于这种呃cc体系分,我们是不是有相应的,这个呃极限公式呢啊,这个是我们也是想找到的一个答案啊。

但是非常遗憾,就是我们找了很久也没有找到啊,那么实际上是在,我们在同时做这个工作的时候啊,因为我们这个工作也是开展,也是他们的5年前起步,然后来做这个工作的啊,那么在这个那一年的这个pg上啊。

刚好也有一个呃一个团团队,他们来做做了一件事情啊,就是我当时对于这种cc体育分的这个AY6S,就是这个求职的这个运算啊,那么这个求职的这个运算在这个里面啊,商就是说呃他这个他商就说啊。

虽然给出了一些求职的算法,但是没有给出一个显示的极限的公式啊,实际上这个在我们这个用起来,还是感觉是缺了那么一点东西啊,那么实际上我们就做了这个工作啊,给周边几个节点公式。

实际上是在推导这个节点公司的一个,非常重要的啊,就是我希望能够得把呃啊,如果啊我这个这个从一个一个点出发啊,他的这个相应的这个边的这个数目啊,相当于从这个点出发的这个value,它的度数对吧,是N啊。

也就是说从这个点出发,我有一条边的话啊,那么它相应的诶在这个起点的这个地方啊,起点在这个地方,它的这个面数,还有它的这个单元素啊,分别应该是多少呢啊,那么当我们首先要去解决这么一个问题啊。

首先解决再解决这么一个问题啊,那么解决这么一个问题的话,如果我们记这个E啊,他就是呃就是在这个起点数啊,这个以这个度数数N的这么一个起点数,它的是这个,他的这个面的数目是E的话啊。

然后这个cell的这个数目是F的话啊,那么上次我们可以啊把在这个呃,把这个也在这个起点地方啊,我们可以放一个球啊,放一个比如单位球对吧,那么它在这个单位球的地方,大家就可以看到哎。

我这个球和我这个绿面体相交啊,包括啊和这个点起点出发的这N条边相交,我在这个球上就会形成这些红色的点对吧,在这个球面上啊,然后我这个面相就面和这个球相应的,就会形成形成一些什么啊曲线对吧,这些弧线啊。

然后这个cell相调呢我就会形成什么唉,形成这个三角形曲面球面上的三角形啊,也就是说实际上也是,我如果在这个起点地方放一个单位球,然后想我就会实现对这个求单位球的一个,球面三角化对吧,球面三角化。

而这个球面三角化它的这个边的数目对吧,这个边的数目恰好就是什么哎,在这个起点处,它的这个什么面的数对吧,那么它的这个三球面三角形的数目,这是什么哎,就是这个shell的数就是F对吧啊,然后这个什么啊。

顶点的数目就是呃它的valence就是N对吧,那么实际上也就是说在这个球面三角形上,我们上是有一些理论的一些结果,就是我们有一个所谓的欧拉公式,欧拉公式,那么这个欧拉公式呢。

它就代表了就是说呃我们算是有F减一,加N等于二,还有那个3F等于2E对吧,那么实际上这样的话呃我上这边我有什么哎,两个等式,两个未知数对吧,那我就可以把这个E和F把它给求出来,把它给求出来。

也是说我可以算出来啊,这个相应的这个fish的数目啊,在这个度数是N的这个起点处,它的fish的数目应该是三乘以N减二,然后这个SL的数目对吧,SL的数目应该是二乘以N减二是吧,二乘以N减二。

也就是说有了这个东西啊,三我也说我们就可以把这个在这个起点处,它的这个所有的face的时候,SL的时候我都可以写成N的表达式是吧,这我们就做了这么一个推导,然后有了这么一个结论,这么个原理之后。

商业说啊,因为在这个因为我把这个所有的起点的情况,我都可以把018的考虑进去嘛,对吧啊,所以说我这些都可以把它写成显示的,就是J从一到32-2对吧,二乘以N减2C23就是它的面的数模啊。

还有这个SL的数据对吧啊,这是因为这个推导,我们才可以把它写成这样子啊,那么所以我们这边一个主要的结果呢,就是这样子啊,就是也就是说给你一个初始的六面体控制网格,那么这个六面体控制网格上他这个顶点啊。

他最后的这个机械的位置在哪,他最后的这个节点位置在哪啊,我就可以通过这么一个显示的公式,把它给算出来,那么在这个公式里面啊,大家可以到N就是我这个顶点处的,它的violence是吧,它的度数啊。

那么其他的像这个vi111啊,F2-1啊,CJ1啊啊MG啊,这上都是它的什么啊,细分一次后的它的,顶点新编点新变点和新CD啊,新SL点,那么商也就说呢,呃我最后的这个vi的这个接线的位置。

实际上是和我细分一次之后的,他的这个网格的这些呃,呃你所插入的这些这个新景点,新编点新变点CCEL点是有关系的对吧,那么商也就说呢,我们无论如何,反正我们是把这个它的显示的节点公式,把它给推导出来。

把它给写出来了是吧,嗯当然我们也是可以去啊证明它啊,那么证明呢主要是要对它的这个细分矩阵啊,也就是说细分矩阵的三,就表达了我这个细分一次之后啊,比如细分NA次和细和细分N加一次。

它的这个顶点之间的这个关系啊,那我都可以用这个细分矩阵的来进行表示啊,实际上就是去分析啊,这个细分矩阵的他的一些特征值特征向量啊,那我就可以去证明它啊,去证明它当有了我这么一个节点公式啊。

我就可以做这么几个事情,第一个就是我可以做这种啊样条体的逼近,也就是说呢我给你做一个,给你做一个cc体型分的啊,它的样条曲病也是说我给你一个,除了控制网格啊,我可以得到唉,我根据这个说到空中网格。

我得到了最后的这个cc题里面的极限题啊,我可以用一些样条体的快去逼近它啊,那么实际上这也是呃非常呃非常重要的一个啊,另外一个呢我还可以做这种呃样条体的差值啊,给你一个初始的一个控制网格。

或怎么样去用一些样条体啊,去查值这个初始的控制网格的顶点啊,那么首先第一个问题啊,就是做这种CC提升的北的BC啊,实际上也是啊,去间接回答了我们刚才提出的那个问题啊。

就是说给你一个粗糙的路面提供的网格啊,我们啊希望呢通过这个节点公式,我们可以算出来啊,对于这个控制网格上的每一个单元对吧,每一个六面体单元,我们都可以构造出相应的一个北热体来对吧。

如果我对每个单元都构造出一个相应的本热体,那么这些本热体最后会形成一个样条体的,一个表示啊,那么这个样条体呢,恰恰就是这个cc体积分极限体的啊,一个一个逼近啊,一个样条逼近啊,一样的逼近。

而且呢我们说呢他和这个曲面的情形类似啊,这对于体的这个情形呢还是可以通过啊,还是可以通过呃,在正规的地方对吧啊,他是C2联系的啊,那么在这个起点的地方啊,比如这边他就是一个起点,是由这个点出发对吧。

他肯定就就不是一个我们river的一个点对吧,在这个点的地方,它是一个C0连续C里面去,那么12元说呢,我们也是通过这么一个极限公式啊,就可以实现啊,就可以实现啊,一个什么啊。

体积分和我的这个三次B样条体对吧,三次B样条体,它们之间的一个天然的一个联系上,我们就把它给建立起来了啊,也就是说只要你给我一个任意一个复杂的一个,里面体网格,我都可以构造出一个它的一个呃北的表示来。

或者样条表示来,作为它的相应的一个呃极限体的一个呃,样条逼近啊,样条必进啊,所以说呢这我觉得呢,就实际上是给我们等几个分析啊,建立了一个非常好的一个呃理论一个基础啊,包括一个建模的一个工具。

也是呃非常有用的,还是有用的,非常有用,那么这些北的对于每一个六面体网格单元,这个比较体呃,它的控制网格怎么来怎么来确定的呢,啊实很简单,我就可以通过一些模板啊,通过一些模板啊。

那么实际上对于我们这边呢把它称为一些mask,相对于这个regular的地方呢,呃这个模板是别代表什么什么意思呢,这里4221这些东西啊,就代表诶我要构造这个内部点的话。

它实际上是可以通过一些相邻区域的,这些初始的控制网格上的点呢,呃这个加权平均线性组合得到啊,那么这些4221呢,这些就是8442呢,这些都是呃这些相对于这个顶点处的,它前面的这个系数啊。

然后再除以所有的这个系数之和,对吧啊,这样就是表明了,我都是可以通过一个线性加权,线性组合的方式啊,从初始的控制网格的顶点,得到我的这个本热体的控制定点啊,那么相对于我的age point。

this point和corner point,我都是可以通过这种max的方式啊,线性的一些言码或者这种模板的方式,可以去进行构造,所以说这种构造呢是效率是非常高的啊,效率非常高的啊。

这是刚才是对这个reg的地方啊,那对于这种a reg的地方啊,那实际上也就我用我这集团公式嘛,我也是可以给出现用的这个模板的对吧,大家可以看到像这个地方就是一个期限的,那么商这边呢它就是一个七。

那么上次对于这些呢,我也是可以用这些模板来进行构造,来进行构造,嗯那么啥我这构造出来,构造出来我所得到的这么一个样条体的逼近,样条体的逼近12时差在什么呢。

这个大家可以发现发现它在regular的地方啊,都是蓝的,那蓝的又代表它是零误差对吧,误差是零的啊,为什么啊,因为它的regular的地方,它就是和我们的三次变量条是一样的啊,是一样的啊。

那么但是在这个起点附近啊,在起点处他还也是蓝的,对不对,那么这正是起点对吧,这是起点是什么,像这些缺点的话,它也是蓝的,为什么是蓝的哎,因为我们是有了什么唉,精确的显示的几点公式对吧。

也就是在这个基点地方,它的误差肯定也是零啊,那么误差有误差的地方在哪呢,就在这个基起点附近对吧,附近哎不是在七点离晚上七点附近,它确实呃不是不是蓝的对吧,有些绿的红的啊,就说明这个地方是有误差的啊。

是有误差的啊,为什么会有误差啊,那因为就是在这些起点地方啊,不是在七点钟就起点附近的地方啊,那么它实际上是没有做到一个呃嗯,一个精确的一个转换对吧,还是只是一个逼近的一个表示啊,逼近的一个表示。

那么商人说我们有了这么一个工具啊,这么一个理论的一个基础,实际上我们就可以做这些事情,对不对啊,就是说给你一个任意复杂的一个流媒体网格,我都可以构造出一个复杂具体的一个模型。

来一个样条样条体体的一个模型来是吧啊,那么上次给我们的这个复杂躯体的建模啊,特别是等你和分析应用里面的提供的,有一个非常好的一个工具出来对吧,也就是说你看这边啊这个快速兔子的模型,快速爱好对吧。

建筑成了一个这么一个玩这个码的这个模型,实际上它的这个快速就非常多了啊,也就12,你最后这个六面体网格你有多少个单元,多少个快,我最后的构造出了这样条体这个躯体模型啊,它也有多少个快,多少个快啊。

多少个具体,那么这是第二个工作啊,就是做那个样条曲子的逼近的对吧,当然我们也是可以呃,可以做差值这么一个工作啊,也就是说如果给你一个初始的六面体网格,我们也是可以构造出一个这些体系分的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这么一个极限提出来或者一个验钞提出来对吧,去插值,你这个呃给你的这个初始流媒体网格的顶点啊,啊为什么啊,其实很简单对吧啊,五这样一铲子嘛就说明什么,唉,你这个你是我,我就想我。

就我就要使得你这个初始的这个立面体,控制网格的这个顶这个呃M0的顶点,初始的这个控制顶点是你的什么极限,零对吧,这样子就可以查值了吗,啊是我的几点就可以了吗,你如果把它作为你的几点点的话。

我们不是有几点公式吗,啊,那你说我是不是,我就要去构造出一个新的控制网格来啊,我从这个新的控制网格出发,然后按照这个cc提分的规则,我最后会得到一个极限体对吧,这个体积分的一个极限题。

那么最终这个极限体验体是查,是你初始的这个空中母M0的对吧,为什么可以实现查资,因为我就假设这个M0的这个控制顶点,就是我的极限点对吧,就是我的极限啊,所以最后你如果把这个控制网格啊。

除了控网格作业修改作业更新,那么你从这个新的库存网格出发做细分,你就会查出这个原来旧的是吧,控制网格的定位,所以这个应该是比较容易理解的嗯,所以说这边奶茶就是这个问题就变成了,我怎么样呃。

去修改这个相应的初始的这个控制网格,让它呃最后的这个极限提示,查自我个初始的这些这个这个控制网格的,对不对啊,也就是说啊本来的话你如果只是做cc细分啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我通过这么一个模型出发,经过几次C才能得到这么一个光滑的,这么一个极限题对吧,但这个极限体它是相当于说尾缩掉了,往里面缩就缩进去了对吧,其实大家都知道这个CCC新闻曲面的,是往往里面缩的啊。

那么实际上就不对了,对不对啊,但是我我怎么样去让它能够产值呢,哎那我就把这个初始的控制网格做一些扰动嘛,啊做一些扰动嘛,做些修改啊,那么我从这个新的控制网格出发,通过一些C行为。

我最后得到的就可以查到这个初始点的,对吧啊,比如说我们能够做这件事情啊,最根本的最本质的原因是什么啊,就是因为我们有了这个显示的机械能公式对吧,正是因为有了这个显示的基因能公式啊。

我们才可以对他的这个控制网格,我这个一撇F撇C撇对吧,我做一些修改,这些更新啊,大家可以看一下,我这个最后得到的这个未撇对吧,跟未平这个东西我怎么来的,我我不就是把这里的这个VI0,作为我的极限点吗。

写到分母上,对不对,你看我我这个这个未撇的更新,是不是就根据我原来的那个呃,积攒公式的更新来更新出来的啊,所以呢就说其实很简单啊,其实很简单对吧,也就是说我们只要用了这么一个类似前面的。

这个简单公式对吧,那么我把这个vi无穷变成VI0,我这个乘过来让我最基本的控制顶点,这个vi做更新对吧,那我不就是这个表达式啊,就是这个表达式啊,所以说呃所以说这边非常重要的一点啊。

就是啊因为我们有了这个极限的公式,那就是一个显示的一个极限的公式啊,所以说我们才能够去做这件事情对吧啊,而且你这个控制网格的定义,你这边是有一些自由度的对吧,实际上你没有必要嗯。

还是能够有一些灵活的一些操控的啊,这边呢就比如说给出了一些例子对吧,这就是我们初始的一个呃控制网格,我们希望生成最后的这个极限体,它要查着这些蓝色的控制定点对吧,要查这些蓝色的控制定点啊。

这边呢就是我根据以显示的机电公式,通过push pg的这个操作啊,对这个初始空间做了一个扰动啊,变成这个样子啊,那我在这个基础上然后去进行这个体积分对吧,然后我就可以得到一个呃极限体去查。

实现我这个产值的要求啊,大家可以到我不仅仅是在表面进行差值的,在这个体的内部,我也是实现了这个差值对吧,我也是实现了差值啊,那么因为我们这边是做了什么啊,体系分,对吧,当然我们这边我刚才讲了。

你上次对于这么一个同一个初始的,那个控制网格,我如果调整前面的这个number的mu啊,伽马这些不同的这个型号参数啊,我上是可以得到不同的这个卡子的,这个效果是插值的,这个效果。

啊这是prospect的这种操作啊,当然还有一个操作呢,就是啊基于这个PIA的啊,像我们浙大这个力宏伟老师,在这方面做了很多的这个工作啊,那么PA的基本的思想呢就是什么啊。

也就是说我知道我最终的目标在哪儿对吧,嗯我也知道我现在的位置在哪对吧,然后呢我就调整我的控制零点的这个位置啊,然后我每一次调整呢,就都去根据我这个到你这个目标的这个距离,去进行调整对吧啊。

然后慢慢一直涨跌了下去对吧,相当于我差多少,我补多少啊啊如果多了,我再回来对吧,我再退回来啊,这是上一次依次进行迭代啊,实际上就可以实现这种惨的效果,这就是P的这个基本的思想啊。

那么那么像pi里面非常重要的就是我要知道,我要知道我的目标在哪,对不对,我要知道我的目标在哪啊,但是呃以前我是不知道的对吧,以前我是不知道的啊,但现在我有了什么极限的公式对吧。

嗯我就知道了嘛啊因为我知道我最后的目标,我的目标在哪,就在极限点呢,就在极限点啊,啊所以说我有了这个节点显示的基本公式之后,我就可以很容易把它写出来对吧,然后我每一次调整这个初始的控制网格。

这个怎么来调整呢,哎无外乎我就说哎,我知道我最终的目标是是这个东西对吧,然后我比如说我每一次都这样调整,我这个初始的唉,初始的这个控制链的位置减去对吧,第K次细分下它的这个呃,他的这个这个这个节点。

这个节点位置是吧,上次他们这个就是那个DK嘛,就我迭代的那个偏移的样子对吧啊,当然你要定肯定要定义一个就是什么啊,一个中止的东西对吧,也就是说我每一次我的控制点怎么来更新呢,对吧。

我每次就是未K加上DK对吧,也就是说你这个目标哎,你这个目标离目标多少啊,我就去补补偿多少啊啊啊,我这就是慢慢的相互拉扯,相互拉扯,他就说呢肯定会迭代,收敛到最终的这个极限点的地方啊。

就是我这个V0的这个地方是吧,就是出于这个黑化的,啊这边也是一些效果对吧啊,那么这是就是说,如果呃给你的一个初始的控制网格对吧,如果你用传统的CD里面,那肯定是往里面缩的对吧啊。

但是如果我们用这个pi的方法啊,我们就可以实现这种查这个操作啊,查这个操作,当然我们还可以做做一件什么事情呢,做这种材料的建模啊,材料的建模啊,也就是说实际上就是说呃对于体来讲。

就是说无论你在内部怎么产值,反正都在体内部嘛对吧,体内部,但是我可以给这个铁呢赋予第四位的属性对吧,也就是除了我的XYZ空间的这些坐标,我还可以给他一个材料的一个属性啊,材料的属性。

那么这个材料的属性呢,实际上就是说可以呃实现就是我在某些部地方,比如我我希望地方唉这个地方要硬要硬一点,别的地方软一点,对吧啊,我希望在这个顶点处,我希望要产出一个红色的一个材质属性啊。

那啥我就可以什么啊,同样的也是可以基于我们这种嗯,体建模道思路对吧,来实现啊,这种材料啊,材料的这种建模啊,材料的建模实时,这个在很多呃很多的实际的一些都有是有用的,对吧啊。

无论是在这个3D打印啊啊还是对吧,这些里面都是非常非常有用,当然我们也可以做一些比较,就我们和前面提了两种方法嘛,然后我们还有一种方法就是要用这种butterfly啊,有的同学如果知道呃。

学过细研究过细分曲面,大家知道butterfly这种碟型细分也是非常重要的,一种材质的一种细分方式啊,我们把这三种方式啊,butterfly pose back pi a都做了一些比较,就发现了。

只要还是这个PRA啊,啊就这种渐进盈亏的这种思路,还是非常这个得到的这个形状还是比较好,就前面我们就做了两个问题吧,实际上也是我们可以把前面两个问题啊,结合起来啊,结合起来也就是说可以做做这件事情对吧。

也就是说给你一个输入一个初始了,六面体空的网格,我就可以构造一些北热体的集合,然后去查资,这个初始控制网格这些蓝色的地方对吧,原来我只是构造的是什么体系分去构造,现在我可以什么,因为体积分就可以用样条。

用北的职业来逼近嘛对吧,所以说当然也是可以啊,可以实现啊,就这种呃样条体的啊,让它体的差值是这个商机来,我们等几何里面也是呃非常有用是吧,当然我们还可以呃,我们说的,当然我们是一个。

主要是来希望去回答这么一个问题,对面向我们学习整几个分析的这些呃同学啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

特别是我们计算力学背景的啊,计算数学背景的这些同学,他们三可能对计算机和样条这块,算是不熟悉的啊,那么我们怎么样基于前面提出的这些体系,分的这些理论啊,造型的方法产生的方法,怎么样来实现这种复杂的啊。

躯体的模型的这种交互式的构造啊,这个就是我们的希望去解答的问题啊,那么12也就是说呢,我们实际上就是说啊,既然我给你给我一个任意复杂的一个,六面体的控制网格。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我都可以去构造出一个相应的一个,具体模型出来对吧,具体模型出来,那所以现在的问题就变成了什么啊,我怎么样根据我的建模的需求,去实现这种复杂的立面体网格的这种交互的,简对啊,比如说我可以根据按照我的想法。

比如我要造一把椅子啊,我要造一个什么什么模型啊,要做一些,然后然后做一些,让他作为我的计算机来做相应的这个拓扑,优化的问题对吧,那虽然我就说呢是需要做这些交互的,一个六面体网格的,这个构造啊。

这是我们希望来生成,那么像我们这边呢有一个学生呢,呃但目前我们也还在学生这个,后面还有这个师弟啊,你继续来做这件事情啊,就把他这个来优化啊,上次就来做了这件事情,就是说啊基于这种体系分的复杂。

具体的模型的这个交互式的构造啊,这边就包括一些像这种股价节点的边际啊,他的这个角度的调整啊,我这个中间体怎么插值生成啊,拓扑分裂的一些方法,然后总体积分呢来自然来生成提分,来生成具体模型。

包括我对它做它的质量,通过一个填充的方法来,来对他做一些单元的质量的优化,这些过程啊,啊那么12这边呢,我们这个绿面提节点的这种嗯构造的方式,对吧啊,我外乎就是我可以通过这种旋转平移啊对吧,缩放啊。

还有沿着某个方向进行缩放啊,对吧啊,然后包括它的一些拓扑的分类啊,我原来一块可以分成两块四块啊,然后呢还可以啊做这种拉伸对吧,然后我从一块六面体网格,我怎么样来来进行呃,我怎么样来来生成多个这么发达。

把它拉出现拉伸出来嘛,像这个这个一样对吧啊,包括一些删除它的链拓扑,连接的这个关系的这个删除啊,这些在我们实际上都可以通过呃,定义一些规则吧,啊还有包括通过这个编程呢来进行实现啊,来进行实现。

啊那么商战的话我们还可以做一些呃,就是说模型的一些拼接对吧啊,比如说我原来这边我这边比如有两个嘛,一个现在的模型,还有个椅子的模型啊,我通过这种骨架节点的拼接啊,实际上我就是可以实现啊。

可以实现这种多个模型的这种,啊拼接包括他们的融合,对吧啊,然后我最后得到一个复杂的一个立面体,网格模型啊,当然这里还涉及到一,还是涉及到一些股价的一些结果,检查的一些问题,包括这边的角度一些自动调整啊。

我们也是用了一些优化的方法啊,练出来怎么样啊,这我这个立方体啊,它能够自动的去对齐啊,自动的去对齐,这个也是非常重要的一个啊,选用的一些优化的方法去进行优化啊,包括中间体单元的一些连接和构造对吧。

我们也是可以通过呃一些,比如充电从从那个情况啊,我怎么我怎么样来做,怎么样做这种做法的划分啊,正对的情况对吧啊,然后像这种需要拓扑分裂的这种情况是吧,好像这种会怎么样去做,包括这些拓扑的分裂啊。

我们也是给出了一些相应的一些套路啊,方法模式啊,然后包括这种这边就是一个竖的特步的,也就是我给你的这些初始的这些节点对吧,我怎么样能够把他们节点连起来啊,很好的连起来,这边既涉及到优化啊。

又涉及到一些一些分裂啊,这些问题啊,还有我希望保持一些尖锐特征对吧,因为大家都知道这个提分,它最后生的都是光滑的啊,都是光滑的,但可能我们在一些建模问题里面,我希望能够保持原来的一些尖锐的这些特征啊。

那我怎么样能够呃把它可以保持住啊,也是希望我们这边呢能够做到的啊,你看我们这边呢也是可以把这些细分规则啊,稍作修改就可以呃,把这边尖锐特征啊,把他给保持住啊,实际上是这边呢就可以。

也是嗯对我们这个cad建模也是非常重要对吧,因为很多的cad它模型它都是要保持住这些,包括对吧,我们也可以实现这种pi的差值的提升对啊,包括这些单元质量的提升啊,我是因为在因为像这些地方。

你如果但随着这种拉伸啊,什么之类的去生成的话,上来这些地方就是单元,你看它有一些扁平的一些单元,这边的价格比呢可能就不高了啊,那么对于这些地方我怎么进行处理啊,让我们也是有一些方法啊。

就可以通过插入城的这种方式啊,这边就给出了一些例子吧,啊这边就是我给你的我我们的一些对吧啊,初始的可以通过这些拖拉什么的,去给你构造一些初始的顶点对吧,然后我去生成一些中间过渡的模型。

然后根据这个模型去生成相应的这个呃,体积分的一个模型啊,这边也是一样的对吧,像这种复杂的模型,我们都可以通过我们的这个框架来实现,交互的修改,交互的建模,然后去四个模型,然后去搜索相应的这个题的模型。

这边也是更多的意思,就是这边你可能呃教我自己构造出来的,可能就只是这边的这些模型对吧,这个模型,然后呢,我们通过一些中间这个链接连接的这个生成啊,呃拓扑的分裂啊,修改啊,我们就可以生成这么一个呃。

类似于一个已知的一个模型,然后再通过它通过体积分的方式,然后去生成相应的呃最后的这个样条,具体对研究,实际上我们也是呃去呃,比较完整的去实现了,相应的呃这么一个基于体系分的一个呃,复杂样条。

具体模型的交互式构造了一个框架啊,那么大家可以看一下这个力,这边应该是有一个,视频,啊那我就只能这样放,这边的实际上我们就是可以呃,呃开发了这么一个软软件框架啊,软件程序框架啊。

这样的话大家可以通过这个这个demo,大家就可以看到啊,我通过这种交互的这种修改拉伸啊,然后拖出对吧啊,就可以实现这么一个椅子的一个键盘。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

嗯大家可以看一下这个,习惯你就说大家可以看到,我就想就可以构造出这么一个,像这个就是我们通过举了这个,初始的公路网络之后对吧,我们就可以构造出啊,都按照我们的方法去生成这么一个样条,曲体的一个模型啊。

样条曲体的一个模型,啊所以万一我这边就不演示了,我们到时候也会把,这个视频给大家看一下,那么实际上这个就是前面讲了一部分,我们用了一个小时的时间给大家讲的这个呃,基于体系内的这种复杂区的建模啊。

因为这也是我们主要的一块一个部分啊,主要的一个部分,所以大家可以看到,我就通过这种体系分的这个理论啊,特别是极限点的这么一个理论的一个结果啊,我就可以实现啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

基于提分了这么一个复杂具体的建模啊,只要大家有了这么一个工具之后,就可以去实现相应的一个,这个复杂物体的这个特别具体的这个建模,对吧啊,上如果你要对这种复杂的等级和分析啊。

这个模型来进行这种相应的处理的话,我这样就可以通过这种方式呢去去去实现啊,那么大家可以看到啊,就是说实际上是我当然有了这种体分,表示后面之后我就可以后面就可以继续提分,还是这种高精度的这种等级和分析的。

一种物理仿真了,对吧啊,那么沙这边呢呃也还是相应的比求解线的,三维的这个线弹性的问题,是线弹性的问题啊,那么这边呢我就不仔细讲啊,啊也就是说实际上就是我们有了呃,提分了这种这套表达之后,我啊。

我们这边的三就可以来去来实现相应的这个,登记和分析求解器的这个开发啊,比如我可以通过这种等级分析方法去呃,做相应的这个线弹性的这种仿真对吧,还有这个热传导的这个仿真对啊。

也说十二十也说不仅仅啊以后我们做这个呃,在我们的统计和分析论文里面对吧,你嗯可能呃很多计算力学同学做的这个例子啊,都是相对比较简单的啊,我们就是二维问题啊什么之类的对吧,但是有了我们这么一个工具之后。

实际上我们就可以实现对这种一个呃,复杂模型啊,我们也是有机会去做了啊,然后我们也可以去分析一下,它的一些相应的收敛性,就可以发现啊,就是在这些起点的地方啊,恰巧也是我们这种等级的飞机来仿真的时候。

它的误差比较大的这个地方啊,因为在这些地方它的连续性啊确实是不高的,当然我们也是可以基于这种体积分,来做这种形状和拓扑优化,对吧啊,那么前面我们两次课啊,都给大家介绍了相应的这个理论啊。

还有这个怎么样求灵敏度啊对吧,相应的这个迭代优化求解啊之类的啊,这边我就不详细讲了啊,上爷爷说呢,我们有了这么一个体温表示之后,我们就可以实现对这种呃,复杂模型的这种形状优化对吧,像这种形状优化。

虽然也就是说我们这里是这个地方,我们同学们带你看过多次,也就是说然后在我们登记和分析里面,非常在行政区划有非常重要的一显著了,这个优势对吧,我就可以直接把这些蓝色的控制顶点,当成我的设计变量对吧。

你只要去优化这些蓝色的控制顶点就可以了啊,就可以了啊,实际上这个里面的话我想是可以实现啊,就可以实现我们这个等于和呃,特别这个形状优化的一个非常功能啊,特别和我们这个体系分结合起来之后啊。

我们就可以做这种复杂模型的这种形状优化了,对吧,来我只要把这个初始的控制网格啊,当成我的这个呃设计变量就可以了,啊此外还可以做top优化对吧,top优化,那么这个我们上次也给大家介绍。

当然我们也是可以基于体积分,来做这种登顶盒的,这个拓扑优化是,但这个相应的文本可以也去呃,算一下相应的这个灵敏度啊对吧,这些的实际上都是有显示的这个计算公式的啊,显示的这个计算公式的啊。

而且呢我们可以实现这种呃,多分辨率的这个特别优化,也就是说呃因为很多的时候啊,就是我这个仿真的代价是比较高的对吧,也是我做这个分析的代价是比较高的,所以说这样的话,我实际上就可以在呃。

比较嗯粗糙的这个题模型上对吧,题目形状来做什么,来做等几何的计算,然后我再比较细的啊,比较高分辨率的这个模型上来做这种什么啊,拓扑的优化啊,来做这种灵敏度的这个计算,因为灵敏度计算相对比较简单对吧。

因为我在做分析的时候,你要需要去纠结一个大结论,线性方程组啊,实际上这个里面是比较比较慢的对吧,所以说呢也就是说而且体育分呢,他恰就说我每一步细分一次,就是从粗变细,从粗变细了。

这也就是说实际上这个过程呢,本来呃这个提分它就是蕴含了一个非常自然的,一个多分辨的一个表示啊,所以说我就可以在比较细的层级上啊,比较粗的层级上来做分析,来做本体和分析是吧。

然后在比较新的程序上来做优化啊,来做挖洞啊,那么实际上就是说呢,这呢我觉得是一个啊非常天然的一个结合,也是这样呢,也是去可以高效地实现这种特殊优化啊,也是这样,一来的话,我上我们就可以说啊。

比如说这是我输入了一个六面体网格对吧,然后我就可以得到他的这个呃样条表示对吧,样条表示,然后我在上面是在一些边界条件去算一下,他这个数字集,那我而且呢,我就可以在不同保留不同体积的情况下。

他最后剩这个生成的这个拓扑优化了,这个结果什么样子啊,这边呢就是它中间变化的一个过程,啊,也就是说实际上是以前的这种拓扑优化的方法,都是基于什么worker的,都是基于提出的啊。

那现在我们有了这个提问表示,实际上就是说你不去,不一定,你的这个单元的排列都是非常正规的是吧,都是横平竖直的啊,现在你可以允许有这种起点的这种这种排列啊,之类的对吧,所以说实际上应该说呢应该更加的自由。

更加的复杂,更加的方便啊,那么这边就是一个白手的一个模型,就是我这个这边是呃关路这边算是固定的对吧,然后我这边是加一个往下的力,那么它中间的这个拓扑优化的过程是什么样子。

包括它的一些这个材料的一些分布对吧,这是另外一个例子哈,咱也说呃,在很多的原来的忘机,这种VOX的这种拓扑优化里面呃,你是很难保持住一些特征的约束的,几何约束的啊,比如像这边这边是一个。

相当于我挂在一个柱子上对吧,挂在两个螺栓上面啊,实际上也是说,然后这边是对于这个模型来讲,我是有两个孔的对吧,如果这边两个固定,然后这边往下压一个往往下的力,那么它最后的拓扑是什么样子的,就算了。

就这样子啊,但是我希望能够在这些呃圆孔的地方,我希望能够精确地保持几何啊,那么像这是以前的这种基于VOX的方法,是无法做到的,是无法做到的,但是因为我们现在用等级和嘛对吧。

它是本身就是一个精确的几何表示对吧,所以说你在说你在挖的时候,是不会影响这个这个红色的这个孔之外,这部分集合的对吧,所以说你我们最后得到的结果也是很好的,去保持住这些特征的一些约束啊,特征的约束。

我想这也是等你和基于等级和分析的,这个拓扑优化它的一个非常重要的一个优势,当然我们也是和这个vocal方法,可以来做一些比较,就是说在不到保留不同体积比例的这个情况下。

我们上得到的上面是这个基于握手的方法,下面是记我们登记和分析方法,就可以看到它中间形成的这个拓扑结构对吧,也是不一样啊,也是不一样,啊这边是更多的一些例子啊,啊大家比如我输入模型。

然后这边是这这像这些模型,我都可以用前面那些建模的方法去,来来来来来来进行交互的建模,对不对啊,然后我去试驾一些变形条件,然后进行二阶的求解,然后去做一下呢top优化啊。

然后得到的结果还是比较符合我们的认知的,对吧啊,这边我们和也和传统的这种商量的结果,说的比较,这边这个图啊,右边最右边这个图就是上软的这个结果啊,然后这边呢呃是我们的一些结果啊。

这边我们的边界条件就是我这边四个圆孔,这边应该是fixed,应该是固定的对吧,然后往上拉,这边上面这个圆孔往上拉,那我最后优化出的结果,和这个商量的结果也是非常接近的啊,也是非常接近。

那么当然这边非常重要的,就是我们可以非常好的去什么,来保持这些圆孔处的这个形状啊,大家看到事实上是没有发生任何改变的,对不对,或者现代特征更能够保持得住啊,但是你如果用这种VOX的方法。

实在这些地方你还是很难去去保证,怎么做到这一点,这是另外的一个例子,另外一个例子对吧,那么这边呢实际就是我呃,我是往下的,然后这边的八个孔模式固定啊,那么像我是在这些孔的地方,我做了很好的保持。

然后最后得到这个拓扑优化的结果,实际上是演示,和我们这个商量的结果也是非常接近,好这就是我们这次课的一个主要的内容啊,我想最重要的还是给大家介绍了体系分对吧啊,特别是基于体积分的这个复杂具体的建模。

它里面涉及到的一些理论基础和方法的,方法的一些一些框架啊,那么应该我的理解就是说,整体和分析啊,整体和分析我想看呃,和这个区分,应该是有着这个天然的这个联系的啊,天然的一个联系的啊。

那么我觉得这个提分啊,应该是连接我们的这个呃等级和分析啊,和实体建模的啊,一个非常重要的一个强调对吧,因为你要做这种复杂问题的等一个分析啊,你肯定要去这种复杂具体的建模对吧,因为你复杂问题肯定就是。

我这个形状表达上是比较比较嗯比较复杂的,对吧啊,所以你肯定要做这种复杂区的建模,这样才行啊,也就是说呢我觉得就是体积分啊,真的是非常重要啊,我觉得他应该是呃,在未来的等级和分析发展里面啊。

应该占有比较重要的这个证,也希望同学们能够多去看一看,学一学啊,没说啊,你如果想做这种复杂的等级和分析的问题,我觉得提分的是一个非常重要的工具啊,特别是我们啊基于我们前面的这个节点公司啊。

还有这些理论的框架对吧,所以说给你一个六面体网格控制网格,然后就可以生成一个相应的一个,具体的一个表示压条,具体的一个表示对吧,那么说,而且我们也有这么一个交互建模的一个,工具对吧,通过一些拉伸。

通过一些省略啊,通过一些生存啊,也说我们实际上也是可以实现这一点,此外呢我们也是可以,当然可以根据这种积分,来做这种高精度的仿真计算对吧,还有做这种多分辨率的形状和拓扑优化,我就提分了。

它自然本身它就有一个非常好的这个呃,拓扑优化这个多分辨率的性质啊,多分的性质,所以呢他在这方面呢,也是非常自然的一个一个结合啊,好,这就是我们今天的这个主要的这个呃,讲述的这个内容啊。

就是基于体系分的啊,等级和建模仿真优化一体化框架啊,那么少也是我们可以在这么一个框架里面啊,去实现啊,啊这个几何建模物理仿真和形状拓扑优化的啊,表无去无数据表示的一致性,对不对啊,而且在这个过程里面。

特别在这个形状透明化过程里面,虽然说我们可以也是避免了重新呃,生成网格这么一个波一个过程对吧,而且自动运行的一个多分辨的一个性质啊,那么这就是我们今天讲课讲述的主要内容啊。

啊当然我们也是基于我们的提供框架,开发了相应的这个呃基于提分的建模,仿真优化的一个软件平台啊,那我们今天的这个课呢就到这儿啊,我们下次课呢呃应该是我们的最后一次课啊,我们首先呢会给大家介绍了。

我们怎么样把AI的技术啊,深度学习的技术和等级和啊分析啊结合起来啊,我们在这方面也是做了一些呃,出彩的一些工作啊,做了一些初步的一些尝试啊,这个方面呢给大家介绍一下啊。

因为目前来看这个AI for science啊,也就是说把这个深度学习,把AI啊和我们的这个数字仿真啊啊,甚至优化这些问题结合在一起啊,都是一个大势所趋,大势所趋啊,因为它确实可以在这个计算法。

可以呃可以接受很多的这个成本啊,那么这是我们下次课的主要内容啊,有时候下课呢除了介绍这个内容呢,我们也是希望能够对我们整个的走几个,分析的课程做一个呃前面的一个总结啊,也是作为我们最后一次课啊。

然后作为一个总结课啊,然后基本上定在就是下周一,7月3号晚上七点钟啊,那么特别感谢啊,就是各位老师,各位同学啊,这么总共是12时刻对吧啊,一直来的这么一个关注啊,来特别感谢你们的支持啊。

我们也是希望呢我们呃在game这个平台下,所形成的这些教学的这个视频的资源啊,这个PPT的资源啊,这些呃资源啊能够为我们后面的这个学生对吧,特别是这个研究生啊,能够提供一些比较好的这个学习的资源啊。

我想呢呃就是也是啊特别欢迎啊,各位老师各位同学能够多多宣传啊,多多宣传啊,你说你以后的学生啊,或者这个师弟啊,师妹啊,如果想学习登几个分析的话,来推荐我们这边的一些这些教学的这个资源啊,教学的资源。

也是很特别希望就是大家能够,把我们这个等几个飞机这个领域,能够发扬光大啊,不能发扬光大,好,这相当于我们的倒数第二次课,我们总共有12次课啊,我们下面一次课是我们的最后一课啊,好我们今天就到这儿。

已经很晚了啊,非常不好意思啊,大家再见。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES302-等几何分析 - P12:12. 基于深度学习的等几何分析与课程总结 - GAMES-Webinar - BV1dM4y117PS

好各位老师各位同学,那么现在开始上课啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这次课呢也是我们的最后一课啊,关于IG的最后一课第12讲,那么这节课呢主要给大家介绍,这个基于深度学习的工具和分析,然后呢对我们整个的这个IG的课程,做一个简单的一个总结。

那么我们这边呢也是希望能够,把我们等几何分析的这个方法啊,和我们的这个呃大家现在都是非常熟悉的,这个AI能够结合起来啊,希望能够通过AI呃和登记和分析的这个结合呢,能够去解决一些问题。

那么这是我今天会那个讲解了一个提纲啊,首先呢介绍这个呃相应的这个研究的背景啊,然后介绍基于卷积神经网络,就是CNN的这个登记和分析方法啊,然后呢,介绍这个基图神经网络的登记和分析方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

首先是这个背景啊,实际上我们整个的这部分的内容,我想呢呃应该都属于这个AI for size,的一个过程对吧,一个一个领域啊,应该也是目前呃大家非常关心的一个人啊。

那么air for science是吧,也就是很多时候大家看到的可能是括号里面,这个词啊,就这个AI嗯对吧,我们这个for size这样来写,那其实也就是说呢我怎么要用这种AI的手段啊。

深度学习的人工智能的这些技术啊,然后去解决像这个生物学啊,材料科学啊,化学药学啊,或者力学里面的一些问题,是也就用这种数据驱动的方法去解决啊,里面我们可能用传统的这种技术这种方法啊。

目前这个解决不了的一些问题,解决不了这个问题,应该这应该来说呢,这是一个非常而目前来说是一个非常热门啊,也是一个非常前沿的一个呃一个方向啊,或者一个大的领域对吧,那么像这边呢。

我想呃基本上就是说你可以对吧,把我们传统的呃心路学习里面的一些啊,经典的模型拿来改造一下啊,然后针对这个具体的问题对吧,然后无论是你是做这种呃生物的,这种蛋白质分子这种识别啊,还是说这种材料的优化对吧。

还是说一些药学的一些一些这个药物的,这个筛选啊,这种组合啊啊包括力学的一些预测啊,实际上直接说这次呢就是说呃,和这些问题结合起来,然后用AI的手段,然后去解决它,当然我们这边啊所要关心的啊。

所要关心的肯定就说我怎么样去用AI去呃,做IJ对吧,做IJ,那么实际上IG呢,它实际上就是,我们说一般就是求解一个pd问题啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以说呢我们说呢这边呢可能说的,我们要想解决的就是一个AIFPD,E的一个问题啊,AFPD的一个问题,那么也就是我们传统的这种呃,无论是这种啊计算流体力学的求解,还是其他的一些结构力学啊。

或者其他的一些力学问题的求解,实际上我们最终都把它变成了一个啊,偏分方程求解的一个问题对吧,那么也就是说它包括我们等几何里面对吧,实际上也是需要经过这种啊离散化啊,然后经过网格划分,那么相等。

你等几何里面就是要求做参数化对吧,然后做这种数值的求解啊,或者一些积分啊,或者一些变非法,然后去进行求解,那么实际上这个里面的话啊,这是我们传统的这个套路啊,啊那上市现在呢呃怎么样去解决。

相应的国内是流程仿真,还是其他的一些呃PD相关的一些问题的话,那么我们上也是可以借助深度学习的方法来做,那么实际上从我们整个的层面来看呢,我们实际上是呃,既可以做这种数据驱动对吧。

也就是说我通过一些呃大数据啊,然后从这个呃大数据里面,然后去发现里面的一些规律,然后这样来做对吧,那上面这纯粹就是一个AI层面的一个东西,大家呢我还可以怎么样啊,我还可以通过呃把这个sans啊。

比如说把科学的一些它的里面,也就是说我这个PDA问题里面它蕴含的一些,因为pd它本质上就是一个一个一个sans的一个,问题模型对吧,当我们的PDE上,在我们的数学系里面有个偏移方程,数值解。

或者其他一个呃一门课叫做数学物理方程,是数学物理方程,也就是说实际上PDE,它本质上就是一个数学问题方程,那么解说在pd里面他应该蕴含了既包含数学,又包含物理的一些information,一些信息对吧。

也就是说实际上就是在这个里面我怎么样,如果把它纯粹按照这些物理信息,把它结合起来的话,那么实际上这边呢就是变成一个size的问题对,也就是说实际上我们这边大概有这么几个,这三类对吧。

第一类呢就是说我可能有大量的物理信息啊,也就是说我是想知道我这个整个的这个物理场,它要满足什么样的一些条件,我是知道的哦,我是知道的啊,也就是说呢,呃我还只是含有的一些少量的这个数据啊,少量这个数据啊。

那么上也说,这大部分就是一个类似于cs的问题啊,那么实际这个里面呢呃比较经典的啊,要发在这个JCP的一个工作,这个PIA啊,如果有同学啊,对这个领域领方向有所有所了解的话啊,实际上大家应该可以知道啊。

那么pi呢,实际上就是呃虽然就是物理驱动的一种方式啊,理解物理模型驱动的一种方式,那么另外一个呢就是可以把它称为是一些诶,称为一个一个verse的一个problem,那么也就是说我可能是有一部分数据。

但有一部分的一些物理信息是知道的啊,但是呢就是在这个里面呢,呃我希望通过呃,相当于我鉴于这个AI和sans之间的对吧啊,这不说我有一些data,但有一些就知道一些pyx1些规则对吧。

那么商业说我希望通过两边的结合,能够那我把这个相应的要减的这么一个问题,把它给解出来的,相对来说,这个里面呢呃实际上就是类似于一个反问题,这几个还有一个呢,就是说唉我可能有有个大数据啊。

这个big data对吧,那么但是我没有不知道这些数据之类的,它满足什么样的一些物理的现象,物理的规律是物理的准则啊,那么也就说这个时候呢,我就要靠什么纯数据驱动的啊,实在按照这个数据驱动来做的这个键。

比如要用到一些我们传统这个这个,一些深度学习的方框架对吧,或者CN或者这个unit之类的啊,那么实际也有效呢,呃这个数据和我们这个规则对吧,也就是说他们之间呢是呃,也是有一个相互权衡的一个关系啊。

相互权衡的关系,那么想要只中等裁决,我们可以把它称为一个数据驱动的一个,pd的求解的方法,或者是一个物理驱动的一个pd求解的方法,那么通过数据驱动的pd方方法呢,目前上也是有很多的这个paper啊。

也就是说我输入一些呃,已经已经知道这个数据对吧,然后我把它喂到这个网络里面,然后呃我就可以是通过一个一些训练啊,什么之类的,我要进行测试,然后就可以输出一个相应的一个U,我要求剪了这个。

无论是你的问路场啊,还是这个卫衣厂啊之类的,那么它会满足一定的这个这个lost FX,减到最小对吧,不说这边的这个LOFX是什么啊,是纯粹数据层面的对吧,也就是说这个商就是一个数据驱动的。

EPD的求解的方法,这时候它的精确点就是我们有已经知道了啊,这些已经标注过的,已经标注过的这些标签的这个数据那么大,另外一类呢就是说不是数据驱动,而是物理规则驱动,物理规则驱动的一个pd求解方法。

那么也就是说我最终的这个loss呢,可能就满足呃,我这个微分上只在这个U上对吧,然后他在这个方面等,这个实际上就是说他会要满足这么一点对吧,就是说他不需要任何的这个标签数据啊。

纯粹通过这个物理规则的来来,来驱动这么一个pd的求解啊,那么为什么啊,为什么要用这个AI的方式去解pd对啊,但A有它的这个最大的好处就是什么啊,快啊,那么实际上也要说呢,呃我们传统的啊。

这种IJ还是有限元求解PC的方法,特别是遇到这种大规模的模型对吧,就像这个里面的这个,相应的这个时间成本还是非常大的啊,但是如果如果我们用A啊,用深度学习的方法来做啊,12节说如果把这个模型训练好啊。

那么像我最终得到一个相应的一个输入键啊,还是非常非常快,那么这就是我们需要呃希望为什么啊,为什么要用AI来做,也就是说,我们希望能够借助这种深度的神经网络,能够呃更稳定的啊。

更快速的去解决这些复杂的一些pd问题,pd问题啊,而且呢能够呃节省大量的这个时间,那么商也就是我们这边呢主要是研究啊,主要用这个啊深度学习的方法啊,特别是这个CN和CN来啊。

求解现在的等级和物理方程对吧啊,也就是实际上我们也是可以啊,需要第一个呢,我们这边呢,首先呢我们说呢它就还是一个数据驱动啊,所以说我们要制作大量的这个训练的数据啊,训练的数据。

然后啊才能够去做这个模型的这个训练啊等等,然后在这测试,然后得到最后的结果啊,那么上网,也就是说我们基于这种等你的分析方法来制作,相同数据集,应该还是有它的一些非常好的好处啊。

第一个就是说呃因为它具有这种高阶连续性,对吧啊,也就是说,那么我们通过呃神经网络预测的乐乐姐,在某种程度上应该因为我们是这个网络,是通过要通过这种,光光滑连续的这输入进来进行训练嘛。

啊所以说我最终通过这个AI预测到的这些技能,在某种程度上也是能够保留保留这些光滑性啊,这些特性,还有一个呢,就是我在这个优化这个剪的过程中啊,我两个阶段是不需要交换数据的。

数据交换的时段进行这种格式转换,另外还有呢就是说呃,呃当然就说我这方面呢会呃,不会造成模型的这个精度损失啊,所以说数据集的这个质量会更高啊,那么更利于这种神经网络的训练,所以我们为什么要要做这个问题啊。

实际上我们可以回到一开始我们的初心啊,我们的初心是要做什么啊,实际上我们是去去做解决这么一个问题啊,这个也是和我们呃呃这个一个老朋友,就是这个啊,目前在莱克斯勒大学工作了,查理王教授啊。

啊记得在一次那个SSPM会上,然后一块讨论啊,就想去捡有这么一个问题啊,也就是说如果啊,如果我我我知道了一个在这个模型A上的,它的一个IJ的解,那么我能不能通过一些间接的方法,然后能够知道啊。

在这个兔子上面的啊,这个model这个B上面的这个IG的减,那么首先我们可以我们我们会知道啊,就是这个model a和model b它们具有相同的几何拓扑,相同的几何拓扑,但是呢可可能呢是不具有啊。

不过肯定是不具有相同的形状了对吧,也就是说他们这个呃,这个样条的空间可能是一样的,但是这个控制定点的位置啊应该是不一样啊,应该是不一样的,那么像我们自然界中也存在有很多这种类型,这种的数据数据集对吧。

比如像各种各样的飞机对吧,各种各样的战斗机对吧,各种各样的人啊,那么各种各样的动物对吧,然后同一类动,实际上他们的这个所有的这个拓扑表达,都是一样的对吧,人都有这个视肢啊对吧,这个还有头啊或者躯干对吧。

反正就这样来组成,那么如果我知道的在某一个人能上的,他的这个IJ的解,这个物理法真的解,如果我想知道诶,过来一个另外一个系,一个不同的一个另外一个人对吧,另外一个人啊。

他的这个拓扑和你的这个拓扑是一样的,但是这个体型又是不一样的对吧,这个几何数据又是不一样,那么我怎么样通过这个model a上面的这个,IE的减去得到这个model b啊。

另外一个人他这个呃上面的这个IJ的解啊,这个是我们当时讨论的时候啊,想要解决的一个问题,就是我们不希望在只在在这个model b上,再重新运用IG这个给你分析方法,再再算一遍对吧,我们希望能够诶直接啊。

能够通过一些其他的更快速的方式啊,能够得到啊,这是我们当时的这个初衷啊,当时这个初中然后就是去解决这么一个问题啊,因为你比如说我我得到了一个呃,我知道一个model a。

还有它这个上面的IG的这个这个解,是这个样子的,对吧啊,那么我也知道model b的这个形状,那么我上午可以通过一些影射的方法啊,因为我有一些图形学里面的方法对吧,计算几何里面的方法。

可以建立model a和model b它们之间的一个麦屏,那么如果把这种卖品啊,直接把这个物理场,就这个B上面的物理场,引申到这个model b上面的话,我可能会得到的这个E这个结果。

那么当然这个E这个结果和它上面的真实的,这个ID的解,它实际上是有一个有比较大的这个差别对吧,有比较大的这个差别啊,那么也有说呢,你这种直接map的方法肯定是不行的啊,肯定是不行的。

那么我有一种什么方法可以得到诶,在这么一个model b上面的它的一个解,而且我当时根据这个IJ来做,也就是说大家可以看到啊,就是说如果我用一些现有的方法,和用这种直接map的方法啊。

那接map的方法还不差,还是非常大的,非常大,也就是说实际上我们想想,去解决这么一个问题啊,想去解决这个问题,那么实际上我们当时也是真的,去做了一个工作啊,这个这个工作时呃。

希望呢能够实现这种拓普一制模型的,这个分析的这个重用啊,那么我们当时也是在cad上发了一篇文章啊,发了一篇文章,主要也是说就是我们是期望能够对这种具有,统一拓扑的复杂模型啊。

然后能够在上面实现这种等级和的啊,这个分析的这个虫子啊,分析的一个重,那么上大家可以看到我这个题目里面上,不叫analysis real对吧,还是叫做什么computation啊。

商家叫做计算的这个重用啊,计算的这个重,那么也就是说呢,实际上我们在这个工作里面,并没有实现我们这个最终的这个目标啊,最终的目标我们只是实现了什么计算的出来,也就是说呢只是实现了这种分析的这种加速啊。

分析的这种加速啊,也就是说比如说对这边的不同的这个呃,这个飞机的模型,我可以通过呃一些计算从用的方式,也是我可以在第一个模型上,计算出它的这个基金函数啊,或者其他一些点啊之类的。

这个上面的一些呃信息对吧,我就可以得到一个刚度矩阵,然后去进行求解啊,那么相对于唉其他的不同形状的这个,飞机模型的话啊,飞机模型的话啊,我上就是可以实现一个,最起码可以实现一个预计算预计算嘛。

这样的话实际上就可以实现啊,诶我在这个预计算模型上啊,我就可以去实现他的一些加速,这个最起码我在这个在这个样条的这个,G函数上面,我就不用再重复计算了,那么也就是说呢,我们应该说这个工作啊。

只是实现了计算的重用啊,实现了这个分析的加速啊,那么也是可以发现啊,可以发现就说我在不同的这个自由度下啊,那么我相应的X可以得得到一些,从三倍啊一直到大概九倍的这么一个加速比。

那么无论是对我们这个手的模型啊,这个呃这个飞机的模型,还有这个人的模型来说是那么时尚爷爷说呢,我们通过这么一个东西啊,确实啊实现了这个计算的重用,然后呃实现了这个呃效率的提高,对效率的提高。

但是确实没有实现我们最重的,最重的这个目的就是什么啊,分析的重用啊,也是我能,我们希望实际上通过第一个这个人上面的这个,分析的这个结果对吧,能够哎如果在重新,如果我知道一个这么一个新的这么一个呃。

另外一个人的这个模型,几何模型的这个信息的话,我希望得到在这个人身上,直接可以得到他的上面的这个,IJA的结果对吧,这是我们希望得到,但是我们在以前上确实没有办法啊,确实没办法没有做到这么一个点啊。

没有做到这一点啊,因为我这个模型啊,虽然这两个模型它的拓扑是一致的啊,拓扑是一致的,但可能它们的形状不一样,大家都知道像我在上面求解pd的时候,是和这个物理坐标有非常大的关系的对吧。

那么你在上面求解的时候呢,可能啊,正是因为这个物理坐标的不一不一样了啊,所以说它这个内部的这个,你无论是求解这个呃线弹性问题,还是去写字的热潮热传导问题,现在这个普通方程的话对吧。

那么实际上这个它的周期应该和你的物理坐标,周期分布,和你的物理坐标的这个信息,是有非常大的关系啊,所以说呢,就是这边呢还是没有办法真正的实现这种,分析的这个重用啊,那么我怎么样能够实现这种分析的重用呢。

啊这实际上我们后来就想啊,特别是出现了这个深度学习啊,我就想这个深度学习应该是,可以帮我们去解决这个问题啊,去真正实现分析的作用,也就是说我可以直接在我可以在得到啊,知道啊。

在这个人体模型上这个IP的结果,然后我通过深度学习的技术,就可以知道在其他的这个人体模型上,相应的这个IG的分析的结果应该是什么样子的,就可以去预测对就可以去预测啊,那么实际上这就是我们的这个初衷啊。

为什么啊,为什么要引入深度学习啊,那么我们引入深度学习解决了什么问题啊,就是为了去做这种拓扑一致的啊,模型上面的这个等几个分析结果呢,这个通用啊,那么这是我们一个最初的一个出发点。

也是我们的最终的一个目标啊,那么像我们这边主要做了两个工作啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

第一个就是呃,记这种卷积神经网络的等一个分析方法啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么卷积神经网络呢有很多同学都非常熟悉的,我们这边就非常简单的过一下啊,也就是说15这边一个CN的一个基本结构呢,就是可能会包括像这个输入层对吧,卷积层池化层,激活函数层和全连接层。

那么实际上在这个里面啊,在这个里面啊,他通过输入一些比如图片啊,文本啊,然后最终通过这些不同的层次,然后最后输出一个相应的一个,预测的一个结果啊,相应的这个预测的结果,那么这个输入层呢。

主要是一个输入的一些数据对吧,比如一般来说我们最常用的一个二维矩阵,像我们的这个图片就是一个二维的一个pixel机,讲述了一个矩阵啊,那么这个卷积层呢,它就是对我们的一些二维矩阵啊。

可是不同的数据窗户的数据,然后和一些滤波滤波矩阵啊,然后做这个内积啊,要说逐个元素相乘,然后进行求和是吧,然后做一个卷积啊,然后完成对这个呃图像的一些局部特征,信息的这个提取,全部特征提了这个。

那么实际上这个最左边的部分,就是我们这个原始的输入数据,然后中间这部分就是一个滤波器啊,就是我们的一个呃卷积核对吧啊,然后呢,右边的就是输出的这个新的,这个二维的这个数据啊。

然后中间的滤波器和数据窗口的做这个内机,实际上就是说我每次滤波器呢,都是针对某一个局部的数据窗口,来进行这种卷积的啊,这就是我们这个卷积神经网络的,所谓的这个局部的这个改正的这个机制,就这样那么少。

我们在增高最更高层,我们可以把这些呃,你所感知到这些不同的这个局部的资源源,把它给呃综合起来,然后我们就可以得到一个全局的这个信息,还有池化层对吧,池化层实际上就是把这个呃输入矩阵。

某一个位置相邻区域的总体的统计特征啊,作为这个位置的一个输出啊,然后这边呢有一些方法,比如全民平均磁化,最大磁化就是啊,然后也说这个里面非常重要的,就是说我怎么样来指定一个值来代表整个区。

实际上就是我能够来做一些,信息上的一些抽象啊,然后后面呢就是一项这个激活函数层,激活函数层,那么啥最基本函数呢,就是我怎么样用这种非线性的这种激活函数啊,然后然后得到这种这边大家都非常熟悉了。

比如这个SIGMD这个挣钱啊,还有这个VLOG这个函数是吧,好,那么全年情呢,就是我怎么样从这个自动的去提取一些,图像的特征,然后把最终的这个结果啊给预测输出出来。

那么实际上我们基于这种CN的这几个分析方法,实际上我们这个解决的啊,就大家呃也还是这么一个,前面我说了这么一个问题啊,就是说我如果知道了啊,在一个模型上,它的这个等级和分析的结果,IT的结果。

我怎么如果给你一个新的啊,拓扑一致的这个这个B样条模型对吧,那么我怎么在它上面,我知道这个预测的这个数字,结果应该是什么样子,这就是我们需要去解决的一个问题啊,那么商人原因说呢。

因为我们这边还是一个呃数据驱动的对吧,说明我们相相应的采用了整个的流程,就是说哎我们是希望啊把这个B样条模型对吧,这边比如有五片啊,有五片,那么上我们就可以把他的。

因为我主要希望得到的是这个每一片上对吧,控制顶点处的它的这个控制系数啊,那么所以说呢我们可以把这个控制零点呃,实际上是啊把他的这个提取出来对吧,然后把它放到一个一个和一个包围盒里面,然后做一个归一化。

归一化啊,那么实际上也就是这边呢,就是我这个控制顶点的坐标值,就把输入未到我的CN网络里面对吧啊,然后通过训练对吧,然后最后会得到一个在这些控制顶点数,比如说对我的啊这些X0Y0X1Y1啊。

都分别对应的又零又一一直到UN对吧,那么在这边我就是把这个效应的这个系数,把它给预测出来,然后呢我就会得到最终的把这个再收集数字,结果呢在可视化出来对吧,可视化出来,也就是说。

实际上就是说我们完全是可以,基于C的一套东西啊对吧,来进行呃,我们实现我们这个IJ的这个VU这边的工作,这个目标,也就是说,我们这边实际上是采用这种数据驱动的方式啊。

数据驱动的方式来训练这个深度的这种啊,点击寻找我的,我洗啊,因为我们目前呃,相应的这个数据集还是非常缺乏的啊,我们当时呃那个呃这个王丹丹同学,还是呃提供了一个流程,然后来生成面向多个不同仿真问题。

并且拓扑结构不同的数据集来做来做,那么商为了生存,最后用于训练的这个数据,我们要制作很多的这个top一致的样条模型,然后呃把我们这个IJ的这个分析的,我们这边的这个框架上来求解下的PDD方程。

然后得到这个数字点的系数啊,作为一个标签的啊,相当于已经标注过的数据对吧啊,那么上它主要包括这么一个步骤吧,就是说第一个就是制作top一致的变态模型啊,因为我是要呃去解决这个分析重用的问题啊。

另外一个呢,就是说对这个变量模型进行归一化啊,还有一个呢,就是我怎么样使用这个登记几何分析的库啊,来求解这个偏移方程,然后呢,根据我这个卷积神经网络的输入输入格式,被相应的标的模型啊。

用IG数据解呢做一些这个呃转换,那么实际上这边呢就是呃一些例子嘛,啊这边比如说像这种1K个模型啊,啊我这边上次这这五个模型都是脱皮子的对吧,而且他们都是有四片的边条呃,曲面来组成的啊。

然后每片样式的控制网格呢都是5×5的啊,那么像我们像这个面呢,我们总共就做了5880个,不同形状的这种带孔的模型啊,像这种,那也可也是可以做另外的一些,通过数据增强的一些技术来进行数据的扩容。

也是可以的啊,像这边的我这个挂着模型,它这里是由五片的变量条模型来组成的,那么他这个上也是呃,呃那个控制网格大小也是5×5啊,接触呢都是市,这边,我们可以总共做了4000个不同形状的花朵模型。

这边是这个人体的模型啊,那么也就是说我们12这边的,无论是卷积神经网络还是这个呃图神经网络,我们上次目前也只是做了这个二维问题,二维问题就是没有做题上的这个问题,那么这边呢这个模型总共有6300个。

不同形状的人体模型,然后就基于这些模型呢,我们还另外还要做一个工作,就是对这些模B2台模型做一个归一化,归一化啊,因为随着这个求解区域的这个呃说话,我刚才说了啥。

他的输出点呢是这个呃不成规律的这个变化啊,那么实际上我们还是希望,能够对这些几何模型呢能够做些限制啊,能够,对它进行规划,也是把这个模型的大小,比如说现在啊零到1×0到一范围内啊。

但我觉得这个也是有可以有有意义的啊,也是有意义的,因为这样呢可以为我们后面的这个,深度学习的这个过程啊,啊提供一个非常可靠的一个数据啊,非常可靠的一个数据,那么后面的就是我们希望。

就是我们可以在这个得到的啊对吧,这几千个变量条模型上面,通过IG我们这边的这个框架来进行求解,然后得到他的一个数字解对吧,所以说我们得到的三,就是这个数字解中的这个控制系数。

我们把这这些控制系数作为这个标签数据啊,用于我们这个CN的网络的这个训练啊,训练啊啊啊,当然我还可以在这个求解过程中,通过一些嗯参数节点啊,或者这个提高次数啊对吧,然后相应的去通过这些加息的操作啊。

来提高这个IG数值解的这个求解的这个精度啊,就在这个精度,还有呢我后面呢还有一个一步啊,就是呃转换格式啊,转换格式实际上也就是说我怎么样能够呃,我需要把这些我们整个的这些不同的。

几千个的这个量产模型里面的控制点力PIG,还有IG数字解读这个要求解的这个这个UI键,或者你训练的这个数据,UI界数据转换成这种矩阵格式的数据,矩阵格式的数据啊,那么这个呢我们也是呃。

也就是说12是把自己变量模型,然后通过规划成这个样子,然后把它放到一个矩阵格式里面啊,矩阵格式里面,因为我们这边基本上这个还是呃,非常容易做到的啊,因为我们这边的这个控制顶点对吧,还是嗯像这个变调。

它基本上还是一个张量机形式嘛,啊那么即使他这个怎么分布,应该来说我还是非常方便的,可以对他再做一些排序,然后把它能够嵌入到呃一些矩阵里面啊,然后我们把它变成这么一个矩阵格式之后,唉,上对吧。

就是上就可以把它看成是像素了,就说每个矩阵的一个元素就是像素了啊,那么也就是说我整个的这个矩阵啊,或者整个变量模型,就可以看作是一个呃一幅图片是吧,一幅图片啊,这样多,这当然是可以啊。

当然是可以通过CN这种框架模型,然后去进行这个训练进行预测,那么我们这边基于C的这个用的这个网络节目,主要是这个unit3价啊,那么比如说它实际上是呃对,但unit肯定都知道啊。

还包括用的unit加加是吧,因为这三家上是在对这个unit unit加加的,这个更呃更好的一个改进吧,啊那么它它也是一种基于编码解码的啊,这种结构的一个声音的一个网络啊,那么这个这个编码器模块呢。

它是可以通过多次的卷积和池化操作啊,可以将这个我们这个图像特征啊,逐步的缩小图像化,然后提高这种高纬的这个特征,那么在减缓的阶段呢,我们通过反面积啊或者上采样啊,然后让这个特征的尺寸呢逐渐的变大。

然后恢复到恢复到这个原始的这个,图像的尺寸啊,然后我们这边呢,也是可以通过一些跳机的一种融合啊,然后来嗯融合这种编码器模块的,一些底层的特征啊,那么上unit3家,它采用的是那种全尺度的这种调节。

比如说可以捕获啊,这种全尺度下的这个底层的细节啊,还有它的一些高层的一些语义的一些信息啊,当然在解码器中呢,你也可以通过融合来自这个编码器底层和,阳等分那些特征图,还有编码器底层那些特征图的来做啊。

那么上次我们也是做了多个测试,就发现可以呃,因为这几个网络模型我们应该都吃过啊,还是发现这个原来的三家,还是在这个预测的精度方面还是最好的,而且呢这个相应的这个网络参数呢,也是比较少啊。

提高了这个相应的这个计算的这个效率,此外呢,我们还引入了一个自注意力机制的一个模块啊,那么也就是说呢这个资金机制呢,我们上也不不再将这个注意力,聚焦在这个少量的特征上。

而是更关注这个特征它们之间的这个关系啊,他们之间的关系,还有更好的这个捕捉特征之间的相关性啊,那么实际上就是说这个交错的这个,注意力机制啊,就这个rs sa,它实际计算是计算所有的这个像素点啊。

两两之间的这个权重,那么他会在这个从这种全局方面呢去呃,在这个模型训练侧重进行参考,然后来提高这个CN模型的这个预测的这个能力,那么这边呢就是我们整个的啊,整体的一个网络架构图吧。

啊那么长爷爷说我们通过把这个控制顶点,通过一些规划,还有转换成这种矩阵的形式,对吧啊,矩阵格式啊,然后就可以把它应用到我们整个的,越南的三角网络里面,这边只是一个矩阵的一些尾数啊。

那么这边呢当然通过也是一些上传线下载项,还有它的一些呃跳转的一些connection,对跳转一些连接啊,这样子啊之后呢我就可以预测出啊,通过这么一个unit3家的模型。

预测出我最终的啊相应的在控制定点处啊,如果是一个新的模型对吧啊,控制点出他的这个现象的这个期数,那么实实在很多的这个呃深度学习模型里面,非常重要的就是我怎么样去呃设计我的loss function。

就是这个损失函数对吧啊,虽然我们这边呢呃,第一个呢就是我们30,可以把这个呃对应的数据点之间的误差,平方的均值啊,也说这个均方误差作为我们的这个loss function,是吧啊。

那么然后在这个里面可能会有一些问题,就是会有大量的这个零啊,也就是说这个像我们如果采用这个LMSE的,这个老师的话啊,他的这个均方误差里面,它就包含了很多这种填充零的,这种误差来计算啊。

那么会他上也是会参与这种传播啊,还有更新这个网络参数啊等这些过程啊,还有一个呢就是说呃,可以把这种系数的误差,来作为这个损失的这个函数啊,因为这个函数呢它只衡量你这个预测的系数。

还有IJA这个数字解系数之间的,这个L弯的这个距离啊,另外呢像我们也是可以呃,把这种网络预测的数值解和IJ数值减的,这个误差呢作为这个选择函数啊,那么实际上这些呢我们说呃。

实际上这些呢我们说还是一个什么啊,基于一个数据驱动的对吧,基于一个数据驱动啊,那么,我们最终的实际就是,我们可以把这两个前面的两个函数,一个LU对吧,是个系数的损失,还有数值解的损失。

把它两个呢加权起来啊,然后得到一个呃一个老实的老实,当我们进行测试的这个指标呢,就是我们可以通过相对误差啊,我们具体会讲了,就是说实际就是我预测出来的和我真实的啊,然后这一个呃相对的一个比较好。

啊也就是说我们这边呢可以看一些例子啊,就是说这边呢我们主要就这些数据集嘛,对吧啊,人家说主要是有这么几个数据集,然后上面呢我可以在上面做训练啊,然后这边呢就是我在F1。

就是说如果是右端的这个常数就DU等于F,如果F这个它是一个常数,我得到这个数字点啊,就是这个样子吧,然后如果F2,如果我是求职,求职,初中和这个三有相关的这种周期的函数,相关的话啊,扩大到这个数字解啊。

就是就是是是是这个样子对吧啊,然后我们可以看一下一些结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

看一下一些结果,那么商业说,最左边就是我的实际的这个数字点啊,实际的数字点,然后右边呢是我预测出来的这个数值解啊,预测出来这个数字点,然后这边是数字解的一些绝对的误差,还有数解的相对的误差啊。

那么包括它的数值解的一些分布,就是蓝色的是我的ground truth,然后这个黄色的就是我预测出来的,应该还说还是比较吻合的啊,还是比较吻合,整个的数值相减,相对的误差大概在呃,1%和3%左右啊。

只要我们最最差的,我记得啊,也就是在5%左右,基本上还是可以提供来做一些参考啊,做一些参考,这边我只放了一些部分的这个实验结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这是我们基于这个呃CN的是吧,卷积神经网络神经网络啊,那么后来呢,我们呃也也有一个下一届的一个同学,做了一个工作,就是基于这个电影,基于这个图图神经网络,来做这么一个等级和分析的一个问题,为什么呢。

因为我发现就是特别是这种多片的,复杂的模型啊,这是和我们这种图的这种结构啊,还是非常非常类似的啊,非常类似的啊,也是我们希望能够把这个图网络的个技术啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

能把它运用起来,也就是说实际上对于这种结构化的数据啊,无论是语音还是AI图像啊,然后包括这个文本上,他都是一些非常简单的一些,序列或者网格的数据啊,图片或者数据就是这种结构化的数据。

我们上次用这种卷积是C来做是非常方便的啊,因为它和矩阵都非常类似的对吧,但是实际上我们有很多的呃很多的这个数据啊,就说你实际上很难就可以把它变成,变成一个矩阵对吧,实际上是像我们的一些社交网络啊。

知识图谱啊,还有一些复杂的这种文件系统啊,而这也让他都是一些非结构化的数据,也就是说呃它们之间的连接关系啊,相互关系是非常复杂的啊,然后也是把他的这些节点啊,都把它连接起来起来的话啊。

上就可以变成了一个呃非常复杂的一个图是吧,或者叫超图是吧,那么像这种图数据的复杂性啊,实际上是给这个现有的这个深度学习啊,然后再来也是带来很多的挑战,也就是说实际上一些比如在这个呃CN里面。

一些比较重要的操作,像卷积,你在这个呃图像上有比较容易做对吧,但是在这种图形里面可能就比较难了啊,那么也就是说这个图呢,你如果用CN的方法去解决图的问题啊,算是比较困难啊,所以说这个图的第一个呢。

就是因为这个图的拓扑结构比较复杂,没有像图像一样的这种空间的局部性啊,还有一个呢就是图呢,它是没有特定的一些节点的顺序,或者说没有一些参考的一些节点,第三个呢就是图呢它经常都是一些呃动态图。

而且包含这种多模态的一些特征啊,多模态的一些特征,因此呢呃怎么样把,这个声音能够进行改造提高对吧,然后让它适用于我们这种大规模的这种超图的,这种数据啊,那么上就是后来就出现了这种图神经网络。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是我们的建啊,建也就是说它是主要一个想法呢,就是我通过呃用消息传递,或者领域聚合的一个机制对吧,嗯比如说我我输入一些呃节点对吧,然后这些节点呢,这些input它会连接成一些呃top原图对吧。

然后我通过他们呃邻居之间的一些加权的,一些新消息对吧,一些这种信息嗯,然后我通过这种神经网络的信息,然后上我就可以把他的这个信息呢来实现聚合,得到这个节点上新的一些信息是吧啊。

包括一些连接节点的一些信息的变化等等啊,然后三元说呢,这样的话这是啊可以就可以解决啊,出现这种呃复杂的超图数据的这种训练,还有它的一些预测。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么像我们前面的啊,用的这个CN的这种呃等级和分析重用的啊,分析重用的这种网络的缺陷是什么啊,第一个呢就是说我们还是在前面那个工作中,我完全把控制顶点映射到一个M乘以的,二维矩阵里面,他上次也是呃。

通过一种相当于通过一种间接的方式,把这种控制顶点呢,输入到这种卷积神经网络里面啊,也就是说它这个里面伤势就大家可以看到啊,我是把它相当于一个包围盒,一个一个盒子对吧,或者一个东西把它放到里面。

然后我对它进行归一化,然后进行这种计算,它的下标啊或者之类的对吧,也是他起码上手包含很多的这种零元素,也说像是包含很多的荣誉的信息,就是大量无用的信息,也就是说这个冗余的这些控制顶点呢。

实际上还是会影响会影响他这个卷积的速度啊,还有这个准确率,另外一个呢就是说我这个上市,如果你做这种复杂模型的话,他这个控制顶点的个数会急剧增加的啊,也就是说虽然我们现在只是做了二问的问题。

实际上我们也是希望能够去做题的问题的,如果你做题的问题上,这个东西影射到二维矩阵的这个过程,就会非常复杂,而且对于每个模型啊,它的控制电脑坐标呢又都是不一样的啊,也说因此都需要一个隐私文件来完成。

还有第三点呢,就是说实际上啊这个控制零点对吧啊,让他如果是只有一片啊,但你可以把它理解成一个矩阵对吧,一个张量机形式对吧,但是如果是多片啊,你这么一个万达黑暴力的对吧,把它放到一个包围盒里面。

然后对它的顶点进行一个排序,然后把它使它变成一个,变成一个M乘N的一个结构对吧,实际上这是一个感觉还是挺没没没,就是比较暴力的一种方式去做了对吧,但其实呢呃如果啊,如果我们抛开抛开这个呃种包围盒。

这种方式对吧,然后说我只是纯粹的去看它的什么啊,纯粹的去看它的控制定点之间的,这个连接关系的,实际上这些控制电源开源,它的这些连接关系,连接关系它本质上是不是就是一个官,就是一个无向图,对吧啊。

而我们说这个图神经网络,它恰好就是用于呃处理这种非结构化数据的,这个网络的架构啊,也就是说我们这个图结构,它是更适合表示这种多片的边条的数据啊,也是而且呢并且很非常容易对吧。

把它扩展到这种呃呃三维空间的三维模型啊,就体的模型也是可以的,而且呢,由于我们对于这种拓扑一致的变量模型来说,它的这种连接关系对吧,就是这个片和片之间的连接关系上,是非常固定的啊,非常固定的啊。

也就是说我们上次可以共用啊,同一个啊影射的一个文件,还有一个呢就是说变态性函数,我们都知道它具有局部修改的性质对吧,就这个局部支撑性啊,局部支撑性啊,那么也就说相邻的控制顶点之间商。

它是这之间的关系还是非常呃关联性非常强的,对不对啊,而像我们说这个图卷积呢,它正好就是一个关于淋浴节点的一个操作,能够非常有效的啊去领域中啊,提取相应的这个信息啊,那么基于以上几点考虑。

基于以上几点考虑,所以我就安排了一个学生啊去做了,后面现在找工作啊,就是这个IG grab light,所以说就是为了去改变基于这个CN的这种,等级和分析的方法啊,然后我们提出了基于图神经网络的一个。

新的等级分的方法,那么这是我们整个的一个框架吧,就是说呃i g a graph nec这个框架也说,我就给你一个B样条的model model,然后我通过这个控制零点啊,他们之间的这是他的控制零点对吧。

还有他的间的一些零件的一些关系对吧,然后主要商务可以抽取出它的一些这个,特征出来啊,它的一些特征出来,然后我通过这个基因,我通过这个基因,实际上我就可以呃,预测出它这个IG的这个数字解的一些系数。

然后最后呢再把它可视化出来啊,可视化出来啊,也就说了,这样的话我就不通过,不做什么啊,不做相应的这个呃,把它嵌入到一个包围包围盒里面,包围盒里面是吧,也就是说这样的话实际上是可以,非常方便的对吧。

就基于我们这个graph的这种信息,然后去实现相应的这个操作啊,嗯然后我们这边的主要贡献,第一个就是提出了基于这种图神经网络的,等级和分析的框架,Ig graph net。

能够在具有这种复杂边界的to b字模型上,快速预测这种连续光滑的这种IG的,高精度的数字点啊,还有呢我们也是也是比我们俩还,本质上还是一个数据驱动的一个方法,所以说呢我们也是支持了相应的这个。

适用于图形网络的等级分析的数据集,然后增加了这个初始特征,然后来强化这个它的特征的变化能力啊,那我们这边的这个网络架构呢,主要是结合这个resnet v two,然后架构。

然后改进了point transformer的一个结构啊,并且使用了呃,适用于我们这个地理空间边界问题的一个,现在的这个loss function,这个也是我们还上还是需要去制作数据的啊,制作数据啊。

那么因为这边的制作数据呢,就是说呃,虽然前面那个数据我们也是可以用的对吧,但是我还是希望能够有一些新的数据啊出来,然后来做这些问题,那么我们只是采用了这个IG graph net。

里面说出来了主要的这个图神经网络的模型,主要是对基于这种resnet v two所改进的一个,point transformer的一个模型啊,然而pter transformer呢。

它实在点云处理里面是非常重要的一个方法啊,那么实际上他在这个分类的问题还有一些啊,模型分割,还有一些语义分割方面的,主要是都表现的非常好啊,也就是说上学说他在对于这种不做这种。

局部信息的能力是比较强的啊,是比较强的啊,所以说呢他实际上也是对我们的这个问题啊,这个国家的问题啊啊还是有非常高的,这个适配性啊,适配性,那么上这个pa transformer呢,它主要有两个优势吧。

第一个他就说对于这种点对计算,是他们这个相应这个注意力方面呢是比较好的,也就是说向量这个注意力呢,它能够调节这个单个通道的特征,还有呢这个庞德传法,他上次引入了一些这种啊坐标位置一些编码啊。

然后呢来可以实现这种非线性的多层的感知啊,你看我们这边的位置编码上,对我们这个支出率机制啊有个非常重要的作用,可以让这个它的算者能够更好的去适应啊,这个世界中的一些局部的一些结构啊。

而且呢这个位置编码这个德尔塔,它对于这种注意力产生这个分支啊,还有这个特征转化的分支啊,都非常重要啊,那么这是就在这个点云这个方呃,一些工作里面,他用的这个方式传输方面的成,它可以这样去表示它啊。

这边具体的我就我就不去诶展开了,实际上就是说呃,我因为在我们这个的这个问题里面啊,我们这边条的这个数据啊,还是和这个基因非常契合啊,我们也是非常方便,可以把这个朋友的transformer的这个这个。

这个思想把它用进来,把它用起来啊,那么实际上是在精英里面,非常有一个非常特殊的现象,就是这个不过平缓就是over motion这么一个问题啊,也就是说我它主要指的是,我进行这种多次的这种信息传递之后。

它的这个节点之间的特征啊,它会逐渐的去相似或者一致性,从而导致我这个节点的区分性会降低啊,比如它通常会呃会第一个会呃,会导致第一个信息的丢失啊,那么另外一个呢就是说在过度平滑的条件下呢。

它这个节点之间的这个特征呢,会变得比较相似而相似啊,然后呢,就是这个节点分类或者拟合的性能也会下降啊,也会下降,严重,使得最后的你如果这种多层的这个基因,可能是这个节点分类的能力下降。

从而这个节点特征啊不具有这个区分度啊,不就有区分度啊,所以说我们这边呢,就是在这个图神经网络下面啊,引入了这个产茶的这个连接的比机制啊,也就是说呃,这个深层单元的特征。

可以通过浅层单元的特征和传单函数相加,可以得到,然后可以呃使得这个信息啊,在我们这边的这个网络结构里面,可以更好的进行传播啊,这样呢就可以减轻这个特征的这个,我motion的这么一个问题啊。

然后促进节点之间的这个信息的这个流动啊,那么上这个resnet v two呢,它就可以将这个集合函数都移动了,这个选择成之前,然后形成一种预激活的一种效果啊,从而可以保证我前向传播和反向传播。

这个过程中,这个信息啊都是畅通无阻啊,可以实现这种,恒等的这种影射对吧,那么商,也就是说我们这边就是我们整个的i j graph,net的一个整体的一个网络架构啊,也说我输入一个变量模model。

然后呃通过一些嗯他的一些查查单元对吧,然后通过MLP,然后然后在这个这个框架里面,我上就是通过一些,所以如果还有个pa transformer啊,啊,以我的他的一些这个呃也产生了一些单元对吧。

然后进行预测东西来做,然后最后呢我就会得到预预测的一个解啊,然后我们这个里面呢就主要是是创新点呢,主要是结合了RESNET呃,这个,啊这个re resnet v two的这种传输form层。

然后构建构成中间的这个产生单元啊,然后这个数部分,数字部分都是由一些mp从来组成的啊,当然我们也是构造了相应的新的一些啊,预测的一些函数啊,那个loss function来进行预测啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊这是我们整个的这个框架的介绍啊,就是这样子啊,那么所以呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们后面呢就可以来看一下一些结果啊,看下一些结果啊,当然我们这边呢主要就是和我们前面提出的,这个CN的这个方法对吧,IJ原用时net和来进行对比啊,来进行对比啊,通过这些比较呢就可以发现。

无论这个孩子从绝对误差上还是相对误差上啊,这个i j graph都可以呃得到一定程度的提升啊,提升的提升啊,那么对于这个预测的误差呢,还是有明确的兵线的这个下降啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

明确的下降就可以看一下图吧,这边就是一些实际的数字解啊,数字数字数字节的结果分布图是这样子啊,这边是我们C预出来突出来的啊,这边是这个界预测出来的啊,J预测出来的,那么实际上就大概通过呃。

我这边呢也是把CN的预测值,预测值和JA的预测值对吧,还有相应的它这个蓝色的是ground truth,这把这么多画画出来一把呢,还是这个JA的这个结果是吧,更接近啊,更能够覆盖对吧,它相应的这个。

管理处事的这个分布,然后下面呢就是它的这个相应的呃,绝对误差和相对误差对吧,只要这个隐形方面呢也是可以看出来,这个基因得到的误差呢会更小一些,那么当然我们也说可以。

因为前面和那个都是呃同一个拓扑结构嘛对吧,也就是说我们实际上也是可以呃,去求解相应的这个呃top一致的这个分析,重要的一些问题对啊,这是我们得到的一些结果,另一边就是它的这个呃一个比较啊,一个比较实际。

就从这这边对吧,他也可以看到这个这个蓝色的框架上,就是这个基因预测的值对吧,还是肯定要比这个啊红色的这个CN预设的字段,更接近这个关于初始,这边是更多的一些例子啊,我这边就不叫做。

那么这边呢就是也是更多的一些例子吧,只要我们也是可以从这个数值上的东西,可以去说这个问题,就可以发现确实基因啊,他在呃一些误差方面啊,这个对吧,像这边也是非常明显的啊,这边都是红的比较多啊。

那这边我们得到基本上就蓝色的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个区域更多一些,那么实际上也就是说我们来来来展望一下的话,就是说第一个我们先总结一下,就是我们商呃对于把这个深度学习啊,特别是我们的深度神经网络对吧,和我们的这个呃等几何啊结合起来啊。

实际上是啊确实是可以结合的啊,因为这是在好像在计算,无论在计算数学还是计算力学里面啊,目前啊都是一些呃非常热点的研究的方向啊,像计算力学里面对吧,那大公郭老师他们就专门几月份啊。

专门有一个数据驱动的这个计算力学会议,对吧啊,那么实在计算数学里面啊,这个也是有很多的一些工作,就是我怎么样用深度学习的方法,像这个PIN实际上就是基于这个事情来做的,对不对,来来做这种呃。

深度学习的方法来求解PDE对吧,那么我会说IJA,它本质上也是去求解一个PDE,当然我们说的这些深度学习的模型,当然也是有这个应用的这个空间的啊,应用的空间的,那么实际上我们这边主要解决了这个问题。

我们说还是有意义的,就是说就是我们希望通过啊,对于这种拓扑一致的模型的数据集对吧,我给你在一个模型上的呃,如果已知在一个模型上IJ的解啊,那我怎么样知道在其他的这种呃top1的模型呢。

比如各种不同的飞机上,他的这个分析结果什么样子的啊,那么通过就可以通过这种呃,深度学习的方法去解决这个问题啊,那么也就是说呢,我可以实现真正可以实现这种分析的重用对吧,分析的重。

那么实际上这个呃对于我们,做后面的什么优化为就是形状优化,透露优化也是非常有价值对吧啊,因为很多的优化它就需要多层迭代,你每一次迭代的时候都需要重新计算一下呃,这个数字解对吧,重新记一下计算。

用IG的方法来重新算一算,算一遍啊,那如果我们能够对于这种诶拓扑一致的啊,特别是对于形状优化问题来讲,如果能够在上面通过呃,这种A深度学习的方法来进行预测是吧,那我觉得这个就是可能在效率上有极大的提升。

极大的提升,所以说这也是我们的将来的一个工作啊,第一个就是说我们可以去改进网络结构,让它更适合于这种PDD求解的问题啊,当然目前我们所说的这个网络架构啊,主要还是从我们这个典狱的这个领域啊。

这个借鉴过来的对吧,还是有很大的一些改进了一些空间的啊,还有一个呢就是说怎么样,因为我们本质上还是一个数据驱动的一个框架,是怎么样去扩充相应的这个呃,这个数据集的类型,然后去求解,包括pd的类型啊。

边界条件啊,这些对吧,也是非常重要的啊,也是目前我们只是验证了这个方法是可用的啊,还有一个呢就是我们目前所求解的问题呢,还是主要是面向二维问题啊,未来呢还是可以把这个线程工作,怎么推广到三维。

还有一个呢就是我刚才说的啊,目前还是我们继续是一个数据的,对吧啊,对于一个数据驱动的一个呃,呃有监督的一个方法啊,但目前我后面还是可以考虑,把我这个PDE方程,这个德尔塔U等于F啊。

这么一个记忆物理的方式啊,能够把它考虑进去,然后呢做一个什么啊,这种基于物理的这种无监督学习的这种方法啊,也就是说,像目前我们这种以数据驱动的方式来训练,申请,网络上是需要提供用几何模型。

数字解的技术来作为这种标签的数据啊,像最终的训练的这个预测的精度,很依赖于你这种这个数据集的这个质量啊,数据集的质量啊,当然我们未来的还是可以探索这种,基于物理的信息的规则的。

基于物理规则的这种无监督的学习方法啊,啊这个我觉得也是目前已经有人这样来做的啊,那么当然了我们就可以了,就是怎么样去呃,看有没有野性的一些思路,好吧这就是我介绍了,就是说呃我们的主要两个工作啊。

就是说这个是基于CN还是GGN啊,那基于基因呢可以看作是基于CN的一个推广啊,主要是用深度学习方法来求解,相应的解决相应的什么啊,分析重用的问题,分析重用的问题啊,你说我们不仅仅是啊。

不仅仅是去解决这个怎么预测解的问题,而是预测啊具有相同拓扑结构的模型,我知道一个模型上的一个解之后,那么对于其他的模型,它的这个啊数字解IG的数字键怎么样的,我通过深度学习的方法确实可以做得到啊。

就我想呢,大家呢主要是来给大家介绍这么一个一个工作,那么最后呢我想还是做一下课程总结啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

像我们前面呃以上的11次课啊,11次课刚刚好,这这次是第12次啊,第12次,我觉得12也是一个非常非常重要的一个数字,对吧,我们一年有12个月,实际上就是说啊,那么我们12次课。

就相当于把我们整个的这个呃整理和分析的,这个课程的内容啊,就给大家介绍完了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们这边呢来简单总结回顾一下啊,我们讲了哪些内容啊,那么第一个在这个内容方面上,我们总共有12讲对吧,那我们第一讲的是给大家介绍了这个CE啊,与登记的分析,主要是面向给大家介绍了这个等级和分析。

提出了这个被子对吧,和我们这个CADCE的呃,无缝融合的问题对吧,来提出了这个分解分析背景,第二部分呢主要是给大家建了这个呃,在等级分析里面非常重要的一个基础啊,就是我们的计算几何方面的基础啊。

就是这个曲线曲面具体的建模部分啊,那么第三部分啊,第三部分呢主要就是唉,呃给大家介绍了这个有限元分析和网格生成啊,因为我们还是希望能够让大家了解对吧啊,这我等你分析提出的背景之后,他是怎么样啊。

后面的有限元之间的关系,和网格生成之间又是什么关系啊,那么像我们第四讲和第五讲呢,主要是给大家来介绍了,这个等你的必中非常重要的一个啊,计算几何领域的啊一个问题啊,就是啊面向IC的计算与参数化啊。

那么像这个里面的啊,我们很多的国内的学者,在这方面做出了非常多的这个贡献啊,啊发展论文也比较多啊,那么主要是这个计算机的参数问题,实际也是他就是嗯,相当于我们有限元里面的网格生存问题啊,可以这么讲。

那么后面的678呢,主要就是介绍了这个求解器这一块啊,9。7这一块,主要就是呃播送问题的求解框架对吧,还有现代性问题的求解,以这种超弹性问题的求解啊,但我们现在这也是给大家介绍了。

我们课题组的一些新的工作啊,包括这个gift的方法,还有这个登顶盒的推理法,那么后面两讲啊,就第九讲和第十次课,主要给大家介绍了这个呃结构优化方面的啊,包括等级和的形状优化,还有等几何的拓扑优化啊。

因为这些部分呢我们就说大家可以发现啊,总结分析确实在这个形状优化方面,有它这个天然的优势对吧,有它天然的优势啊,那么实在top优化方面也是嗯,也是有他这个非常重要的优势对吧,那么商也是后面呢我们说了算。

在优化这块,应该还是有大量的可以自动做到这个东西,可以去做啊,那么在上节课也是第11刺客的时候呢,给大家介绍了啊,我们课题组基于提起提分的这个,理论方面的贡献,然后呃提出了一个基于体系分的等级和建模。

仿真优化一体化的框架,并且它给出了一个基于体积分的这个,躯体建模的这个工具,对吧啊,也就是说我觉得啊,就是说体积分,应该它是我们连接我们复杂的几何,具体的建模和等几个分析的,一个非常重要的一个桥梁啊。

一个桥梁啊,那么我觉得啊,后面啊,如果我们要做这种啊变形实际问题的复杂,模型的这种整体和分析的啊,无论是这种仿真的问题还是优化的问题来讲啊,我就觉得提分啊应该是一个非常好的一个工具。

因为它呃既简单又容易实现啊,然后它的整个的呃建模能力也是比较强对吧,那么最后一讲就是我们今天这节课介绍了,这个基于深度学习的啊,这种啊分析分析啊,主要是解决了什么啊,分析重要的问题啊,分析重要的问题啊。

这就是我们整个的这12集课的这个,课时的安排就是占用了这个求解的,讲解的这个内容啊,相应的这个我呃这个视频啊,我们都呃我们已经放到了这个呃,哔哩哔哩这个网站上对吧啊。

我们game是团队的同学呢也是非常给力啊,在这方面呢也是对我的视频做了剪辑啊,应该说呃前面几次课吧,特别是呃我记得是第三次,第四次课啊,特别是因为应该也是由于网络的原因啊。

还有我的本身这个呃电脑的这个原因啊,可能这个在一些直播效果上确实不怎么好啊,啊但是后面啊我们还是其实做了一些改进啊,应该说后面几次课的效果呢,应该这个直播的这个我们这个音质啊。

还有换画面方面应该会好一些啊,不是没有关系啊,就大家还是有这个PPT啊,有个slides可以看啊,希望大家应该不会造成太大的影响啊,太大的影响啊,就,大家后面可以,我们等我们的12次课的视频。

应该都会放在这个呃这个网址上面对吧,大家可以后面的就是继续学习啊,包括也欢迎啊,多多传播,应该我们说整个整体和分析发展的趋势啊,这边我还是想讲一讲啊,主要就是说啊,已经从传统的二维问题到三维问题。

从静态问题到动态问题对吧,从这种线性的问题到非线性的问题,然后从这种多种单种材料的仿真,到这种多种材料的仿真,甚至拓扑优化问题对吧啊,然后从这种宏观的结构的这种仿真,到这种微观的对吧啊。

比如这种点阵结构的这种仿真优化问题对吧,然后从这种单场到这种多长耦合的啊,或者流过耦合的一些问题对吧,从这种串行的计算到这种变形的计算啊,那我们课题组也在做这个,就是说怎么能够通过GPU。

通过并行的方法,能够提升这个整体和分析处理的效率啊,还有一个就是我怎么样啊,通过固化空间共发的样条空间啊,到这种灵活的推广对吧,就像gift应该是起到一个典型的一个代表,还有一个呢就是说啊。

怎么从这种传统的求解到这种AI的预测,这是今天做的是吧,还有一些呢就是说啊,我们还是希望最后能够有一些好的软件平台啊,特别是一些开源的源软件平台能够出来,然后去从理论研究到软件平台。

但是现在我觉得应该无论是质疑还是就说,影响登顶盒分析发展了一个非常重要的一个,就是说怎么样能够在我们的实际的产业里面啊,实际的工程问题里面,能够啊让整体和去真的去发挥作用啊。

却比确实啊能够发现啊整体和分析比有限元,在某些方面啊有它特殊的一些优势啊,虽然我们在从理论上对吧,包括从一些圆形的一些实现上,我们可以说等几何确实有优势是吧,但是啊,怎么样能够让我们产业界的人士。

能够去认可他啊,能够去呃更多的使用它啊,我觉得这个应该是我们做登记和分析的,这些同行的需要后面去啊,努力的一个非常重要的一个方向,非常重要的一个方向啊,这边是我总结到目前登记和分析发展的趋势吧,对吧啊。

这个趋势我想还是客观存在的,还是客观存在的啊,比如说等你和你家的发展,也是确实也已经进入了深水区啊,这种深水区,比如现在上次发在SMAP上一些论文对吧,如果你只是单纯的做这种二维的啊,分析的问题啊。

实际上可能是比较难发表的啊,目前我觉得其实看的也比较少啊,但是啊就说我怎么样能够做到三维,也是非常非常重要的,当然对于整体的分析来讲,还是有一些open的一些问题啊,怎样去解决啊,怎么样去解决啊。

然后就是说比如说我怎么样去啊,怎么样去呃,构造这种适合等几个分析的,最优的样条模型对吧,然后啊我怎么样去实现这种复杂具体的造型啊,特别是像我们体育课方法,比如在这些起点啊级别的说的这些连续性问题。

特别是几何连续问题,我怎么样去定义它啊,这都是需要去解决的理论性的问题对吧啊,还有一些比如说三维三维结构化题材的话,拓扑的构造问题,实际上这个就是和我们这个网格深层理念啊。

这种高质量的结构化的六面体网格的生成啊,就是它这个区域的剖分top的构造啊,是非常相通的啊,非常相通的啊,这个应该也是挺难的,一个问题是,还有一个呢就是说啊,带有裁剪曲面边界的这种体操方法。

然后这个呢我觉得也是可能是至于呃,目前跟你的分析发展了一个,非常重要的一个的一个因素啊,还有呢像这个啊,等几何在这种七天期间出的收敛性啊,理论上那些分析啊,包括像一些CFD里面的啊。

一些怎么样把登记和用起来啊,那么实际上这个也是有很多人在关心的啊,包括一些软体机器人啊,什么超凡性材料,非线性动力学问题的求解啊,虽然我们做了一些初步一些工作啊,但我相信还是有很多工作的值得去做的啊。

包括我们的拓扑优化,形状优化问题里面的一些啊呃一些方向吧,我觉得啊,可能怎么样能够从整体和的角度,真正的去解决啊,目前这些结构优化中的一些问题,而不是说把我们传统的一些优化的方法,拿来用一下啊。

那么也就是说怎么样进一步的彰显啊,等几何的这个优势,我觉得是啊,目前这个结构优化啊,特别是基于登顶非的结构啊,我们优化里面需要迫切的去解决了一些问题啊,那最后呢还是就是这种三维复杂登记分析。

工业软件研发啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个前面我已经提过了啊,我这边就不多说了,那么最后呢还是感谢啊各位老师啊,各位同学的这个支持啊,特别是这12次课的陪伴啊,那么也是刚刚10月大概三个月是吧啊,三个月啊。

那么也也是希望大家多多宣传我们的一些呃,这些教学的这个资源啊,比如说如果你在这个课题组里面的同学啊,师弟师妹啊,如果想学习的,你分析啊,他说可以来学习我们这边的呃,这些呃一些视频的一些资料啊。

包括哪些PPT的一些资料啊,最后还是希望能够,大家呢,还是非常希望大家能够在等,你的分析这个领域啊,能够不要离开对吧,不要离开啊,能够扎一下心啊,这个扎下心来对吧,然后沉下心来去嗯。

解决我们等解和分析里面啊,所面临的这些,刚才说到的这些观念的一些科学问题对吧,然后去解决实实在在的问题啊,然后呃多多去进行相应的一些软件的研发,软件的开发啊,然后最好开源对吧。

然后让我们整整个国内的这个整体和分析的,这个生态呢啊变得更好变得更好啊,我觉得这是对我们无论是对我们国家啊,目前解决这些卡牌的这些问题对吧,工业软件里面的问题都是非常有益的啊,都是非常有益的啊。

也就是实际上就是说怎么样去建立呃,相和这个生相应的生态,我觉得是最重要的啊,最重要的,好吧,我们今天的这个直播就到这儿啊,呃那么我们后面呢,会把现在的这个PPT和这个视频的这个资源啊,都整理好。

放在网站上,然后再次感谢大家,这么呃这么长这个时间的这个陪伴啊,然后里面呢肯定会有呃,无论是我讲解的这个内容啊,还是讲解的这个呃各方面的这个能力啊,还有相应的对吧一些呃其他的好,还有一些无。

无论这个网络啊,还有各方面的一些问题啊,肯定会有一些不足之处,也请大家多多原谅啊,多多原谅,多多指正。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES302-等几何分析 - P2:2. 曲线曲面曲体的建模基础 - GAMES-Webinar - BV1dM4y117PS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好各位老师同学,那么第二讲呢正式开始,我们前面的第一讲呢,已经给各位啊介绍了我们这个等级和分析,它相应的提出了这个背景啊,特别是我们这个c d c e一些背景的知识,那么我们这次课开始呢。

就给大家讲一些比较基础的细节的这个内容,你们知道呢等几何呢,它实际上呢是啊用和几何表示同样的样条语言,去表示我们的物理场对,这是它的一个核心的一个基本的一个思想,所以说这边非常重要的一点就是关于样条。

也就是说我们这个曲线曲面,具体的一些基础知识就显得非常的重要啊,非常的重要,那么所以我们的第二讲呢就给大家介绍啊,这个曲线曲面躯体它的理论基础,并且呢基于我们呃航电i game cs这个igame平台。

然后呢给大家介绍一下啊,相应的一些实现,我们相应的这个代码,还有框架呢,应该会最晚在后天周一呢就会发布给大家,到时候我们也会在qq群里面通知大家,那么实际上就是说这个曲线曲面躯体啊,它的这个建模的基础。

对我们这个整个的cad是非常重要的,那么正是因为啊登记核实现了c a d和cae,他们之间的这个无缝融合是吧,也就是说统一表示啊,所以说样条呃这部分的理论啊,这部分的知识啊。

应该对我们这个等级和也是非常非常重要,这是我今天介绍的这个提纲,首先呢给大家介绍这个几何形状的参数表示,然后呢分别介绍曲线曲面躯体的造型理论啊,及相应的一些算法,最后介绍我们i game几何内核。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这边我列出了一些参考教材,那么是非常经典的一些教材,特别是这边的两嗯两本外文教材,外文教材一个呢是reno book,lovers呢,实际上就是我们非均匀有理,b条那么一个简称啊。

实际上这number book呢是啊,我们应该说我们这个呃c g d领域,非常经典的一本啊教程,它里面呢不仅仅介绍了基础的理论,而且呢相应的这个代码的实现也都有啊,一些基础算法的代码实现都有。

我想大家可以借助他的这本呃书啊,来根据深入的学习,但我们时间有限对吧,就一个半小时,所以说呢我们也只能介绍一些里面最重要,最基础的一些呃理论和算法,那么这两位作者呢也是非常有名的。

也是担任我们cad的前主编,当然这本书啊这本教材也有相应的中文版本,是由北航的赵刚老师啊翻译的啊,那么大家也可以去看看有没有可能不可能买到,然后呢第二条啊。

第二个这个教材呢是关于close and surface和c g d,所以我们也c a g d啊,就这个计算机辅助几何设计,这个国际期刊的前主编furry,他这个写的啊,这个写的也是深入浅出。

大家呢也可以作为一个重要的参考,另外这边呢我还推荐了三本中文的教程啊,第一个就是我们浙大c g d课程组啊,由王国瑾老师,王国哲老师和张建明老师编写的,计算机辅助机和设计这本书。

那么这本教材呢相对呢要深一些,更加的偏这个科研方面啊,比较适合于这个呃高层次的研究生啊,去参考去参考,那么还有一本呢是这个计算机辅助设计,与非均匀有理b样条,那么这本书呢是由北航的施法中老师写的啊。

因为它里面写的呢也是非常的有条理,非常的经典,非常的经典,此外呢还有我们大工的王,王仁宏老师所介绍的这么一个计算机和教程,那么这是我推荐的一些参考教材,大家感兴趣的可以去购买,或者这个参考一下。

应该在图书馆里面的,应该也都有。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么下面介绍这个几何形状的参数表示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们一般来说这个计算机辅助几何设计,里面非常重要的就是参数曲线曲面,那么为什么要采用参数表示啊,这边呢就需要给大家介绍一下,实际上我们这个呃整个图形学里面非常重要的,一本也一部分啊。

就是关于这个曲线曲面造型,那么它里面的理论基础的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

实际上也是我们c g d的一个,理论基础的一个核心,那么c g d这么一个词呢,实际上是他最早是在1974年,由这个巴西和这个bified,在美国,犹他大学的一次国际会议上提出来提出来,那么ua大学。

大家知道这家腾讯学领域非常著名的,就是那个犹他茶壶是吧,实际上就是在犹他大学的这个诞生的,那么从1974年之后呢,这么一个c a g d的这个词呢,也说开始一门独立的学科属性,那么实际上在7年的时候。

这个英国forest,刚才那个教材里面的这个汪国昭老师啊,是我在浙大的导师啊,那么汪老师呢在呃70年代末,80年代初呢,也在英国的forest这边的课题组呢进行访问啊,进行访问。

那么他给出了1c7 的另外一个的名字,叫做计算几何,计算几何,那么这个计算几何呢,实际上我们在国内几个同学可能也注意到,我们身上有一个非常重要的啊,非常重要的呃一个呃一门课叫做计算几何啊。

它是由北京理工大学的周培德老师啊来介绍的,这本书的名字叫做计算机和算法设计分析应用,其实我还看过里面的一些内容,它实际上啊就是是呃,主要是介绍我们的一些几何的一些算法,比如求教啊啊。

还有一些三角剖分啊啊这些,也就是说实际上啊实际上也是计算几何,在有的时候他还是会,会包含这些内容是吧,所以说我们这边呢呃还是基本上就是大家呢,还是沿用计算机辅助几何设计。

比如c e d的这么一个学科的这种名称,那么为什么会有这么一个学科的,这个是出现对吧啊,因为呃随着这个因为航那个当时啊,无论是航空还是汽车,这个现代工业发展都是非常迅速,那么实际上在这个里面啊。

在这个里面非常重要的啊,就是说我怎么样去在计算机里面去表示,我这些工业产品的各种各样的几何形状,就显得非常重要啊,就显得非常重要,那么实际上从大类来看,我们可以把它分为这么两大类啊。

第一个就是由这些初等的解析曲面,比如像平面啊,圆柱面啊,球面啊,圆环面这些组成的啊,实际上这个这些呢,在我们机械零件里面是显得出现了非常多的啊,经常会碰到对吧,那么第二类呢实际上就是有这种复杂方式。

自由变换的曲面,我们把它叫做叫做自由曲线曲面,也就是说呢它的形状呢是可以由用户来设计的,可以自由啊,它的形状是自由的啊,是自由的,比如说像我们这个飞机啊,汽车啊,传播他的这些外形啊。

这些车身表面等等对吧,那么实际上这些你如果用单纯的这些解析曲面,去表示它是非常困难,是非常困难,所以说呢我们迫切需要迫切需要一种呃,具有优良性质的这种自由曲线,曲面的这个表示啊,这也就是说呢。

我们要要要提出这个相应的这个方法,那么实际上这个几何外形的这个计算机,表示方法呢,也就是说是人们当时一直在寻求的,一直是在寻求的,从一个形状的一个怎么样去表示它,在数学上去表示它是非常重要的啊。

因为我们不仅仅要用哪来表示形状对吧,可能在后面的一些数控加工,也是在制造里面悟性的计算,就是物理属性的一些计算啊,包括有限元对吧,实际上都是会诶用到啊,他的这个几何形状的这个表达。

也说他的这种表达的方式啊,就显得异常的重要啊,异常的重要,那么商是在这种外形信息的计算机的表示,分析和综合中核心的问题,我就说在计算机里面,怎么样去表示这些外形的情况,第一个我们有这么几点要求。

第一个就是我首先这种表示,要是适合我们计算机来处理对吧,来处理,另外一个就是要有效,可以有效地满足这个形状,表示和几何设计的要求对吧,我们后面要进行这个形状的这个修改对吧,编辑那么要满足这些信息。

还有另外一个就是我要这些信息啊,我能够便于在各个系统里面进行这种信息的传,递,产品的这个数据的交换,对吧,那么实际上这个也是非常重要的啊,非常重要的,那么实际上是大家都学过这个高等数学啊。

那么包括解析几何对吧,然后大家都知道这个无外乎在从数学上来讲,它我们对一个形状无法乎就这么三种表示,第一个就是显示表示啊,显示表示没错,我是可以任何一个形状,我都我都可以把它表成y等于fx的形式啊。

那曲面就表示成z等于f x y的形式,也就是说我这个x和y坐标呢它是确定的,比如说像抛物线或者什么的,比如y等于x的平方或者等等等等对吧,那么实际上就说这种表示显示。

表示它的这个横坐标和纵坐标之间的关系,之间的关系是非常明确直观的对吧,但是呢它不能够表示多次取经,另外一个它也不利于你进行编辑修改对吧,大家我很难去预测对吧,我如果修改了这个fx的这个表达式。

最后这个曲线的形状变成什么样子了,我不知道啊,我很难去预测是吧,嗯另外一个呢就是隐私表示啊,就是比如说像一个圆,我可以表示成x平方加y方等于一的形式,这是一个单位圆对吧,那么这种隐私表示呢。

它实际上是这种坐标之间的对应关系,更加不直观了,对不对,但是它有个好处,就是我可以非常容易做一些内外的一些判断,对吧,比如说在啊求教啊或者一些问题里面啊,它是有着先天的优势啊。

所以我们后面有很多呃学者去研究,我怎么样做影视化,比如说把这种后面的这种参数形式进行隐私化,因为为什么要做隐私化,因为我就可以对这个求教问题就可以进行简化,还有第三种啊,也是我们就是说呃比较关注的一种。

就是参数表示,参数表示爷爷说呢,当然我就是参数表示的核心思想,就是我把这个呃y这个几何形状上的这个x y,z坐标都写成啊,关于另外一个参数啊,比如t的表达式,比如参数曲线,那就是把这个它的x坐标。

y坐标和z坐标都表示,关于一个变量t的一个表达式啊,这个时候我没说呢,这个t就是我的参数对吧,也就是说我给你一个t的值,我就会在这个曲线上算出一个对应的,一个点的位置来。

那么如果我把这个t的直径就做一个便利对吧,所以说我就可以得到一整条曲线的形状,也就是说呢它实际上就是我们所谓的参数表示,那对于曲面也是一样的对吧,那就是有右位两个方向,右位两个方向啊。

也就是说实际上啊实际上啊在这三种方式里面,我们计算机我们里面啊我们采用哪一种,就是我们在计算机辅助几何设计这个学科里面,我们采用哪一种啊,就是第三种参数表示形式,参数表示形式,那么有了。

但既然我们可以用参数这种形式去表达,其实我们也有很多的这个呃工程师啊,包括学者来研究了这方面的问题,就大家可以发现,实际上当时很多的我们这个呃,计算机辅助几何设计。

也是c e d这个学科里面的很多的这个进展啊,都是由我们的一些工程师提出来的啊,工程提出来的,也就是说他们的时候呢实际上是非常接地气的,非常接地气的对吧,因为他们来源于实际的工程的需求。

他在63年的时候,美国波音飞机公司的弗格森啊,这不是曼联的主教练啊,他是这个姓氏一样的对吧,他首先提出了我用这个曲线,曲面呢用参数方程来进行表示,那么它实际上是最早引入了这个参数的,三次曲线,并且呢。

呃给出了这个弗格森双三四,曲面片的一个构造方法,也是我通过这个呃曲线的组合,还有在这四个角点处的,啊在这四个角点处的这个位置矢量,还有一些切矢量,我就可以构造出一个表达式来。

然后呢呃构造出相应的这个弗格森patch,弗格森主页面,那么这是最早的,在63年呢,他就提出了这么一个思想啊,就提出了这么一个思想,那么实际上是参数表示的原理呢非常简单的啊,非常简单的。

比如说一条直线对吧,直线也可以看到是曲线的一种特殊情况啊,那么我们比如考虑这么一条直线段,从连接p0 和p的一条直线段,那么它的参数表示非常简单对吧,那我就是呃变形可以写成一减t乘以p0 。

加上t乘以p一的形式啊,这障碍只是它一个向量表示一个矢量表示,对不对啊,那它的每个分量对不对,我也可以就可以写成这种形式对吧,x y z分量都是可以写成关于t的一个函数。

那么我有了这么一个t t的参数表示之后对吧,一个学表示我对于呃这个在零一区间内,零一区间内任何点,一个点数一和一个t处的这个字,我都可以在这条直线上找到一个对应的点对吧,如果在计算机里面进行渲染。

进行画的时候,那我就可以把这个零一这个区间进行离散化,对吧,你可以分成50份,100份也好,然后呢我就可以变成相应的啊这么一个,曲线占了一个离散的表示,离散的表示,这也是为什么计算机学科啊。

我们要学离散数学对吧,实际上这个里面非常重要的,就是说要大家要学会离散的思想,因为计算机它只能0101来表示,那么这是一个曲线的比较大啊,曲线的比较直线的参数形式非常简单对吧,那对于一般的三维曲线啊。

一般的三维参数曲线对吧,实际上我也可以把它表示关于一个参数显示,对吧啊,那就是说我这个x t y t,z t可能就不是简单的这个呃,关于t的一次多项式函数的对吧,可能是高次的啊。

甚至还有可能不是多项式的对吧,你可以删一口3亿的啊,也是可以的啊,也是可以的,那么实际上对于参数学非常简单,有有的朋友想了,那就是多项式嘛,也就是说我对这个x t y t啊,这个就写成u了。

u都可以变成p成,关于u的一个多项式函数对吧,多项式函数啊,那么相应的这个给你一个参数,u0 上面的这个点呢,我就可以通过一些算法啊,把它把它给求职出来,当然是可以的啊,但这个会出现什么问题啊。

大家可以想一想啊,也就是说对于我们编辑曲线来说,首先它是不直观的,对不对啊,也就是说如果我修改在这里的ai,我要对它进行修改,那么大家最后的最后的这个呃曲线的形状啊,你修修改里面的一个比如ai的值之后。

它这个曲线的形状变成变成什么样子了,我无法预测,无法预测对吧,所以说他对我们cad来讲应该也是不怎么好用,不怎么好用,那么当然我们可以去总结一下啊,总结一下这个参数。

曲线参数表示呃这种显示的这种呃表示对吧,它表示的优势有哪些,第一个啊,首先它是显示对吧,不像影视那样,我xy之间的关系都不明确对吧,也就是说对于每一个参数值啊,给你一个t的值。

我就可以直接去计算曲线曲面上的,这个对应点的位置对吧,而且呢我刚才说了啊,我们可以采用这种离散化的方式啊,可以非常方便的把这种参数表示的这种外形啊,分别方面的,可以转换成这种多边形的逼近表示对吧。

多边形的逼近表示,那么有了这个多边形边界表示之后啊,多边形标记表示之后,我们就可以在呃计算机里面啊,通过open gl对吧,这个语言就可以把它给绘制出来了,对不对啊。

还有一个呢就是这个曲面上的一些几何量,计算更加简便,因为它是参数解析的参数形式嘛对吧,所以说一些微分几何的一些属性啊,微分几何呢实际上就是把我们这个微积分,后面这个几何啊,它的内蕴几何啊结合起来啊。

比如说我怎么样去计算它的法向曲率,车离线曲率线这些属性的话,实际上我都是可以非常方便,因为我有了这个显示的参数表达嘛对吧,我都可以对这个t啊求导啊之类的这些方法,这些方面都是非常方便。

还有一个我想也是非常最重要的一点啊,最重要的一点就是特殊形式的参数,曲线的参数表示的这种外形控制非常直观啊,非常直观啊,那么比如说我们后面要讲的这个北的b样条,nbs啊,包括呃这些曲线曲面表达。

我们说呢,它都引入了一个叫做控制多边形或者,控制网格的概念,控制网格的概念,也就是说我通过修改这些控制网格,控制多边形的呃,中在这些控制顶点的位置,我就可以实现对它的这个形状的一个修改,对吧啊。

别说对这种特殊形式的所谓特殊形式,就是我这个x t y t z t啊,我采用一些特殊的形式进行表达,可以呢啊实现非常方便的这种外形控制,也就这样了,他就可以把我们这种参数表示的这个优势啊,可以集大成啊。

既可以是显示表达,可以方便求职对吧,几何量又计算简单,另外呢形状修改呢又非常好啊,所以说我们后面重点给大家介绍的啊,就是这么一类啊,有控制多边形这种形式来表达的这种曲线曲面,具体的他的这个,所以呢。

我们会首先给大家介绍。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个曲线造型的一些理论和算法啊,曲线造型的一些理论和算法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我刚才讲了这个参数曲线,我们非常大家首先可以想到的就是密集形式,对吧,就这种ai乘以这个t的多少次方的形式,我们刚呃我刚才提了,首先它不利于进行交互的啊,形状的设计啊,另外呢它是一种代数形式。

几何意义不直观对吧,几何意义不直观,不利于数值计算啊,因为对于高层来讲啊,这样他就需要求什么t的多少,比如十次方,实际上对于这种高密吃的这种数字计算,是对于计算来讲也是不稳定的对吧。

大家如果呃写过相应的同学都都应该有体会,有体会啊,那么后面我引入这个北约啊变量条之后,大家可以发现他就是把这种求职啊,都变成了一个地位递归算法,所以说呢它就非常稳定的,计算机是非常喜欢递归算法的。

对不对啊,那所以我刚才就讲了,说我们能不能考虑换一种奇函数,不用密集啊,不用密集,而用其他形式的奇函数啊,就是这里的b r n t啊,叫做关于闪现函数,有了这种形式表达之后呢。

我实际上就可以引入这种控制多边形形式,这边的2021223就是我的控制顶点对吧,那么连接依次相连,就组成了一个控制多边形,有了这个控制多边形,如果我想修改这条曲线的形状对吧。

这条粗的就是我的这个最后的这个参数,曲线的形状,如果你想修改它的这个曲线的形状,我只要移动这些控制点的位置,比如你可以把这个点移到这里来对吧,那相应的这个控制都变形了,就变成这个样子对吧。

那么这个形状就会变成什么样子啊,就就会过去对吧啊,所以说啊,所以说就说我通过引入了一种特殊的参数形式,表示就可以啊,就可以实现啊,这种啊非常好的这种交互修改啊的这个功能。

所以下面呢我们就给大家介绍这个北热曲线啊,北交曲线比如曲线,它实际上就是由我们这个比塞尔提出来的啊,一个法国的工程师是雷诺汽车公司的,提出了一种非常有趣的,有呃也是非常有用的一个呃。

不曲线曲面的构造方法,那么他在672年的时候呢,依靠这么一个理论基础,理论基础啊,开发了一套这个自由曲线曲面的造型系统,行为叫做unity unit or,也就是说刚才大家也看到了。

我只要移动这个控制顶点的位置,就可以方便的修改这个曲线的形状,而且这种曲线形状的变化是什么,是可以预测的啊,也就是说这个它的曲线形状的变化,是随着控制多边形的变化而变化的啊,而且这个控制的变形的变化。

实际上是也是或或多或少体现了,我最终这个曲线的这个形状的变化,那么应该说这是一个非常开开创性的一个贡献,开创性的一个贡,那么实际上在比北山呢还要稍微早一点啊,法国雪铁龙啊,这个金融工这个汽车公司啊。

这个企业目前还存在,对不对啊,这个得卡斯特罗啊,盐城独立研究发现了一个同样的方法,但他这个追问结果呢是呃一直没有发表,但是在国际上大家还是呃承认了,这个得开始多种方算法呢,它的这个地位啊。

啊它这个里面的相应的求职算法啊,并不是叫做呃后来并没有命名为北的算法对吧,而且命名为了这个decastle的算法啊,decastle的算法,那么the castle的呢是去年去世的。

相应的我们c基地的这个期刊呢,也出专门出现了,也出版了一个呃特刊啊,一个专辑来纪念他啊,来纪念他,那么有趣的是啊,在10年前就在2013年的这个s p m会议上,就是我们这个实体与物理造型。

这个soli男的被commodity这个会议上,也是我们cad里面的一个呃,比较重要的一个会场啊,the castle啊获得了当年的北大奖啊,北大奖当时我记得是在法国的第一种啊,当时我也去了。

那么当然这个得看得castle了,因为身体原因,那么在20世纪80年代中后期,实际上,大家都知道卡地亚这个系统是卡特亚这个系统,它实际上是美法国达达索公司的啊,也是广泛采用了北塞尔方法来进行这个呃。

呃曲线曲面的这个建模啊,曲线曲面的建模主要是大家可以发现啊,就说在当时这个cad里面呃,像法国的这个学者工程师,实际上社会我们c g d的这个发展,做出了非常重要的贡献,非常重要的贡献。

那么就再来大家来看一看啊,这个北折曲线它是如何来定义啊,它是如何来定义,也就是说一条n次的这个北色曲线啊,它是可以表成二体啊,这边是一个求和的一个符号,就是i从零到a相当于我这边有n加一项,对不对。

然后说这个n加一项呃,加起来啊,n加一项加起来啊,那么这个i呢i呢就是我的控制零点,这个b i t呢就是我的奇函数啊,g函数,当然这边的这个r阿巴阿迪都是加粗的啊,为什么加粗啊,因为他们是矢量啊。

也就是说他们比如说要空间曲线的话,那就是有x y z3 个分量,三个分量,那么这个b i t呢,就把它称为叫做巴基斯坦基函数啊,巴基斯坦基函数,那不崩三也是一个法国人啊,也是法国一个法国人啊。

上次大家在高中的时候都学过那个,二项式展开对不对,就是a加b的n次方展开,我可以写成什么啊,也就是说也可以写成一个cn i,a乘以n减i b乘以a的形式不,这就是一个a加b的n次方展开,就是它对不对啊。

那么实际上是波因斯坦基函数啊,也是呃非常容易记对吧,然后你就是把这里的a把这里的a换成什么啊,一到t b换成t,那你最后得到的就是这个b b i n t对吧,那么这个cn i就是什么。

这个cn i就是我们大家非常熟悉的二项式系数,二项式系数二系数啊,所以说我这边可以问大家一个问题了啊,那我问你就说如果我这边有n加一项对吧,那么这n加一项波斯坦基函数,加起来等于多少啊。

加起来等于多少啊,很显然应该等于一,为什么啊,因为我把这个a换成一减t,b换成t他们这两项加起来是不t就消掉了,变成一了,那一的n次方是不是一样啊,是不是一样啊。

所以说我这边的n加一项就加起来就等于一了,对吧,好上市啊,我跟你说呢,这是波因斯坦的奇函数一个性质对吧,就是它的n加一项奇函数加起来等于一,那么像这么一个性质,也为我们这个比值曲线呢。

也奠定了一个非常好的一个理论的一个基础,那么波伊斯坦也是一个也是一个是吧,也是一个法国人啊,非常著名的一个数学家,他实际上在数学领域做出了非常多的贡献啊,实际上是这么一个巴基斯坦基函数唉。

他是什么时候提出来的,是在1912年提出来的,1912年提出来的,那么如果有些数学系毕业的一些同学呃,学过这个b一论,所以大家都知道啊,在学b一论的时候,我要证明我要证明对吧啊。

就是说这个我任何一个连续函数,都可以通过一系列的这个波基斯坦多项式,进行一个逼近啊,他在里面的一边呢,这个就用到了波斯坦多项式,对多项斯坦多项式就所谓了,我们同为是分析的基函数是吧啊。

所以说啊大概开到1912年是吧是吧,咱带了过了五六十年之后啊,应该60多年之后啊,60年之后啊,又用到了我们cad领域啊,成为我们这个整个cad建模的一个非常重要的,一个理论的一个基础,对吧啊。

所以说数学是非常重要的啊,别说你当时的一个成果可能提出来啊,你你并不能预测它它到底这个东西有什么用,有什么用对吧,可能带了几十年之后或者几百年之后,大家就发现诶这个东西,所以在这个地方可以用上。

那么实际上我们可以去证明啊,这个这个波基斯坦基函数啊,它的一些性质,第一个就是非负性啊,非负性,也就是说我这些波斯坦基函数啊,他每一个波音时代进函数都是大于等于零的啊,非非性啊,另外一个单位抛分性啊。

就我刚才讲的啊,这n加一个奔四的减函数加起来等于一啊,加起来等于一,而且它在两个端点处啊啊就是在零和一的地方,它的值呢也是一啊,而且呢它可以证明对吧,通过求导啊什么之类的,我可以就可以证明。

他在u等于n分之i的地方啊,他的就是可以取最大值的啊,去对大值,另外还有一个满足的就是对称性啊,也就是说我如果把这个t和一减t的这个,地位啊换一换啊,那么实际上就是它可以变成另外一端的一个。

贝斯基函数啊,所谓的对称性,另外一个呢,还有这个我们非常重要的叫做递归的定义啊,也就是说我一个n次的巴基斯坦基函数,可以表示成啊,可以表示成两个n减一次的,boy sin基函数的线性组合啊。

也就是说它前面的系数分别是什么呢,就是一减u和u,所以说有了这个东西,实际上就是我可以在求职的时候就非常有用了,对不对啊,我就可以推导出来,我呃如果想求关于本的曲线上,任何一个点的位置对吧。

我后面大家可以看到我通过对csl算法上,它就变成了一个递归算啊,递归算法,也就是说呢,正是因为波伊斯坦基函数,它这么一个好的性质啊,才为我们这个整个的求值啊带来一些好处,那么怎么说呢。

正是因为玻璃生产经含数学性质,我们也可以相应的去推导出北热曲线,它的一些性质啊,第一个就是什么啊,端联产值,端联产值,因为它在零和一的地方值都等于一嘛啊,所以说很自然的啊,这个北热曲线是插值两个端点的。

对不对,还有一个对称性,也就是说我可以一减t和t的地位换一下,所以说他这个控制顶点的这个地位是啊对称的,对称的,另外呢还有这个端点切线,也就是说我这个呃北的曲线,它实际上是和啊这个控制多边形的啊。

首条边和最后一条边啊是相切的啊,是相接的啊,这个也是非常容易去证明的,非常容易证明的,比如说这个里面就大家可以看到,虽然我的cg里面不会涉及到太多的呃,高深的数学啊,有时候只要大家掌握什么啊,微积分。

数学分析高等代数这两门课啊就可以了啊,就可以了啊,如果即使是微分几何,也商也是这个这个微积分啊,微积分在几何上的一个呃一个推广,对不对,所以说啊,所以说呃,包括后面我们整体盒里面也是一样的啊。

基本上还是就是设计了,这这两门基础和数学课的知识,另外一个就是突破性啊,那我问你大家一下这个图标线有什么意思啊,然后拿图标线,就是我最后生成了这条北条曲线啊,一定是位于我这个控制多边形的。

这个图包里面啊,就这个阴影部分,这个里面阴影部分这个,我首先问大家,这个有什么好处,它的好处当然是有对吧,就说我给你的这个控制的变形,我就可以知道这条曲线不会跑到这个控制,都变形到外面去。

控制都变形到外面去,对不对,这个是对于我这个形状的控制,造型是非常有用的,对吧嗯,还有一个是什么啊,为什么会有突破性,为什么会有图标性,也就是说这条曲线的北侧曲线的这个突破性,这个性质是从哪里来的。

哎就是从什么这个北热巴基斯坦基函数,它具有什么单位剖异形,单位剖分型对吧,所以说呢就是说这个里面呃,也是我所有的波波斯坦基函数,加起来是等于一的,并且每个分式战机函数都是大于零非负的啊。

所以说我最后你所生成的这条北调曲线,因为他是什么啊,因为每条这条裙子上每个点的位置都是什么,哎这就控制顶点的线性组合嘛,啊不是这些控制点的奇函数的组合得到的嘛,对吧。

所以说这个点不会跑到这个凸包的这个外面去,啊,外面去对吧啊,所以说这个是呃非常重要的啊,非常重要图包性啊,另外一个呢就是几何不变性啊,几何不变性,我想这也是什么参数,不仅仅是北热曲线的一个性质。

也是我们所有的参数,曲线曲面这种参数表示的一个好的性质,具有几何不变形对吧,也就是说,这个你所生成的这条北热曲线的这个形状呢,仅仅于控制多边形跟形状有关,与坐标系是没有关系的,也就是说。

无论你这个坐标原点放在这个零零的地方,还是放在一一的地方对吧,只要你这个控制多边形的形状不变,你所生存的这个北泽曲线的形状位置行吧,它就在那儿对吧,比如说它的形状呢是发生改变的。

可能它的位置是发生改变啊,但是它的这个形状肯定是不发生改变对吧啊,所以说这就是他的这个呃几何不变性,我们就说几何不变性,这应该也是这个参数表示的一个它的一个优点,另外第六个呢就是叫做变差缩减减缩减性啊。

变差缩减性啊,那个变差缩减性什么意思呢,啊也就是说就是当这个控制的外形啊,是一个平面图形的时候啊,那么这个如果一条曲线啊,如果一条直线啊和这条曲线啊,这条比如这条北条曲线相交。

那么这个与这条曲线相交的个数对吧,但是现在是两个对吧,它肯定不会多于这条直线啊,与这个控制对面形的交点的个数,这个实际上在很多场合里面呢,也是非常有用的啊,也是非常有用,那么这边呢我就列出了一个呃。

波斯坦基函数的一个一个图啊,就大家可以看到,确实是满足我刚才提到的这个基函数的性质,对吧,这是一个三次的巴基斯坦基函数啊,总共有四个基函数对吧,3+14个一个两个三个四个。

那么它实际上是满足我们的性质的,比如说在任何一个点处,他们加起来都是等于一的对吧,那么下面呢给分别给大家介绍,一个非常重要的一个算法,就是你得开始漏的算法,也对class命名了这么一个开始了的算法对吧。

那也就是说叫做我们叫做北泽曲线的求职算法,北德曲线的求值算法啊,这个非常重要非常重要啊,那么商我们也可以把它叫做割角算法啊,割角算法也说这是一个什么问题啊,咱就说我如果给你一个u的值。

我希望计算在这条北的曲线上啊,比如说当u等于0。4的时候,它所对应的在这条曲这条北的曲线的对吧,它所对应的这个点的位置在哪啊,我就算出来是在这儿对吧啊,那我怎么算我怎么算,我们说用密集的方法的话,呃。

你做直接带进去啊,如果把它求职真的就是密集的一套东西,那一套方法对吧,所以说我一正是因为诶北热曲线啊,它有一个非常好的,就是一个递归求职的一个算法,就得靠的算法,所以说他的求职算法实现起来呢非常稳定。

非常稳定,计算机呢非常喜欢非常喜欢,也就是说这边我们就简单的以这种二次,二次呢就三个控制节点对吧,那么它的三个g函数分析是一减u的平方,26x1减u,还有u的平方是吧,那么实际上说我可以啊。

我可以通过一些啊组合变形对吧,那我可以写成这种形式,大家可以看一下,我就可以写成一减u乘以这一部分,这一部分又可以写成什么呢,1-6乘以p0 ,1-6乘以p0 加上又乘以p1 ,我们刚才知道的呃。

这实际上是一个什么,哎这不就我们前面讲的那个线段的参数表示啊,这个线段是什么啊,是不是就是p0 p一样对吧,所以说啊所以说p0 p一啊,我所对应的就可以求出这个点啊,求出这个点啊。

就是我们的p10 p10 p10 ,那么,那一个cu是什么呢,上市就上市连接p1 p2 的这条线路对吧,我把我把这个u等于0。4带进去,我会得到p11 这个点对吧,那么我两者合起来是什么,就是什么。

就是嗯把p10 和p11 这条线段呃,它的参数表示得到了,我最后把u等于0。4算进去,我就可以得到p20 这个点,而p20 就是我们这条腿的曲线,在又等于0。4的地方,它所对应的这个点的坐标变动坐标。

这就是是吧,一个递归算法啊,为什么叫dv啊,因为我每一次是不是大家,我都是一个线性组合是吧,就1-1乘以p u p p p啊,问为什么叫做割角呢啊大家看一下,我把这两个点把p10 和p21 连起来。

我是不是相当于就把这个p1 ,这个点出的这个这个角给割掉了,对不对啊,给割掉了啊,所以要做一个高脚上啊,搁角上,那刚才在这个评论里面有同学说诶,这是也有也要开发算法啊,对是叫开发算法啊,那么商。

也就是说我们如果把它推广到一般形式啊,一般形式啊实际上就像开花一样,对不对啊,那我就是可以啊,可以啊,给你任意一个n次的别的曲线,它上面的任何点的位置啊,但现在现在变成了一个三次的一个贝塔曲线,对吧。

有四个控制对面,那么它在上面就是说你要看要割掉,不不是割据呃,割掉一次了,对不对,再要割掉三次是吧,一次两次三次啊,然后最后求出p30 这个零,p30 这个零,那么实际上啊这么一个算法啊。

这么一个算法我们说呢哎递归求值对吧,非常非常简单啊,有时候如果把它写成c语言c代码的话,c语言的代码的话也是啊非常简单的啊,也是非常简单,就五分钟这么几行就可以算出啊,给你输入这个控制多边形。

输入你的次数,根据这个呃u的值我就可以算出啊,在这条曲线上,这个呃u的这个值所对应的,这个c这个点的位置,那么这个里面的这个啊就中了一个二重循环,for循环,我就可以通过这个dj算法就可以把它修成。

所以说大家可以看到啊,计算机呢是非常喜欢这个递归算,这边这个动图呢,三就是演示了哎我这个曲线导入任意点的,它是怎么慢慢通过这种高脚算法,我把所有这个曲线上所有的点,它直到把它给电力。

那么而且大家可以发现啊,大家可以发现我这个通过这个对car算法,我可以发现这个北条曲线啊,它具有一个呃抛分的一个性质啊,抛分的一个性质啊,旁边的性质就是说,比如我在这条曲线上把这条这个点啊。

比如又等于2/5啊,或者u等于0。5,这个地方呢这个值啊把它求出来之后,这条北条曲线呢就会分成两段对吧啊,一一段是这个,另一段是这个,那么这两段曲线呢啊,实际上也可以表示,可以转换成比这曲线的形式的啊。

比如说我可以把这条曲线分成两段,每一段就是表示了,比如从0~0点五这个参数区间啊,它的治疗曲线段它也可以写成这个呃北辙形式,那么它的控制多边形呢就变成了啊,这么一个啊四个供电所组成这个风格练习,此外。

啊这是它的一个北热曲线的这么一个,剖分的性质,而且我们可以证明,当你这个跑分次数足够大的时候啊,这个控制多边形啊,可以作为这个北泽曲线的一个逼近,什么意思呢,啊就说我应该查出这么一个点呢。

如果我在这边如果再进行进一步的割脚啊,那我这个控制的边形啊,啊会是不是这个分的段数会越来越多啊,相应的这个呃相应的这个控制流变形,这个次数这个会越来越密对吧,那么这个割角的这个多边形的。

慢慢的他就会逼近逼近于我这个北侧曲线啊,收敛于最后这个极限,它就会收敛于我这个北德曲线啊,这个是可以从数学上严格证明它,那么这边呢就是用我们这个北折曲线所绘制的,呃一个呃汽车的一个模型啊。

汽车的一个模型,比如他的一些一些轮子啊,还有这些轮廓啊,我上都可以用它来进行表示,那么这是北热曲线啊,那么北条曲线有哪些缺点呢,啊第一个啊就是说他不能表示精确表示啊,精确表示圆啊,精确表示圆。

那么为什么原重要,实际上我们前面讲的就是说,实际上就是说呃对于这个机械领域里面,源是非常重要的啊,就是大家它会涉及到很多圆孔啊,很多孔啊,很多布尔运算,对不对,那么这个布尔运算所产生的这个圆的。

这个这个数目是非常多的啊,而在精细领域剧呃,有些专家讲呢,它就是分为原曲线和非圆曲线,由此可见这个圆啊在机械里面是多么的重要啊,所以说我们希望能够精确表示圆,但是呢北热曲线它是一个多项式啊。

参数多项式形式对吧,我们知道圆的精确表达是什么啊,就是x等于sin t,y等于cos t,你如果把引入半角公式啊,那么实际上啊实际上就可以变成啊,就可以变成啊x把x和y这个分量都写成关于。

关于这个t的这么一个表达式对吧,关于t的一个有理表达式,有理表达式,所以说也就是说我们用北的曲线啊,实际上是你是没有办法啊,精确表示圆的啊,因为你要表示圆,我这个需要分子分母上都有t才可以啊。

非常呃都有t才可以对吧啊,所以说呢我们要讲精确表示圆啊,还有像这个圆锥曲线啊这些等这些曲线的话啊,所以说呢我就像抛物线啊,还有双曲线椭圆啊,这些的话我就需要引入这个游离曲线。

也要也要说到引入这种游离表达啊,也就是说,这就是我们引入这个游离曲线的一个原因,那么有理呢,其实呢我就也非常简单,我就实际上就是,我可以在分母上引入这么一个表达式。

那这个表达式的这里的w这个东西是什么啊,是什么,为了全啊,也就是说它不是一个向量,不是一个矢量,它只是一个值,是一个值,是个全值,但它所采用的基函数还是伯恩斯坦基函数啊,上次大家可以看到它的。

这时候相当于我的这个pi的奇函数变成什么呢,唉是不是就变成了这一部分,对吧,所以呢我们就把这个叫做游离,波伊斯坦基函数啊,或者叫做整个曲线呢,叫做n次的一个游离的北热曲线啊,北热曲线。

那么有了这么一个表达会带来什么好处对吧,也就是说它这个基函数,我们可以把它写成这种形式,就是刚才我讲的对吧啊,这个i就发生了变化,就形成这种情况会带来什么好处啊,我刚才说了,它就可以精确表示圆了啊。

精确表示圆弧了,那么比如说这么一个啊,就是我们啊通过啊,用一个二次的游离北的曲线,所表示的1/4圆弧啊,那我这个权益值需要诶,进行一些合适的一些选择对吧,当然这个全因子啊也是可以作为一个什么啊。

作为一种形状修改的一个手段,然后我通过呃,通过取不这个对这个权限值取不同的这个值,然后就可以得到就可以得到,当然这个北特曲线它啊刚才讲了,除了能够不能够精确表表示圆,当然游离北的是可以的啊。

另外一个呢就是它是不具有局部修改的性质,就说当你移动这个曲线了一个控制顶点的时候,这个整条曲线的形状呢都会发生改变对吧,因为这个控控制顶点它是融入到了啊,融入到了他的美。

这个所有的这个全整体的一个表达式理是吧,你如果想表示一个复杂的形状的时候,你可能用到这个次数啊,控制顶点数目就比较多,也就表示你用的这个次数就比较高对吧,我可能需要用十次的,我可能需要11个空点点。

就要用十次的一个被动曲线,那你这个计算呢虽然是递归啊,但还是有些不稳定对吧,那么实际上我也说,这个时候你就需要将多条北的曲线,光滑拼接起来啊,就算变成了北斋样条了啊,但是呢你光滑拼接。

我又希望他能够满足一定的连续性啊,约束对吧,所以说这个要满足,比如c一或者c2 连续啊,但是这些条件呢你又很难去,很难去这个呃去呃去让他去满足,就是说这个还是挺复杂的啊,挺复杂的。

那么也就是说我们能不能啊,有另外一种新的形式啊,既有什么哎整体性质啊,就要既能克服这个北京的这个整体性质啊,又能够表示对吧这种复杂形状对吧,而且呢我算是分段的啊,我每一段上又是北热对吧,又是分段的。

而且呢它的这个连续性的,可以自动得到满足的啊,那么呢就是后面呢就出现了这个b样条,然后加快点速度啊,那个嗯有点迟了,那么监管这个叫做b样条,那b样条实际上是由报在1972年给出的。

关于b样条的一套非常标准的算法,这个is fred在1974年,把这个b样条理论应用于我们造型里面,提出了变样条曲线曲面的这个概念,也就说他几乎是继承了这个被本章方法的,一切优点。

又克服了这个呃被切方法存在的一些缺点啊,而且成功的解决了这个局部修改的这个问题啊,这能而且在修改的时候呢,又可以保持啊,每段这个曲线之间的这个参数连续性啊,这边是中间的这个就是cr对包。

那么这边呢就是一个必要条曲线的一个例子,就是说虽然它是一个三次的必要条曲线,对不对,虽然它是一个三次的变调曲线啊,但是他这边控制顶点你看有八个对吧,有八个对吧啊也有说呢,哎按照我们前面这个北调曲线的话。

它应该是有14个控制变量,为什么只有八个了,对吧啊,因为这边是有存在多段存在多段,那么变条曲线它怎么定义的啊,他怎么定义的,应该说它的定义啊,它上是一条分段连续的一个同样是曲线啊。

也就是说如果他是一个n次的啊,那么它的这个参数连续性是n减一次啊,而且它的定义呢与一个非常重要的概念,就是节点向量是密切相关的,对吧啊,我上节课也讲了,讲这个这个节点向量。

在我们登记和分析里面也是非常重要的对吧,因为等级和分析里面的计算单元,就是节点协调所对应的这个纸片片,那么定义在这么一个节点向量,那么结合节点量是按照这个递增排列的对吧,呃它是按照这个比如u0 u1 。

一直到u n加k加e上的一个开次开次的,我的k加一键的就有n加一个控制顶点,也就是说这个节点向量的数目和它的次数,还有它的控制力量的个数之间,是有一个对应关系的啊,这个大家要知道啊。

那么它的这个变量曲线呢,就可以写成这种形式啊,那么这边的这个r i呢还是控制顶点对吧,那么这个n i k u就是我的第二条基函数,我们的b2 条记函数啊,那么如果啊如果一个零次的啊。

也就是一阶的变调性函数,他如果在他的这个u是在这个阶段,这是一个阶段区间了是吧,ui和ui加一这么一个阶段区间内,它是等于一,在其他的节点区间内,它都是零啊,这是一个零次的,那如果一次的或更高次的呢。

那更高次的一个k次的一个变调奇函数,可以通过k减一次的嗯,变调奇函数通过一个也是线性组合的形式,对不对啊,来得到来得到啊,那么爷爷说,爷爷说,实际上我这个呃变样条曲线。

它也是有一个什么啊递推求职的一个算法,对不对啊,也就是我们的b样条基函数,它也可以通过这种地雷求职的来实现,那么这个变量进函数大家就可以看到了,哎比如这个零次的,那么它在零一这个零一这个节点区间呢。

它都是一,对不对啊,那么一个一次的,那么它在02上面啊,01或者1~2之间,它你看它就是一个线性的,对不对,因为它是一次的嘛,就是线性,而且他在期间其他的区间上呢,它都是零,其他的区间就是零。

这也是为什么我的变量曲线会有一个局部性啊,会有局部修改的性质,因为它在其他的地方都是零,也就是说你如果修改这条哎,这个参数区间里面的啊,这些参数区间里面的控制顶点的话,对其他的呃曲线段上他是没有影响。

对不对啊,也就是说他这个局部修改的性质,是通过呃这么一个来来来得到的啊,那么这边呢就是一个二次的对吧啊,一次呢就是线线性的对吧,直线那么二次的就变成曲线了,特切换数,也就是说大家通过刚才这些呃。

变调奇函数的这个啊b2 条基函数的这个图图,这个图形代数上就可以看到对吧啊,它就有局部的自己的这个性质,而且呢每一个批次的奇函数都是两个p减一次,基函数的线性组合啊,这是我们的递归算啊。

而且呢这个g函数是什么决定的,是由节点向量,也就是说不仅仅是由次数决定的,除了次数,节点向量也非常重要啊,非常重要啊,所以说变调定函数变量条这种形式,它比较本质上是一个分片的多项式形式对吧。

分片的多项式,大家看一下这个吧,就是分片的样式啊,而且它具有什么单位抛抛分享,也就是说在每一个的这个呃t的地方,它这个所有的变量全加起来也是等于一的啊,也是也就是这个变调曲线也是具有这种突破性。

所以说对于这种变调性函数的求值上,对我们变调曲线啊,或者曲面呢,它的这个求职算法呢就反显得非常重要的啊,那么呃因为时间关系呢,我这边就呃略过了啊,然后这边也是这个the number books啊。

这本书里面他的这个呃c语言的这个代码啊,也就是说正是因为有了这么一个奇函数之间的,这个递推关系啊,所以说我就这么几行代码就可以求出啊,就可以求出这个b样条件函数的这个值,你输入它的它是第几个键函数啊。

所对应的这个u的值,还有它的次数,然后它的这个节点向量的信息,然后我就可以输出说输出这个变量进函数在啊,这个优秀的啊,所以说第二个变态奇函数在这个右侧的,它的值等于多少啊,你们通过这么一个求值算法呢。

就可以把它求出来,它也是一种啊递推的一种算法对吧,当然对于求导啊,也是啊,也是可以通过递推算法来实现啊,为什么要讲求导啊,啊因为我们后面加登记和分析的这个呃,一些特殊的一些物理问题修剪的时候啊。

因为我们要用到这个钢头矩阵啊什么的,它里面的一些填充的时候就会用到啊,求职和求导啊,那么就是求导的话,这对于一个呃,批次的对吧啊,一个一个变压器函数,它的这个k阶的这个撇开阶的导数怎么算啊。

就可以通过来算啊,当然也是可以写成p减k的一些,线性组合的一些形式,那么这个是先用代码,这两位跳过了,大家呃,可以课下再看一下他这个代码的一些属性啊,包括我们把这个i game。

那个相应的这个样条库公开之后,大家也可以参照里面的这个实现了,来进行进一步的这个理解,原来说正是因为变量条基函数的这些性质,所以变调曲线啊,它也是具有这个呃图包性和几何不变性啊,图包性和几何不变性啊。

类似于这些性质都是一项,而且它有什么呢啊,就是说如果啊如果这个它的节点啊,是重节点的话啊,而且重复度是呃开加一的时候,这个变调曲线啊,它就退化成了一条北热曲线,也就是说边条和北热之间。

它们是有着某种天然的一个联系的啊,天然联系就刚才讲的这个局部性对吧,当你移动这个控制链的时候,大家看到其他这些部分啊,这些部分这个形状都没有变,对吧啊,也就是说它只会影响这个曲线的一部分。

而不是整条曲线,那么相应的啊,相应的我要计算这个变调曲线,某一个参数点的物理坐标的话,那么实际上你要首先你要首先要找到哎,你这个呃右啊,你这个右他在哪个节点区间里面啊,在哪个节点区间里面。

比如说把这个spa你要把它找到,找到之后啊,大家在找到非常简单,我中一个二维码就可以了是吧,找到之后,我就可以通过这个呃g函数的地位求值,然后通过这个它的这个曲线的表达式,就可以找到这个曲线上这个点。

那么这是b样条了对吧,刚才讲了啊,b样条大概它是设多项式对吧,你没有办法精确表示这些圆锥曲线啊,所以后面呢我们要把它推广到有理形式啊,这边就变就会有所谓的这个nb啊,为什么提出来。

那时的全称就是非均匀是吧,now uniform rational b spine啊,非均匀有理的变量条,非均匀有理,非均匀是什么非均匀啊,我的节点向量非均匀对吧,我可以是呃均匀的。

就是01234567是吧,也可以是00。512这样的非均匀的对吧,比如说这个节点区间啊,有长有短啊,这个非均匀,那么有理呢,就是我这个像这个尤里被带变量条一样啊,尤里北大一样,后来主要是在分母上呢。

通过一个权益词来进行这个曲线的控制,当然我最主要的目的,就是为了让这个样条能够表示什么啊,圆锥曲线和一些二次曲面,那计算这个nerous呢也是一样的啊,也是一样的,无论外乎这边也就是引入了一个呃。

一个权益值嘛,这个相应的会有一些修改,那么实际上对于我们这个呃全因子,也是可以作为一种形状修改的一个手段的,啊,啊我可以通过调音调节这个全因子,来修改这个曲线的形状,那么这边呢就是我用这个。

那不是曲线来精确表示这个圆弧啊,我是20,用了三个120度的圆弧来表示正圆的,大概是前面是讲的这个曲线啊,那么后面讲一下曲面,那么有了曲线上曲面呢就呃就比较简单的啊,就比较简单的那啥曲面。

我也是可以呃进行参数表示了,对不对,无外乎它的这个定义域啊,参数域就变成了这个呃两个方向,一个是右方向,一个是v方向,我曲线只有一个方向对吧,因为曲面嘛它是这个面片对吧,所以我有两个方向啊。

那么三你要求进入求职的话,那么就是我要求的,当这个参数坐标分别是u和v的时候,它对应的这个曲面上就这个点的位置在哪儿啊,我就我就是带着这个表达式上就可以,当然这边是一个呃平面的一个参数表达对吧。

那么对于所有的任何意义的一个呃,空间的一个参数曲面,它的xyz坐标都可以表示成,关于右和位的一个参数表达式是吧,是一样的,那么实际上是最早出现的一种参数表,大曲面呢就是控制局面啊。

这我们这个sgo up里面有非常重要的,这个孔思讲啊,孔子讲实际上就是以他的这个名字来命名的,名字来命名的啊,那么它实际上就是说我给你四条边界曲线,我通过一些超限材质的方法。

就可以构造一个呃参数曲面的一个描述方法,描述方法嗯,这是他首先提出来的,而后面我们当然可以把这个前面的这个,北折曲线的定义推广到北热曲面,对吧啊无外乎呢就是增加了一个参数方向,增加了一个参数方向对吧。

一个常数方向,胃有胃,也就是所有的我这个呃,变成了两个方向的奇函数,b i m u和b i键位对吧,控制零点呢啊会多一些对吧,然后也就是说我一个方向有m加一个,另外方向有n加一个对吧。

比如说我总共的是什么啊,就是m加一乘以n加一个啊,那么也就是说这些m加1x1加一个,控制零点,通过规则就变变成了一个控制网格对吧,比如一个3x3的,就这么一个控制网格,33次啊。

那就是变成4x46个控制顶点对吧,那么这边就有这么一个控制网格,16个控制顶点啊,那么你把上我们也是可以通过decll算的对吧,计算某一个参数点呢它的物理坐标啊,也就是说呢实际上就是说呃。

我输入相应的这个方向的次数,还有这个你所要求职的这个这个呃,参数指标的值,然后我希望我希望得到输出这个s这个曲面上,这个点的s的坐标对坐标值啊,那我就不通过得开这个算法,然后呢就可以把它给求出来。

然后这边就是一个白色曲面对吧,这个蓝色的呃,黄黄色的这个这个控制网,就他的线就是就是控制网格对吧,这个绿色的和红色的,就是就是它的这个控制顶点啊,控制顶点也是你修改这些曲线的呃,控制顶点的这个形状。

就可以修改这个曲面的这个形状,当然了他也是满足了,比如这个曲面它是插值四个角点,是插入四个角点的啊,这个曲面它与控制的变形是相切的啊,也是具有这种呃剖分的算法,通过一些类似于decolor的算法对吧。

当然我刚才讲了,他和曲线一样也是不足,就是全局性和这种呃需要光滑拼接的这个问题,对,就是属于这个张量金的张量基的这种定义是,那对于这种变量曲面,也是可以通过这种张量积的定义呢来完成啊,来完成啊。

无外乎呢这边这边呢还是我们的必要条基函数,变量奇函数,当然它具有这种局部性质对吧,然后通过了这些呃,北的曲面的这个次数确定之后,这个相应的控制顶点的数目呢也就确定了,那么对于这个变量曲面。

要计算这个某一个参数点的物理坐标啊,也是可以转接手机首页,找到相应的这个呃节点区间对吧,然后计算相应的这个基函数的值,然后呢再把它带到这个表达式里面啊,那我们就可以把它给,所以说这边呢就是一个例子啊。

我觉得这个也是挺重要,就是说呃我可以通过一个6x6的控制零点,来实现一个双三式的变量取景,对不对啊,这边呢实际上就是大家可以看到我这个a b c,这是a b c,我就选中不同的节点向量啊,我可以。

所以相对于同样的空的网格啊,因为它的你的节点向量不一样啊,所以呢你这样条空间就不一样对吧,你的g函数就不一样啊,虽然控制网格是一样的,那么你最后生成了这个曲面的形状呢,确实就是不一样的啊,不一样的啊。

比如说这个我是采用均匀的节点向量啊,那么所构造的这个曲面是这个样子,也就是它是只是诶没有产值这个边界,对不对啊,然后你要让它产生边界需要怎么样呢,啊就要设置重节点,设置重叠点啊,如果设置重节点之后。

它就产生边界了啊,而且呢呃这边呢是呃和这个节点向量是一样的,但是我修改了最大这个控制顶点的这个位置,控制点的位置,就大家可以看到我形状发生变化的,就是红色的这一部分啊,红色的这一部分对吧啊。

也就是说实际上在我们等你的分析里面啊,同事的这一部分啊,就是对应于我的啊,某一个节点区间所对应的纸面片,就是它就是红色的一部分,所以说你对它的形状进行修改的话,对他的这个控制零件进行修改的话。

它的形状只有它的形状发生了修改对吧,其他部分都不变啊,也就是说这个算是非常重要非常重要,就是说要么等顶和分析里面,它的计算单元是什么,和有限元不同的最大的不同对吧,包括电流有限元最大的不同。

它的节点它的计算单元是什么啊,就是我的节点区间所对应的死面片啊,就是这一片这一条片就是我的这个计算单元啊,这个我想到后面呃,大家这点一定要知道啊,我一定要知道,否则后面对我们这个整个的等你分析的学习啊。

啊都是至关重要的,那么所以就是后面和我们那不是曲线一样,后面就呃呃可以把这个nobody的曲线把它推广了,这个nobody是曲面啊,那是曲面,当然这种那么是这种表达,他在91年的时候。

也成为我们整个工业产品几何,定义的一个style标准啊,一个4米标准,也就是说目前的整个的这个数据格式啊,无论是这个r g e s啊,还是这个比如代购啊,这个这些。

他在这个里面都是采用了这种nb的这种表示,也就是说即使你的所有的全因子都是一啊,他这个全因子的一部分呢,还是在啊,还是呃,你需要把它,把它这个在数据格式里面进行定义啊。

嗯那么相应的我们也可以通过这种啊算法,来计算这个note曲面上,他们一个参数点的这个物理坐标,那么因为那不是曲面吗,它是有理形式对吧,所以他就可以通过啊,这外面这控制网格来完整的表示一个啊,一个正秋。

正秋嗯,好前面上讲了这个曲线和曲面曲面对吧,我们下面介绍一下这个躯体啊,为什么要介绍躯体的啊,因为我们等你和对于三维问题来讲啊,三个问题我们来讲,我们需要在这个书包的内部用一些样条体对吧。

比如说这个躯体样条躯体把它给填充起来啊,那么前面我们曲线是只有一个参数方向,曲面两个参数方向右和v对吧,那躯体呢,那上我就可以要定义在具有三个参数方向的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

参数区间上啊,参数空间上就是我们这个u v w u v w,然后在图形学里面呃,也不是说以前没有涉及到躯体啊,如果有的同学知道f f d,f f d就这个自由变形的话啊,自由变形的话啊。

那么实际上我们这个呃里面就是通过躯体对吧,第二条躯体来驱动啊,这个啊物体的变形,相当于我把这个数模啊嵌入到这个样条体里面,然后通过修改样条体的位置举行改,修改这个物体的这个形状,物体的形状。

当然f f d呢最早是在86年有c的bug,在c grf上个提出来的,目前也已经集成到了我们很多的呃,这个动画的一些商业软件里面,那么三就是这个就非常容易理解啊。

非常容易理解我的这个to see it对吧,我通过这个三和参数方向,我就可以通过张量积的形式来进行一个躯体,这个时候啊,这个时候啊他相应的这个控制网格对吧,这边比如说是一个呃,这边就是一个5x5。

再乘以五,这边总共有125个控制顶点,来控制这个躯体的这个形状,控制这个躯体的形状,当然我们也可以对吧,按照他的这个把他的等差面画出来对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

具体的等差面画出来,那么对于这个群体呢,我们上也是可以有一些构造方法啊,包括后面我们讲参数化的时候也会讲到,就是说第一个比较简单,就是这个cos王雷,cos王力啊,那么相应的他这个求职呢上也是呃。

通过我的什么哎,给你六个边界曲面,我怎么样去构造内部的控制顶点啊,然后啊去构造相应的这个躯体,相应的这个躯体,那么实在很多时候这个躯体的理论啊,是完全可以有这个曲面的啊,曲面的这个这个这个呃情形啊。

啊把它给推广出来的啊,比如说像这个躯体之间的这个参数连续性啊,躯体之间的参数连续性啊,也就是说比如说c一连续啊,那比如在这个cos这个方向上,我就可以让他这个这样显示,对不对,然后通过一系列的推导。

就比说他的这些控制顶点之间这两块啊,具体之间他们要满足一定的关系的话,那么它的控制顶点呢应该控线是吧,应该满足一定的这个呃一些线性的一些约束啊,这波是和和我们取名的情形呢是大同小异。

应该是一个平行的推广啊,但是在很多时候在很多时候啊,在有些时候有些问题未必是,比如说啊,我们要知道曲面它有这个几何连续性对吧,那么呃比如说呃像这个曲线的话,我这个切平面连续就是g一连续。

曲率连续就是接二连续,对于曲面呢也是一样的啊,就是比如这个切平面连续对吧,就是g一连续,但是这些几何连续性啊,如怎么样推广到躯体上去啊,那么上次对于我们曲线曲面来讲,我们有切向啊,有曲率啊,有脑力啊。

或者其他的这些内蕴的一些,微分几何不变量是吧,那么对于气体有没有啊,怎么去定义它,那么特别是在七点的地方啊,所谓七点呢,就是说我这个在六面体网格上的去掉,就是在六面体网格上,我从一个点出发啊。

应该是有是有六条边的,对不对啊,也就是说如果再从一个点出发,他有了七条边啊,五条边啊,那么这就是起点,那么在这些七点,比方我怎么样去定义它的几何连续性啊,结合连续性啊,实际上这个里面呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我想还是需要一些理论上的一些,创新性的突破啊,目前应该还是没有,那么此外此外我们这个呃,后面呢给大家介绍一下我们这个i game几何内核,i game几何内核啊,那么我们也会应该最迟这个后天嘛周一啊。

右边的研究生呢给在这个github上发布,然后到时候也会把这个地址呢发到这个群里面,发到群里面,然后有这个呃可以大家呢可以这个同步一下啊,然后编一下,这是我们这个这个界面啊,嗯非常简单。

因为我们这个是把里面一些比较核心的算法,把它剔除掉了,只留了一些求职啊,呃求导啊,这些上啊,包括一些可视化的一些一些代码,也是希望能够大家在这个代码上,能够发挥大家的聪明才智。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

能够在上面呢来进行一些呃输入啊,来进行一些输入啊,这边呢我们实际上就是分别给出了曲线,曲面和具体他的这个构造的一些算法啊,那么你可以通过输入它的控制点数目啊,包括次数次数啊,后面那个p的版本。

我已经让这个啊眼镜蛇加上去的啊,然后你可以去生成一些控制是吧,而且你我们提供了一些交互的手段啊,你可以修改这些红色的控制顶点,来进行交互的这个修改啊,交互的修改,这边是一些渲染的渲染的一些东啊。

这边是一个主要窗口啊,这边是一些菜单啊,然后还有一些对话框,那么后面我们整个等几何的一个,比如这个求解pd啊,仿真啊,这些算法呢也是不是可以在大家后面的,可以在这个框架下来进行完成嗯。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那我们这边首先介绍数据格式啊,我们这边是什么插ml的格式啊,然后刚才有些在比如同学在评论区也问啊,这个是什么格式的存储的啊,实际上就是啊这种格式,比如说我和曲面对吧,然后它的水源输入池的次数啊。

3x3的,它的空间的个数4x4,然后节点向量的信息啊,这边就是一个北热曲面的,这样就是对吧,因为它前面几个都是重的,那么因为它都,所以呢这个呃全因子也都是一对吧,那肯定是一个北热曲面。

那么这边呢就是它的控制顶点的这个信息啊,xyz坐标啊,然后对应于这样子,我就对应定义了一个呃,4x4这么一个三次的百折曲线的一个信息的,都存在在这,阿拉斯这边有多个面片了啊。

那么下面的这个像我们这个里面,这边是一个呃一些内的一些定义啊,我们这边就定义了一个basis,就是呃那么实际函数的一个基函数一个定义啊,那么包括一些构造函数对吧,因为构造函数呢我们说这个变量调机啊。

ng它实际上和它的次数节点去掉,还有它的权相关是吧,所以说我们这边也是啊懂了,然后这边就是我准备要找到这个确定这个参数,u它所在这个节点区域的这个缩影对吧,然后去求所有的在这个右侧的这个参数点啊。

这个又出了他的这个基函数的值,然后呢再计算这个参数点u,它的所有的这个非零奇函数的一阶导数值,就是这个函数,这边我们上次对于任意导数都是可以求导嗯,嗯包括得到控制点的数目啊,他的这个节点啊。

节点数的顺序啊,它的次数啊,一些返回数函数对吧,还有他的得到它的节点限量的信息啊,啊这边也是有的,就是它的这个次数和这个序列是私有变量啊,那么我们通过定义这么一个类呢。

就可以定义相应的这个边条奇函数这么一个类,嗯那么这个b样条基函数呢,我们也定义了一个一个父类啊,就是个几何这么一个父类啊,那么我们后面所有的这个curve surface volume啊。

都是由通过这个几何这个父类呢,来派生出来的啊,派生出来的啊,所以我这边定那些虚函数,虚函数啊,就是说一些,比如我怎么样根据一个参数点,去计算它的物理坐标的点是吧啊,得到他的这个索引号啊,这些啊。

然后主要进行求值,还有它的导数的求求解导数的值,因为我们后面在这个呃,这个等级和里面的这些都会用到,那么这边就是一个客户对客户的一个类客户,这个类呢它是从这个结了呢来来继承下来的啊,那么西安这边就是呃。

和一些构造函数的一个客户上,有40控制零点几点去掉,还有没有控制点的位置是吧,来来来进行一个构造啊,然后我怎么样求值它的物理坐标啊,还有它的这个索引对吧,还有他的这个导数啊。

那我这边呢都有相应的这个函数,那具体函数的实验呢实现了,到时候大家去呃看一下代码,我这边只给大家过一下这个类的这个定义啊,然后这边是一个surface surface,surface刚才讲了。

就两个参数方向对吧,所以叫呃这个又何谓对吧,又和未相应的这个参数呢就会多一些啊,就会多一些,但是基本上啊基本上这个基础函数还都是一样,那么后面就是volume,后面valume就是要有三个参数方向对吧。

三个参数方向,那么就是这个u w,那么相应的这个三个方向的参数简单序列,那么怎么样,求职对吧,还有求导,这个具体的实践大家可以在呃后天吧,嗯应该可以,我们到时候把这个呃现在的地址发到群里。

大家这个pos下,那么有希望的大家可以啊,我们啊我刚才忘了写这个作业的这个事情啊,呃我们这次的作业啊,我等会要发到群里吧,能让同学呃就是实现一下,我们这个啊b样条曲线的啊,b样条曲线的这个节点插入算法。

节点插入算法,也就是说通过我们啊,通过我们这个呃这边提供了这些类啊,即函数的类曲线的特别曲线的这个类,然后来实现这个变量其他插入算法啊,也就是说你呃比如在从0。5到一,这个呃从0~1这个节点区间内。

我希望插入一个节点,比如u t等于0。5啊,t等于0。5啊,那么相应的这个变调曲线的什么,控制顶点的数目就会增加的,对吧啊,那么控制链的数目增加了,但是这个曲线的形状是不变的啊。

那我现在需要让你把这个控制零点呃,数目增加之后,他陷入了这个整个的呃,我插入了这个控制顶点啊,多出来控制顶点,它这个表示会变成什么样子,这个大家实现你大家可以看一下,也参考资料也是可以的啊。

因为这个我们呃样条插入啊,我们这边是没有讲的,大家可以看一下相关的资料,然后去理解一下,然后基于我们这么一个呃样条的库啊,样条的这个这个代码呢,然后呢去进行相应的这个实现,好总结的话,总结一下的话。

今天我们就主要是给大家介绍了,我们面向整理和分析的啊,特别是曲线曲面躯体造型的一些呃,基础的理论知识,还有包括它的一些相应的一些呃,一些发展的一个历史对吧,发展的历史让大家知道啊。

就是说第一个学员大家要理解,为什么cad系统里面我要采用啊参数表示对吧,还有另外一个呢,就是说呃,我c d系统里面采用了哪些特殊的曲线,曲面的参数表示啊,北的表示不能表示,那不是表示啊。

他说为什么要采用这些,有哪些好处,它相应的定义是什么啊,和哪些有关,和我们贸易斯坦基函数和二项式展开有关系,对不对啊,你说我们通过这些呢,实际上就是说可以啊,理解我们整个的cad建模的这个基础。

那也是我们后面这个等几个分析的学习啊,啊奠定了一个非常好的一个基础,这个也是非常必要的啊,非常必要,那我们下节课的内容啊,下节课的内容是关于给大家介绍,这个有限元分析方法。

还有相应的一些网格生成的一些基础知识,设置知识的一个介绍啊,啊为什么呢,因为我们等你和分析啊,虽然是利用了样条的质数对吧,它在本质上还是一种数值计算的方法,也是和有限元的,实际上是它的基本思想。

还是有非常大的这个相关性啊,我们还是也是希望同学们能够通过理解有限元,他的这个基本思想来理解啊,我们等你和它的基本的这个框架,好,我们还有几分钟时间可以进行一些简单的交流,看同学们有没有什么问题。

刚才有同学反映,这个声音比画面,快很多嗯,嗯确实会有些网络延迟啊,对也有可能是我们的画面的这个太大,有些人会讲到什么程度啊,我想我可能只能讲到这个基本的思想,还有基通过一些例子,然后大概大概讲讲。

应该也不会讲到太细太细,就让大家理解有限元它的这个核心思想是什么,对通过这种单元的部分,在每个单元上通过一些施加一些边界条件来诶,怎么样做到,基于迭代法的增量有限元啊,应该不会讲。

nb组合曲面现在面临的问题呃,应该是note 10,现在应该是在几何造型里面,应该是比较比较经典嗯,经典的一个一个一个做法了对吧,也非常传统,也成为我们的一个标准嗯,当然现在有很多这个船一个经历。

有很多新的一些造型的曲面造型的一些方法,比如踢像条是吧,踢墙角,那么像这样条件已经集成了很多,像这个犀牛啊,很多这个商业软件里面是个商业软件里面,那么实际上我们这个等几何分析的出现。

等几何分析的出现以呃,他也推动了我们计算几何一些呃,理论的一些发展啊,特别是呃比如提出了一些非常新型的一些,样条的一些表示啊,比如像美国他们提出的叫做一个u lu样条啊。

那么上它就是既满足造型的这个需要啊,又满足我这个等级和分析的,这个呃特殊的一些需求啊,包括一些线性王冠啊啊他的一些局部插入啊,还有诗和分析啊啊这些一些性质,像中科大李信老师也提出了一些。

像这个适合分析的t样条啊啊等等,或包括s样条啊,那么像这些我以来都是我们这个啊,等你的分析啊啊虽然来源于我们cg里,来源于样条啊,但它反过来又推动了整个样条呃领域啊。

曲面造型领域的这个新的发展的成果的产出,课程会用到tm他们应该不会用的,我们嗯我当时打字没有涉及到tm都不分类了,就兴趣的同学可以去学习啊,啊非常感谢大家嗯,我们虽然这个今天是周末的下午对吧。

有很多同学可能要出去,那个周末出去外面看那个呃,放松一下,但因为今天晚上确实有非常重要的c cf,一个活动,所以没办法,然后临时做了调整,但我们今天上线的人数还是还是不少的,北泽和变量条。

还有实际应用场景,就是我刚才讲的,实际上就是说就是应该是变成他们这些最大的,这些应用场景了啊,就是关于建模这一块啊,如果还要说有其他应用场景商也是有的,比如在这个路径规划里面啊,路径规划里面啊。

商业有些地方也是用到的这个样条来表示,包括其他的一些不进行造型啊,包括在医学里面也有很多地方用到的样条,本人这一套东西,比如像这个医学图像的注册啊,配转啊,这个里面也用到了,我们呃某些基于样条的这种。

比如自由变形的方法,是这种非刚性的配置对吧,实际上里面也用到了很多样条的东西,也就是说不仅仅是在这个造型里,放在画面,其他的地方上,也是有一些实际的,看大家还有没有问题,没有问题的话。

我们这次的直播就到这,非常感谢大家,希望大家也是能够多多关注,我们的qq群和微信群是吧,然后我们这个会嗯可以及时的啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES302-等几何分析 - P3:3. 有限元分析与网格生成 - GAMES-Webinar - BV1dM4y117PS

好那我们现在开始吧,我这个画面因为那个格式的原因,我现在用的这个w ps。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以呃可能稍微有点那个没有铺满整个画面,那么就先先这样吧,非常欢迎大家来参加,我们这个第三讲的这个课程,也是我们第三次我们说等几何分析呢,它是有限元分析的一种呃,推广对吧,那么实际上也就是说。

我们这边呢也是非常有必要给大家介绍一下,这个等几何分析啊,他的一些基本的概念啊,基本的思想,那么啊不对啊,是有限元分析啊,他基本的概念和基本的思想,那么有限元分析呢,实际上是在我们cae软件里面。

是非常重要的一个呃一个方法,那么网格生成呢是有限元分析了,一个非常重要的一个前面的一个基础,所以我们也会在这边呢简单的给大家介绍一下,这个网格生成的啊,一些基本的方法,还有一些大概的这个分类。

包括介绍一下我们在呃,特别是结构化网格生成啊所做的一些工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是我今天给大家这个介绍的这个提纲啊,那么首先呢再给大家介绍这个有显性分析啊,它里面这个物理仿真编制问题,一般描述是什么样子的,然后啊介绍有限元方法的这个基本思想,包括他的基本被步骤和相关的概念。

包括这个有限元方法,他提出了这个历史发展的这个历史,那么在网格生成方面呢,我们主要给大家介绍这个非结构化网格和。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

机构网格这两个字,那么实际上在工程和科学里面的,我们经常会碰到一些典型的一些问题,典型的一个问题,比如有一类问题呢,他想上是可以归结成一些呃,有知已知的一些单元体的组合,比如在我们的一些材料力学里面的。

箱梁的结构啊,建筑结构里面的一些框架结构啊,还有这种行架结构,像我们这些问题都是可以把它呃进行离散化,进行作作,作为一个离散系统对吧,像比如这边呢就是一个呃,就是一个平面的一个呃行架结构。

它长这边呢是由六个啊,承受轴向力的感的单元组成的啊,这六个大家也能看得出,这是一个一个一个一个,我六也是这个怎么想这么一个感单元,组成这么一个离散系统,我们是可以求解。

但是如果像这么一个的一个v3 系统,你很难是手工把它给解出来啊,所以说呢就需要依靠我们这个计算机啊,来进行把它进行求解,这是我们的第一类问题,就是离离散的问题啊,当然另外还有一个就是称谓是连续的问题。

就是我前面给大家讲的这个p d e对吧啊,也说第二个问题呢,它实际上可以建立他们这个应遵循的一些,基本的方程啊,基本的方程也就是说包括这个微分方程啊,有相应的这个边界条件,包括这个弹性力学的问题。

热传导的问题,还有电磁场的问题等等啊,由于建立这些基本方程啊,所研究的对象通常是一些呃,无限小的一些单元啊,那么所以这类问题呢我们称为是连续的系统,不是离散系统或者叫做物理场场的问题啊,场的问题。

那么实际上啊,就是说我们虽然啊,这可以可把我们的这个呃一些物理的仿真的,一些问题,把它抽象成一些基本方程,对吧啊,这就是一个建模的过程,也是在这个建模过程里面,实际上我已经做了很多的假设和近视了啊。

但是呢即使啊这样啊,就是你写这么一个基本方程,由于这个边界条件的限制呢,你也是很难得到它的精确的一个解析解是啊,也就是说通常只能够得到很少数,非常简单的一些计算预算,或者这个区域上的一些精确的解解。

但是对于很多的实际的我们这个工程问题啊,还是无法给出他的一些精确的解啊,精确的解,那么像这种物理的问场的问题,一般表示我们把它称为叫做变质问题,对编制问题,那么对于这种编制问题啊。

我们一般说是有这么两个非常重要的东西,第一个就是微分方程啊,也就是说我这个方程呢怎么去建立,还有另外呢就是我的边界条件啊,边界条件啊,比如说为什么把它称为编制问题对吧啊,那么实际上就是说墙上。

这个在比在这么一个arma这么一个区域里面啊,它在它的内部要满足一定的微分方程,我们叫做pd方程对吧,在这边界上要满足一定的边界条件,比如说像这个这里可以边界条件,或者一些弥漫弥漫边界条件对。

那么实际上也就是说呢,我们这里的a和b 12级,我们可以把它看成是啊,对于和右相关的一些微分算子对啊,我们还说我们这个u呢,就是我们想要求去求解的一个,未知的物理场的一个函数,未知的物理场的函数。

那么三个这边呢我们会碰到各种各样的草对吧,比如在弹性力学里面,我们碰到就是应力场,比如热传导问题里面,我们说的是温度差,那么电磁学问题我们是电磁场对吧,包括在流体力学里面,我们说比如一些流程是一些流程。

那么实际上也是说这些卡呢,你可以是一些标量啊,比如像那个温度差对吧啊,也可以是一些矢量场啊,这个位移啊,应变啊,应力等等啊,也就是实际上这个理在这个里面啊,非常重要的一点啊。

非常重要的一点就是说我是怎样去求解,相应的在这个任意区域上,它的这么一个呃偏移方程pd一的一个解啊,我刚才说了,上次在很多情况下我们是没有解析解的对吧,也就这就要求啊。

我们可能需要进行额一些离散的一些假设,然后去进行求解,也说去求解这种一般的这种编制问题啊,实际上我们是有一些方法啊,啊第一个比较经典的方法呢,就是我们叫做差分法,差分法啊。

也就是说它也是需要这个离散这个求解域,当然这个离散的这个求解域,它可能就类似于用我们的一些是差速的方法,这种方法也说,这个时候呢我们是把这个微差分呢变成微分啊,也就微分呢我是精确的求的对吧。

那商也就说大家都学过,就是说呃微分音上,很多时候可以看到差分的一个极限,对吧啊,也就说这个微分,比如说我可以呃呃du,可以写成u i减去u i减去回来的,这个称谓的东西啊,除以德尔塔u上。

也就是这个上去,我们就是就是微分的一个近似啊,然后再求解相应的这个代数方程组,代数方程组,也就是说这个时候呢他这个要求的这个边界,我一般以上的要求也是一个规则的边界,然后对与这种几何形状特别复杂的时候。

它的精度呢就比较低了啊,就比较低了,另外一个呢就是称为是等效的积分法啊,这个时候我们也比较独立,这样这种加权余量法,或者这种呃泛函的一些变分的一些方法,因为这个时候我的整体的场函数呢。

我就是用近似的函数来进行代替,然后呢,我再把相应的这个呃微分方程和定解的,这个等效积分的转化成某个泛函的变分,然后去求解相应的机制问题,机制问题,当然就是说他上次也是和我们呃,前面讲的也是一样的啊。

他就是比较适合于这种简单的一些呃,区域上的一个求解,对于复杂问题呢也是很难去纠结,那我们这边呢给大家介绍这个有限元方法啊,有线方法他的思想就我们后面会讲,就是说实际上他就是对我整个的求解意义。

进行离散啊,然后我用分片的连续的函数,这个函数你可以是线性的,也就是高阶的啊,一些或者多项式来近似的去整体物质层函数啊,因为你求解了这个物理层的函数,它可能不是多项式的对吧啊,可能是一些超函数。

或者一些和sin和sin 3角函数,来表示的一些精确点啊,也是这个时候呢我们上就需要进行,然后最后呢再把它归为一个求解线性方程,的一个这么一个问题,那么它的一些优点,就是我的节点呢是可以任意配置啊。

边界适应性好不一定是要求这个规则边界,对不对啊,从后面可以看到,那么而且呢适应于任意的支撑条件和载荷,就是和偏见对吧,而且这个计算精度啊,和你这个网格离散的网格呃的多少,还有它的这个单元。

你是用这个三角形单元结构化的,还是从非结构化的,它的形态是有关系的,而且呢精度呢是可以可控的对吧,就是我可以你如果想达到比较高的精度,可以在这个地方增加自由度,也是局部加息啊等等。

那么所以呢我下面就介绍一下这个有限元方法,这边我们很多的内容都都是接那个参考了,像这个有限元分析及应用,就是回应老师的这个呃,这本教材里面的一些内容,那么实际上就是说这个有限元分析的,这个力学基础呢。

呃实际上就是在弹性力学里面对吧,而且他求解呢,这就是用我们这个所谓的加权的产值法或者,泛泛函机制的原理,他的主要的思想就是就是离散,就是离散,数字离散,但最后形成了这个载体呢。

就是我们那就是大家非常非常关注的c e软件,就是有限元分析软件,那么它实际上它实际上这个有限元方法,它实际就是基于变分思想发展起来,一种求解我们p d e方程,的一种数字计算的方法啊。

采用这个以计算机作为手段,然后分片近似对吧啊,然后逼近整体,也就是说它的基本思想就是历史法加分辨地四,唉,历史法是我们的这个变分的对吧方法,然后分片近似的,然后我就是作为它的一个表示。

然后就可以去求解相应的这个比例方程,你要说首先它的这个就是说,我首先要把这个物求解域计算域对吧,离散成一些互不重叠,然后通过节点啊,就是我们的节点相互联系的一些值域啊,比如说三角形单元。

那么这些顶点就是我的节点是啊,也是原始的这些边界条件,也可以就被转化成这个节点上的一些边条件,然后做过程呢就是我们的网格射程是,那么在这个单元内,我再去选择一些简单的近似的函数,来分配的bk啊。

来毕竟这些未知的求解函数啊,就是分片近似了啊,那么实际上具体做法呢,就是在一些专业,选择一些合适的节点作为求解函数的差值点,然后把这些微分方程的变量,改成有各个变量和导数的节点值。

就选用了插值函数组的这个线性表达式啊,最后呢再作为把这些哎奇函数对吧,这么个节还包括每个节点上的值,每个ui,然后把它做一个,先把一个组做做成一个组合对吧,然后就会得到这个相应的这个近似解对吧。

然后我在每个单元上做了对吧,然后呢我再把这些呃所有的单元上,我都把它组合起来,然后就形成一个刚度矩阵对吧,然后建立相应的这个有线圆的方程,就是我们的刚度方程嗯,然后就可以把他的呃。

那么我的我的这个未知量是什么啊,就是我这些节点值嘛,节点除了这些要求的值对,就说做的代数方程组,然后我通过一些呃求解线性系统呢,就可以把这些节点处的这个物理场的值啊,把它给求出来,啊。

也就是说实际上就是说,从这个例子也可以看出来,我们看这个图对吧,我刚才说了,就是说这是一个非常简单的我差分的对吧,因为差分呢他要求比较规则的一些网格,就是我用这个有限差分法是吧。

实际上就是说我是只能进行这种规则的划分啊,也就是大家可以看到它实际上在一些边界上上,他就说这不适如解与复杂的这个求解欲,对不对,所以他这个主要是误差还是比较大的,但是我如果用有限元方法对吧。

用有限元方法,它的就可以允许我这个单元可以是不同形状的,可以是三角形四边形,而且他们这种单元的这种拓扑连接关系,也是可以随意的对也是可以随意的啊,所以说呢我们采用一些网格生成的技术。

可以就可以把这个模型啊啊,进行任何的这种复杂几何形状的这个剖分是吧,剖分,所以这个相应的这个离散的程度呢,也是比较高的对,那么首先在这个里面就是有些人他非常重要的,就是分片对吧,分成很多单元。

然后进行近视对吧,他这个呢是我们说有限元方法的一个一个,核心问题,那么实际上这边的非常重要的就是一个,就是它的这个差值函数不怎么去设,我们一般人来说test function对吧。

这个test function就是我们所谓的态函数啊,那么这个斯坦函数呢,像在我们等结合里面也有对吧啊你说我怎么样,毕竟这些真事件啊,这个时候我们一般是采用的就是一些呃,dj的多项式函数对吧。

dj多项式函数啊,什么这里对吧,就这样来做,那么当然就说我在进行,比如这边你可以看到是一个一维的,一个有限元的一个问题,一维的有限问题对吧,那么你可以认为就是说呃,我如果这个分片数是吧,我这个折线嗯。

但是段数越多越好对吧,分的段数越多越好,那么这样的这个精度就会越高对吧,精度的越越高,也就是说实际上是对我们整个的这个求解域啊,我只要这个单元上的近似函数,它满足我们这个呃收敛性。

那么随着这个单元尺寸的这个不断的缩小啊,这个它的近视节呢最终会收敛于我们这个位呃,这个问题的这个精确点,实际上在有限元这个领域的,神像机,已经进行了一个有理论上的非常好的一个证,那么实际上在这个里面。

我们想我们说呢,最后呢非常重要的就是这个矩阵的装配问题,刚度刚度矩阵的装配问题,因为我们最终要形成一个矩阵表示啊,然后从我们这个计算机的来求解,这种大型的线性系统是吧,因为你到达之后。

可能呃你的这个未知量,还有你的这个机油度可能会非常高的啊,可能达百万或者上亿吧,10亿都有可能,所以说这个时候呢我怎么样呃,去求解这种大型的线性方程组啊,这个也是我们c e软件一个非常重要的一个呃。

一个研究的一个方向,那么实际上就是说在有限元方程的建立里面呢,我们也有很多不同的方法,常见的有三种方法,第一个就是直接刚度矩阵的这种装配方法,还有这种变分法,还有加强铲子吧,就是我们的加料金方法啊。

那么可能有些同学学过这个等级的分解,就很多说我们说加点金是一个非常重要,就说我怎么样通过分部积分对吧,然后用呃通过一些边界条件对吧,然后把它转换成呃通过一些高斯积分啊之类的,然后进行来做对。

那么刚才讲了啊,刚才讲了,实际上这个里面我们说有些方法,它的基本思想呢,呃就是说第一个非常重要的就是求解约的离散,离散那些有限的单元,然后单元和单元呢在节点处相互连接对吧。

也就是说我像这个把原来的这个连续的呃问题,把它求解于中,有一样的单元即可来进行近似的代替啊,另外一个非常重要的就是我们说的,为了查查函数,新函数或者我们称为位移函数啊,然后这个呢。

它实际上就是来表示我这个单元节点上的,它的物理量的啊,它是物理量的,那么然后基于我们这个整个的,你是不呃这个线弹性的问题,还是非线性的问题啊,还是其他的一些类型的问题对吧。

pd然后去建立这个单元节点的这个平衡方程啊,就是我们的单元的刚度矩阵啊,然后呢在借助于这种矩阵表示,把我们这种所有单元的刚度矩阵呢,把它组合成一个整体的刚度矩阵啊,那么这个时候我们就会得到一组。

以节点的物理量,也就是说我的为未知量,为自由度的一个线性方程组,线性方程组,那么在引入这些边界条件的求解,这个方程呢即可,那所以这个里面非常重要的一些呃一些概念啊,就是我们这边的,比如第一个啊。

就是第一个就是单元的概念,单元的概念啊,有这个阴影部分,就是我们可以看到四五对吧,把这个区域进行离散啊,进行分片近似对吧,那么一部分它这边每个三角形呢,就是我的一个单元,就一个单元。

然后我们这些单元的顶点啊,每个顶点这些呢就是我们所谓的节点对吧,所有节点,那么你在这这些节点上啊,可能会有一些荷载一些,比如沿着x方向的力,沿着y方向的一些力或者一些位移啊,这些就是我们要求的。

那么实际上我们可以看一些例子,比如第一个例子就是一个呃,第一个词就是我们把它看一下,这个在离散系统里面啊,在离散系统里面它的结构来怎么来离散啊,比如说这么一个问题啊,这个问题呢实际上就是说呃。

这边我们有应该是一个一维的一个感单元对吧,有一维的一个问题啊,一维一维有限元的一个问题,那么我们这边节点呢有1233个节点啊,那么你的单元呢你可以理解成有两个单元,一和二对吧,一和二。

那么这两个这两个单元啊,这两个单元我们这些就就不失一般性对吧,我们就只看这一个单元,一个单元,那么对于这个一的单元,它它要杀的是有有几个节点啊,两个节点节点一和节点二,对不对啊。

那么就可以把它这个节点处的位移呢,用一个向量来进行表示啊,就是右移位移u2 v2 对吧,然后这个节点力的向量呢,我们也一边就在这个节点处,我沿着x和方向分别作为一个节点力对吧,节点力就说嗯可以对吧。

也就在这个第一个阶段的话,我有fx 11对吧,这个分量还有f y11 对吧,那么在这个电脑也是相应的有这么两个分量,那么少,我们如果假设在这个节点一啊,沿着这个x方向的,就沿着这个方向的这个位移啊。

这个u一它是等于一的,其余的节点节点呢它的位移全是零啊,这个时候我们就可以算出来啊,它的轴向的压力,这个f一啊,f一它等于什么啊,就这么一个表达式,其实这个a啊,这个a啊它就是它的横截面面积啊。

然后e呢就是我们的这个材料的一些模量啊,然后呢,这个西格玛,就是我们应该就是求的这个应力了啊,然后它上市后面这个夹角对吧,c也是有关系的,那么这边呢就是我们可以看到啊,我们说的就是f1 。

它就可以表示这个形式,那么实际上这边我们可以啊,这边可以说呃,那么节点一着重于单元一上的力,在x y的分量,我们就可以还可以进去,把它写成这个f y11 对吧,那么可以写成k211 对吧。

然后呢f1 sunset是这样,我们可以这样写吧,然后呢,我们这个这个相应的,我们把这个f一的表达式代入到这个里面对吧,然后就会得到这个东西,然后相应的f x1 a呢也可以写成就是k1 ,k11 啊。

然后写成这个形式,而我们说在在这个节点二上,在这个节点二上,他的这个呃这个方向呢好在一这个节点处,它应该是大小相等,方向相反对吧啊,所以说你这两个啊,这两个它只是大小相等。

就是说f y21 和f y11 啊,应该是,大小相等,方向相反对吧,就这个a那么f x21 和fx 1 e呢,它应该也是大小相等,方向相反对吧,那个时候这样我们商有这么几个记号。

就是我们这里的呃这几个小k对吧,我们这边可以把它统计写成这个k i,j e的形式,它就这个e呢就是代表啊,第一个单元的第j个自由度所产生的,这个单位的位移啊,就是在其他就是自由度上的位移是零的时候。

在第二个自由度上受到力啊,我们把这个东西呢就通常称为是单元的,刚度的系数,高度的系数,那么这是单元分析对吧,所以说我们后面的,因为我们最后的我刚才说的就是,很多时候我们就是要用计算机来求解。

所以计算机的比较偏爱于这种,比如这种矩阵的表示对吧,然后我就用矩阵的表示,然后之后才再去求解,一个大型的一个线性系统啊,大型的一个线性系统啊,所以说就说如果节点一沿着x方向的位移。

u11 等于一区域节点位全为零时,那么单元一在x y的节点分量,我们可以写成阵容对吧啊,包括这个在这个节点二处也是可以这样写对啊,因为这个u一等于等于一嘛啊,所以说我是不是可以写成矩阵。

可以写成这种形式啊对吧,就是f x1 d等于啊,因为这边是一,其他都是零嘛对吧,七阶段位是位移是零嘛啊,所以我是不是可以写成这种形式对吧,而fx一就等于k11 对吧。

然后f1 y一它就等于k21 k21 啊,反正就是说啊这个时候啊它变成零,v一变成一了,对不对啊,然后所以呢我就可以把整个的呃,这么一个它们之间的关系啊,就把这四个关系啊,把它写成这么一个哎。

矩阵的一个乘法的一个形式,是矩阵的乘法的一个形式,有了这样一个形式之后啊,就这样一个一个形式之后啊,我们还可以在其他的对吧,其他的这个呃一些单位的系数,也可以把它求出来对吧啊。

所以说呢我们会就会得得到这样一个,就是在这个单元一它的节点的力平衡方程啊,就应该是这样子啊,就应该这样子,那么有了这个呢,就是实际上我们也是呃,有了节点一的这个节点力的啊,力平衡方程。

这个东西我们也可以相应的类似的啊,写出在节点二处,它的节点类的平衡方程就是这个对吧,我们有了这两个节点处了,我们现在就要对它做一个什么啊,整体的分析啊,也说着用于这个每个节点上的这个节点力啊。

它应该是平衡的啊,应该是平衡的,也就是说我所有的这些节点力额加起来,也是在这个减出它的位移,是它的是这那么外放音箱呢应该是这一,然后我们把呃和前面的这个推导结合起来,对吧啊。

我们现在就说哎怎么样把这个东西写起来,那相当于就是要加起来,那就加起来啊,那么实际上就是说大家可以发现啊,这对于我们的第一个单元和呃,第一个节点和第二个节点对吧,他应该满足这两个,所以啊类似的啊。

类似的我就可以呃把这个节点力平衡的,把前面的两个加起来对吧,然后把它就可以把它写成这么一个,作为每个节点节点的平衡,通过一个公式我就可以把它写成这种形式,形成这种形式。

而我们说刚才有个假设就是右1v1 ,它是都是呃,因为这边都是固定的嘛,所以u一等于零,v一等于零,u3 等于零,v3 等于零啊,所以说你这样一来的话,实际上我就可以变成什么东西啊,变成什么东西。

也就是说我们如果把这个边界条件,代入到这个整体方程里面,代入到整体方程里面对吧,我刚才说了,这个整体的矩阵,就是我们的k这个西格玛等于二,啊啊啊就是我的是吧啊,右边向对,然后这边呢就是我的自由度是吧。

我要求的这些位移嘛对吧,稍微要求的是什么,这边呢它它这个节点出了两个对吧,那就可以写成代入这个整体方程,就会得到这么一个啊这么一个式子啊,因为这我没说又一位三位位移,这两个节点是固定的啊,固定。

那么这样的话呢,实际上啊实际上我们就可以得到了,呃呃呃你这么一个例子来看一下,就说我对于这种一维的有限元,他在这个节点单元是吧,它是怎么样来进行整体的这个矩阵的刚度,矩阵的这个整合的啊。

那么下面我们再看另外一个例子啊,就来给大家说明一下,像我这个在,如果在所有的我所有的假设都是精确的话啊,我上这个有限元方法,它可以得到我和我们这个解析解啊,同样的一个解啊,同样的也同样的解啊。

所以说呢就是说我们这个呃可以说明啊,这个有限元它确实是有道理的对吧,是有道理,那么这个例子呢就是啊我们来看一下,就是说等截面直杆在这个这种作用的拉伸,就是我们这么一个直杆对吧,在它自身的作用下。

它的拉伸的一个情况,这边我们假设这个单位的感长的这个重量是q,他的这个感长的是l是l啊,支撑的重量是q对吧,截面面积是a这个弹性模量是e啊,弹性模量是一,那么三,我们就是说对于在这个上面。

我有一个单元的变化,就尝到一个变化,dx就是它的面源对吧,就是一个离散嗯嗯那么大家可以看看,就是我用过这种材料力,材料力学的方法也解决的方法来做,就是我们考虑这么一个微段的一个dx上面。

它的内力等于什么对吧,他应该就是它的重量乘以l乘减去x是吧,然后d x的生长就是这个呃这是什么,就是ax和我们的这个膜材料啊,还有它的这个面积面积有关的对吧,然后这样子,那我们把这个n的表达式代入进来。

就得到它对吧,那么这个x界面的位移,实际上就是对它来做一个求一个积分对吧,对它求一个积分啊,然后就会得到,然后就会得到这么一个表达式啊,这个表达式,然后我们把这个德尔的这个表达式,代入到这个积分里面。

然后对x轴下积分,这样就会得到这么一个,也就是说s界面的时候u的位移对吧,我上就等于一个e a分之q lx,减去二分之x平方啊,那么我们根据有了这个位移之后,大家都知道这个应变对吧。

它上就是d u对x求导,就可以是这个贝拉对吧,然后应力它应该就是我们这个呃,呃弹性模量乘以这个这个应变对吧,所以应该就是它就是它,那么实际上这样的话就是我们在材料类,材料力学里面。

通过一些解决方法就会得到这个东西,那么所以说我们得到这么一个位移的表达式嘛,对吧,位移的表达式嘛啊,然后说如果我取三个三个三个分段对吧,你要等段分成分成每一段都是三分之l,整体长度是l嘛。

那么说在这些地方啊,在这些地方啊,一个是三分之l,还有一个2/3 l,还有三个还有l的地方啊,他现在这个这个可以这个u啊,它像我们可以把它给算出来是吧,也就是说你把这个s代表这个u的表示。

这边就会得到这些东西啊,这是我们用材料力学一些解析的方式,把它把它求出来的,把它求出来的对吧,所以大家可以发现就是它是有解析的解,那如果我们用有限元这个有限元法来求解,求解这种直干的拉伸问题。

但也是可以的啊,当然我们这边就是涉及到结构离散的对吧,这也就是说我就假设可以把这么一个杆呢,把它分成很多段是吧,很多段啊啊先做一个离散化是吧,然后呢我这个外在盒子集中在这些节点上。

这个每一个分段的这个地方集中这个节点上啊,然后上来每个节点处,都会受到它的执行的重力的作用,相当于把这个重力的平衡到这个,每个每个节点上面啊,每个节点上面,那么也就是说在假设这个线能源这个l上面呢。

它的这个位移呢是一个线性函数啊,我们就可以把它写成这个u,x等于x加b的形式对吧,那么我在分别的单元上又分别是可以求出,在这个ui减在这个节点地方和这个节点处,它的分别的都可以把它写出来对吧。

带到这个里面上,我就可以把这个u求出来,相当于我把这个a和b呃,它的表达式求出来就对吧,嗯相当于什么,相当于我通过这个条件,还有这个条件,我就可以把a和b啊解出来对吧,a和b解出来啊。

然后可以可以得到这么一个要不要动不动,那么有了这么一个表达式之后,有了这么一个表达式之后,相应的我也可以就输入相应的这个应变,还有它的这个应力出来,然后这样的话我们实际上就是他们这个呃。

所有单元上面的这个n大n,我都可以把它求出来啊,那么求出来之后呢,我们就可以做一些单元的分析,单元分析也是他应该要满足一定的力的,对每一个比如像第二个节点对吧,一个往下压力,还有一个往上的力对吧啊。

也就是说他这个应该要满足这么一个力的,平衡方程力的平衡方程啊,我们就可以得到,那么我们把这个内力啊,还有这个位移的关系带入到这个里面,带入这个里面,也就是说呢我们实际上就会得到这个,所以得到这个。

那我对每一个单元,每一个节点我都会有这么一个方式对吧,所以说我们下面的需要就是要把呃,把这个ui求出来对吧,ui求出来啊,那么这个number i呢,它就是这个长度一个比值吧,也就是说我们这种节点位移。

表示这么一个平衡方程,实际上它应该有n个方程,未知数呢也是n个对吧,未数也是n个,我们把这个解释方程,就可以得到这个呃节点的一个位移啊,得到一个节点的位移,那么实际上是这样的话。

我们就会得到一个整体的分析和求解的,一个过程了啊,也就是我们得到这么一个平衡方程之后啊,然后我们说比如显示现在有三个节点对吧,三个节点啊,就是我们这个l一等于a l2 等于a l,三也等于a嘛。

就常驻就是a嘛,就等分的这三个三个节点,然后这样的话我就会把它分别带进去对吧,因为我们u0 是假零的啊,所以说我就会当i等于一的时候,我就会得到两倍的u一减去u2 是吧,减去u2 。

因为number i呢它是两个长度嘛,两个长度相比,是也是等于1l2 除以l一等于一对吧,所以number 91,其实我就会得到这么这么这么一个表达式对吧,当i i i i等于i的时候呢。

我把它带入到这个里面,也会就会得到这么一个一个平衡方程是吧,平衡的底约一个方程应该等四,当i等于三呢,我就会得到它对吧,你要这样的话,我是不是就得到了三个方程,三个未知数啊。

就是u1 u2 u35 的未知数,对不对啊,现在呢我就可以通过三个方程,三个未知数就可以把这个通过求解一个呃,三元一次三元一次的一个线性方程组对吧,就可以把这个u1 u2 u3 把它给求出来啊。

那分别呢就是得到这些,然后这个大家可以看一下,右一是5/2,u2 是8/2对吧,u3 是9/2啊,那么324和我们前面呃,用这个不用这种离散单元方法,用这种材料力学的这个公式推导出来的啊。

推导出来了也是5/2,8/2和9/2,对不对啊,所以说啊所以说就说呃有些人单元法,只要我在所有的假设都是精确的话啊,所有的这个影片,包括里面的这个求解过程都是精确的话,那我实际上就会得到和我们这个。

材料力学啊,这个理论上得到的这个呃解析解啊是啊,精确点就是说在节点处呢,它是完全相同的一个一个答案,这也是实际上从从理论上,就是我们通过一个这么一个简单的一个,小的例子对吧,来给大家啊说明一下。

就是说这个啊有些眼法啊,确实啊是可以啊,嗯后面这个理论上的解呢,它是比如说如果你这个所有里的这个假设啊,这些计算都是精确的,它是可以收敛到这个精确点对吧,那么商业说有些人单元方法的一个。

基本的基本概念对吧,比如说它这个里面,所以这就是说第一个就是你所研究问题的,这个数学建模对吧,你要首先把相应的这么呃,比如像一个力学问题啊,就是平面的应力问题啊,要把相应的这个呃p e啊。

或者这个里面要建模出来对吧,就是我们的数学物理方程要把它建模出来,然后呢来做一些物体的一些离散对吧,就像这个要生成这些呃,有限单元的有限单元对吧,所以说只要网格化啊,然后呢再对每个单元做一个单元分析吧。

里面的每个单元做一个单元分析,前面我们只是举了一个什么啊,一些一维的单元的对吧,那对于二维单元也是一样的对吧啊,二位单元也是一样的,然后呢再把这些每个单元分析好之后,再把整体的每个单元。

你得到的伤也是一个局部的刚度矩阵,对不对啊,然后乘以一个,乘以一个人等于一个什么东西对吧,然后再把这些刚度矩阵把把它组装起来,然后得到一个整体的分析和纠结啊,然后呢求解之后呢。

就会得到在整个的这个物体域上啊,它每个节点处的啊,只是吧,这就是我们要求的,那么商也就说呢就是这样的话,就是我们最后呢再把这些结果呢,进行可视化对吧,进行后处理,然后来看一下他评估一下对吧。

它整个的这个应力的分布啊,或者这个呢是什么样子的,因为这边的实际上会涉及到一些呃,基本的一些概念啊,第一个就是单元的概念,就是我们讲的对吧,但我想大家经过刚才我讲的这个呃。

一个刚才前面的这个例子应该理解了,就说什么是单元对吧,也就是说实际上就是呃就刚才讲了,我们这边有对一维的一个星元,这边我有两个单元吧对吧,一和222个单元对吧,那么它上就是我把这个原始结构离散后。

满足一定几何特性和物理特性的最小的结构域,另外还有一个呢就是节点的概念对吧,这边我们说有三个节点,123啊,三个节点还有节点力的概念啊,就是节点内的概念,就是我们这里的f y也就是四分两个分量对吧。

也就是单元和单元间,通过节点相互的作用的这个呃相互作用力对吧,还有节点在荷的力量,就是外力的原因啊,节点在荷的问,就我们这个x x2 和y,然后这边呢是我们施加的,所以刚才这个求解的时候,我们算xy上。

就是在我们的右边向,原料实际上是这个节点啊,节点是我们有限元方法里面,非常重要的一个概念对吧,相当于没有等级和里面的这个控制点控制点啊,其实这个说法可能也不是特别正确,应该是等几何里面的,就说。

可以理解成控制点,也可以理解成,就是说上次在我们呃有限单元法律,是我们等级和里面的,就是那些纸面片的对吧,那些那些角点对吧,那些角点或者它它内部的一些东西啊,就说实际上就大家也可以回去。

如果对大家对等你和呃有所理解的话,可以想一想啊,就是有限源和等级和里面的就这些节点啊,单元啊,他们之间的定义区别在哪,区别在哪,要在有限元里面的是相邻单元的这个作用,它是通过节点来进行重叠的。

而这个边界呢是不传递力的啊,然后实际上也就是说我们这些离散的时候,我们是要说希望对它的节点要有,一些一些一些一些要求啊,一些要求,那么实际上就是说我们这个,我们这边呢会有一些呃单元的类型。

就是说我们对应于有相应的一维问题,二维问题和三维问题对吧,那对于同一个问题,我又像这个呃一维的杆的单元啊,比如这个对吧,它的几点数就是二对吧,几点自由度就是一,你比如说还有一些二维的量的单元对吧。

它的节点数是二,但节点处的每个节点自由度呢是三啊,是因为它是两单元啊,那么还有一个平面单元,平面单元对吧,这边的节点数是三,那每个节点处呢呃它的自由度是二,因为平面四边形啊也是一样的啊,节点数是四啊。

而自由度等是二,但还有相应的比如二维的轴对轴对称的问题啊,啊板翘的单元啊对吧,这个时候他的节点数还是四啊,但是它的每个节点数它的自由度就变成三了啊,就变成三了,啊还有四面体单元对吧。

四面体单元就不对应我们的三维问题,那么它的节点数就是四面体呢,它应该有四个顶点,每个顶点数它的自由度是三,还有一个呢就是我们所谓的这个新函数,插值函数对吧啊,那么三就是说这个呢。

它是就是说我在每个节点处对吧,你最后的这个组合你可以是线性线性组合对吧,加起来是吧,那么但是呢你也可以是非线性的对吧,有一种高阶的性函数也是可以,那么那么等级和里面的就是采用样条函数。

number g函数,所以我的新函数对也受伤,就是因为我们后面呃要特别在有线里面,还要用这个要求积分啊之类的,所以我们一般要采用多项式型的也算,你最少也是个线性形式吧对吧,a x加b的这种形式啊。

还是说上级如果是高阶的话对吧,那么伤势和这个真实体会更加的接近,这也是非常容易理解,也就是说实际上这个我们所谓的新函数,插值函数啊,最后呢实际就要把它表达成什么啊,各个节点位移就一直产出奇函数的和。

就这种大家学过这个后面那个样条孔,这个曲线这些定义也是类似的,对吧啊,就是ai的时候我的差值基函数啊,然后ui的时候,在这些每个节点处的这个这个位移对吧,那么相应的整个的位置位移长。

就可以通过这种方式把它给组合起来,就大家实际上是在回过头来看,就说我这个有限元法它整个的收敛的准则对吧,比如说我影响这个有限元解的误差有哪些啊,第一个我想就是离散误差了。

也就相当于就是说比如说这边这个例子对吧,如果你这边这种直边的单元啊,直边的单元啊,我可能精确的是这个氧是弯曲的对吧,像这个一样对吧,因为我直接单元可能就是这样对吧,那么也是你无论在你的本来输入区域。

是这个弯曲的区域,但你这边是一直变的,这个本来和你的相差的形状啊,相当就比较大对吧,所以说你在上面再用多少的自由度,你得到的这个解嗯,也是也是和你实际想要的这个精确解,也是相差很大的对吧。

比如说这个离散骨传导,我想影响也是很大对吧,这也是我们等几何的一个优势体现的一个地方,那么比如说你这边可以诶提高次数对吧,提高次数慢慢提高次数就可以在这地方,最起码在这个地方。

我是可以后面这个输入的这个几何边界,非常接近,那么另外一个呢,还有就是我们的这个位移函数的这个误差,位移函数的误差,而且我们说的在这两个东西,我觉得应该是还是呃我有非常大的观点。

就是我的离散误差和位移位移函数的误差,位移函数误差,还有一个呢,就是说我在相对有限求解的时候时候,特别是变分法或者加点积分方法的时候,我会涉及到一个求解积分的问题对吧,为求解积分。

你不如a到b fx的一个积分,你在求解这个积分的时候,你是不可能用解决的方法去求解的对吧,一般我们要把它解用什么,比如高斯积分法,然后去算是吧,然后相当于高斯积分法的事情呢,就是说呃我在这个区间内。

我有一些高识点,还有高速点啊,那么fx在a和b的b的这个积分呢,就是可以标成这个fx在这些积分点处的啊,积分点处的一个一个一个线性组合的一个形式,但它前面呢也是有一些比如系数嗯,也系数。

那么实际上就是说呃这个东西呢,就是说我对于多项式啊,一般来说我是可以做到做到精确的啊,就是说确实是它是可以精确的,但如果你知f x是其他一般函数的话,就可能不精确了啊,虽然也是有的时候呃。

我在这个积分的时候也是有点误差的,还有一个误差是什么呢,就是施加边界条件,施加边界条件啊,比如说很多时候你施加的呃,在我们这个pdd里面,你试下这个编辑条件和可能和你的物理模型。

还是真正的你的受力的这个问题啊,嗯这个物理模型它还是有很大的区别啊,还是有很大的区别啊,所以这个里面是呃,影响这个有限元,他这个求解精度的一些因素,当然相应的我可以有一些解决办法对吧。

比如我既然是离散五杀,我就可以增加这个单元的网格数量对吧,你说222个单元,那我可以用呃,比如20个单元对吧,你先用这个离353呢就会少了,那么另外一个呢就是我可以刚才讲的。

就是我们这个新函数就可以用高阶多项式,就像登记和一样,那么实际上就是说这边呃,呃还有一些就是收敛性收敛性的问题啊,就是我们说啥登顶盒里面,就是我用这个二次的二次变向条和三次变向条。

你最后画出来这个收敛曲线它是不一样的是吧,好像这个在我们有限元领域,他们确实是有一些理论的一些成果的,就说这个收敛做个做个收敛速度啊,收敛性应该是呃这个次数啊,q加一对吧,in的q加一次吧。

就是他应该是要满足这么个关系啊,然后实际上是这个里面呢,就是让我们这个位移函数对吧,嗯也是提出了一些准则,第一个就是它应该包括一些常见的应变是吧,还有包括这个单元的一些呃刚性的一些位移,对吧啊。

也就是说这个单元内部呢必须连续,相邻单元间的这个位移呢应该要要协调,要满足一些协调性条件啊,协调性条件啊,这边呢我就不不仔细展开了,那么商有限元方法,有些方法呢,呃我刚才讲。

大家也通过一个例子可以看到了对吧,我说有些方法求解和我这个数学解析求解,确实啊,如果在没有任何的这个这个误差的话啊,继续计算都是精确的话,这样的我可以得到相同的解,相同的解对吧啊。

也就是说上最早呢他是在5556年的时候呢,在纽约啊这么一个三个大牛对吧,这四个,然后在这个纽约举行的航空学会年会上啊,他上就是把我们这种矩阵的位移方推广了,求解的呃,平面的应力问题。

他们就把这种结构的划分成一个,三角形和矩形的一些单元,然后一些近似位移函数来求得甘单元刚度矩阵,三就是应该有衍生出这些思想,那么在60年的时候,cd实际上在他的这么一个论文里面。

首次提出了这个f e m这么两个词吧,说是替代这个有限元的这么一个术语,啊他们后来有很多力学家和数学家,在这方面呢做出了很多好的工作,特别是数学方面啊,但我们的我们国家啊,我们国家在这个力学方面。

包括计算数学方面,也是为有限发展的方法的,这个发展呢提出了很多贡献,尊重人的贡献对吧,嗯像特别有钱,比较有名,像对比啊,前立行前立定西先生,钱伟长先生,还有芬芳先生啊,那么我们说在计算力学领域呃。

呃好像有一个就是潜力西讲,那么在计算数学领域啊,我们有一个冯康讲啊,冯康讲,像我们这些前辈呢,都在有限元的这个发展里面呢,做出了非常大的贡献,好刚才给大家讲就简单。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是也不是简单了,就是介绍了这个有限元方法的一些基本思想呃,还有一些相关的概念是吧,给大家通过这些基本实验也就可以,我想通过一些简单的例子,大家要理解第一个呃,理解这么几个事情啊。

第一个就是说他基本思想是什么啊,就是离散对吧,就是离散啊,那么在这里面我们通过一些简单的例子,给大家说这些矩阵啊是怎么算呢对吧,然后什么,然后最后是怎么组装的啊对吧,我们想通过一些简单对复杂的例子。

也是也是类似的问题对吧,无非是呢就是说呃我们这个简单例子,我可以把它呃首推出来对吧,但是复杂的例子可能不行,就是需要我们写程序啊,通过这个软件,然后把它给呃编写出来,是另外一个呢,就是大家理解。

就说我有些人虽然是一个离散表示,但我在任何金属,它和我们这个解析表示精确的数学解,我是可以退回去的,然后就退回去,所以说呢就是说我们说有腺癌,它是有它的这个非常好的一个道理啊,那么下面呢就说非常近。

这个我们再简单介绍一下这个网格生成,网格生成啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因为有人说有些人里面非常重要的一点呢,就是说我给你物质在我的仿真里面对吧,我给你一个问题,然后我实际就是需要把它呃,这个区域离散成很多小的单元对吧,然后通过一些私下的一些边界条件对吧。

然后通过计算机把最后把这个呃,相应的这个物理解啊,把它给求解求解出来并可视化出来啊,所以说从这个到这个这个中间的过程啊,就是我们所谓的这个网格生成,网格生成,那么一般来说就是。

实际上是把这个区域来进行网格化,进行网格生成啊,上次和我们同学啊,因为可能我们这个群里面有很多呃,然后这同学都是来自于图形学领域了,就是说要和我们这个数字几何处理对吧,啊和网格处理啊是非常相关的啊。

首先从顶底层的这个数据结构上是非常相关的,对吧,非常相关的啊,但是啊网格生成这个问题啊,这个问题啊实际上是在计算力学里面,它来源于有限元对吧,来源于有限元啊,而我们在这个图形学里面进行网格处理了。

这些方法我们叫做数字几何处理,这些方法实际上是来源于什么啊,来源于扫描仪是吧,因为有人说从上世纪90年代的时候,我们这个三维扫描仪上是越发展的,要这硬件发展的很快,所以说我要做一些什么啊,逆向工程啊。

逆向工程啊,然后我得到一些点云,然后怎么进行点云的重建,网格的重建是有网格重建,然后我要怎么进行这个网格的这个光顺对吧,然后重新网格化是吧,网格的简化,网格的变形是吧,网格的参数化啊。

那么实际上这些内容呢,我们说都是来源于扫描是吧,来源于逆向工程啊,那么实际上是在我们说真的我们这边要讲了,网格生成,它实际上是来源的这个背景更早对吧,来源于有限元,来源有限。

那么也就是我们一般的一个网格生成的过程啊,一般来说就说我我应该讲就是说第一个啊,我要轩的把顶顶点网格化对吧,然后我怎么样去设置一些他的这个,顶点的数目啊对吧,然后我把曲线网格化是吧,曲线网画。

然后呢再把这个曲面网格化,然后我这边可能要通过一些mos,还有一些网啊,这个呃它的曲面网格的一些处理啊,然后呢再进行做这个题的网化,提到网格化啊,然后呢再去进行一些质量的评判,所以说在这个里面啊。

在这个里面也会涉及到很多的啊,第一个就是我曲曲线我怎么进行离散化,有曲线了,3万之后,我又怎么样去生成这个曲面表曲面的网,那么这个曲面网格我也是二维的平面的网格,也可以是三维表面的网格对吧。

那么到了三问题就变成了这个体网格的生成,这边又既包括了这种啊,是我们四面体网格对吧,又包括了六面体网格啊,现在还是有这个混合网格啊,包括这个多面体网格啊,那么实际上这个里面呢会涉及到呃。

很多的这个网格生成的问题,包括他的这个这个网格的表达呢都是不一样,这边上去我们我们就是呃,我借鉴了一个一个p p t啊,就他这个里面总结的非常好啊,他上就把我们一些网格生成算法呢,就第一个从大的群。

我分成了这个9号网格和非9号网好,那么在这个交网络分布里面呢,我我我每一种又分成了,相对于这种三角形四面体啊,那结构化我也有三角形四面体,那么非结构化里面也有三角形四面体,还有这个四边形六面体对吧。

那么这个相应的方法啊,相应的方法比如像结构化网格生成里面啊,他这个比如我有影射的方法啊,还有几何分解的方法对吧啊,那么像在这个映射的方法里面,我既可以用这种椭圆p d e的这种方法对吧,用pd的方法。

还有利用一些超限卡子的方法啊,还有一些这个双曲的方法等等,这边都是问我们影射的方法,影射的方法,所以说我给你个区域,我怎么样把你这个参数域里面的网格,能够很好的把它引申到一个任意的一个扭曲的。

一个区域边界里面啊,这个里面常用的很多的这个变频调和,或者一些调和方程,拉普拉斯方程啊,这个类似于椭圆方程啊,这些pd的方程,然后去去去求解的这个商务,在我们等几盒里面也有用的,对不对啊。

那么实在这个几何分件的话,在于说我把一个复杂的一个边界,一个区域,我怎么把它进行一个几个分解对吧,如果分成多块的啊,我这个多快乐呢,我可以用一些比如标价厂的方法对吧,然后呢又可以用一些啊类似于中轴。

中轴面的方法,还有一些什么啊扫掠的方法啊,包括这些子域这个这个呃影视的方法等等啊,大家对于这种非结构化的,我就给编的可能就有一些其他的,比如像这个前沿推进的方法啊,deoy的这个方法啊。

deoy 3角化对吧,嗯那么像对于这个呃四四边形和六面体的呢,我可以分为呃直接法对吧,又可以分为间接法啊,那么这个直接反弹这边呢就是一些,比如像这个对偶的一些方法,就是我给你边界。

我直接从内部把它生成出来对吧,还有一些呢就是一个组合的方法,就是我可以两个三角形合并成一个四边形啊,通过这种间接的方法去生成,应该说这个图啊,基本上啊应该把我们这个网格生成的啊一些,几个不同的方法。

对一些不同的方法都总结的很好,总结的很好,那比如说这边我们先讲讲这个比如三角形,三角形的三角形三角网格的生成啊,还有这个四面体网格的生成呃,最简单的一个就是呃这个,前沿推进啊,前沿推进啊。

实际上就说这个问题对吧,就是说我如果给你这么一个区域,我希望把在这个区域内部生成一些网格对吧,那这个前线推进的思想呢,就是我先啊把它把它连起来,插值对吧,先离散是吧,然后离散之后呢。

然后呢我每一个单元我怎么往里推对吧,往里推,这个时候呢我往里推的时候对吧,我需要考虑到这个单元和单元之间的干涉问题,然后我就去怎么连的问题啊,这个时候呢我就需要通过一定的准则,一定的方法。

然后把它给给往里给啊,渗透出来,渗透出来,这边呢就是我们有前沿推进出的,当然还有一个就是大家这个图形学里面,非常著名的得到三角化对吧,有它生存的话,可以表保证什么哎最小角最大化对吧,这么一个问题啊。

所以他送的这个质量的,三角网格的质量还是挺高的,就是在这个四边形和这个对面体方面啊,对面体方面面我们也有这个直接法和间接法,那比如这么一个对吧,我们希望能够在这个边界上,我能够在它内部生成四边形对吧。

嗯你实际上如果看成是把这个看成一个边界,把它看成一个边界,把整个看成一个边界的话啊,因为这个是三吗啊,这是六对吧,每个每个都是有呃六段,然后这个对面的分成三段对吧,然后这样我通过超限差值。

主要我就是可以生成内部的这个呃,四边形网格了,当然还有一些就是比如像那种少略对吧,我生成这个一个面,然后我可以把这么一个呃三个问题,把通过这些扫略的方式,通过少要充个六面体网格清一咳。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有一些就是类似于block block,就是说我能够把这个物体啊,用分解成一些小的块,但目前这种分析分法呢,就是说呃很多呢都是还是通过这种人工交互啊,通过手动,然后我怎么样能够把这些分块结构啊。

把大哥能够分出来,然后呢在每一块再用超限杂志啊,或者其他的这个呃一些p d e啊方法,然后再去进行生存啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这边就是一些分块的方法对吧,也是目前的分块,大部分都是手工完成的啊,那么后面呢,我们也希望能够通过一些自动化的方法,能够来自动分块啊,这也是我们后面的一些目标,然后这个里面的实际就是。

我可以通过一些非常简单的啊,因为它这个它满足一能断出了好多约束,所以我就可以生成这种高质量的四分零,但你可以对他这个就是因为它的本质,它是一个扫略结构对吧,然后我们我们团队吴海燕老师。

他在呃博士期间做的做了很多问题啊,就是我怎么样能够把一个物体对吧,可以分解成一些可以扫六的一些一些部件对吧,你把它识别出来,识别出来之后,然后就可以用扫描的方式去生成,相应的六面体网格。

然后也说我有一个呃圆面,然后有个目标面,然后通过一些少量的方式就可以把它生成,另外还有一些呢就是类似于中轴了,就相当于我可以把这么一个平面区的中轴线啊,把它给抽取出来对吧,然后我通过再通过一些诶。

因为中轴是什么啊,中轴上的点就是我这个什么啊,最大内最大内切圆的这个圆心所在的点对吧,然后我通过遍历这些,然后就可以得到这个区域的这个中轴,中轴啊,通过这个中轴,我通过一些队伍操作对吧。

我就可以设成这么一个平面区域的四边形网格,破费了,那么这是中轴的一些思想是,那么实际上是我们可以看看一下,就是说在我们这种非结构的跨界,或者说非结构,就是说它不是那种真正的这个呃,都是同一个点出发。

他只有四个四条边对吧,比我们这边网络这样的,我们说如果所有的顶点啊都是这种点的话,它就是一个结构化的四边形网对吧,但是有些地方呢它可能是度数为三,或者度数负-5的,有他有这种起点的啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可能呢就是需要一些特殊的一些分块,特殊的一些分块啊,比如这边呢是就是用这个嗯,属于一个间接法的一个方法,就是扣帽子方法啊,他实际上就是说类似于前沿推进啊,然后我给你一个背景网格,然后我通过一些合并啊。

或者什么操作对吧,我可以慢慢的从外边界往往里面来进行推进,这一层一层推进数据,最终呢就可以通过背景网格,然后通过这种前沿推进,生成整个区域的一个四边形网格的一个表示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也就是说这种间接法伤对于结构网格生成,结构网格生成,特别是四边形还是六边形网格是什么,我没删除,我们可以啊,行可以总结一下对吧,我们最近也做了一些工作啊,那么我认为啊,我认为啊。

就是说实际上就是说一个呃一些他的金标准啊,第一个就是要全自动啊,我不需要进行手工的去进行这种呃分块对吧,手工的进行分块,最好能够自动的这个分块啊,自动化的这个分块啊,然后呢鲁棒性要好,鲁棒性要好。

就说我对于这个你的背景网格的要求啊,还有不能那么高对吧,然后对于这些几何的要求也不高,然后对于任意的复杂的例子啊,我都能够生存的出来啊,然后生成的网格质量要高对吧,也就是起点的数目啊。

就这个度数不为四的这一点啊,它的起点的数目要少是吧,然后呢呃这个雅各比对吧,这些值呢要要要尽可能的接近一啊,而且呢它能够满足我们很多的一些计算的,特殊的一些要求对吧。

比如说像这个cfd里面正交性啊这些要求啊,还有一个呢就是说呃,要怎么样精确的保持一些边界的cd几何对吧,也就是这个里面呢,我们就有这么三个非常重要的指标,就是它的所谓的全自动鲁棒性,还有高质量啊。

高质量,那么实际上是这个在这四个里面,我想最重要的就是一个大块的区域破分对吧,也就是说就能够非常好地实现,这种大块的区域颇丰,然后我们才能够得到一个非常好的一个,高质量的网格。

然后这边呢我们最近在做一些工作,就是啊标价场引导的一些区域,部分区域破分也就三个,而且这些区剖分的问题啊是可以用到啊,趋于剖分的结果是可以用到,我们等你和的啊,什么参数化问题的啊,也就是我们下次课啊。

就会给大家介绍这个偏向等几何分析的,平面参数化和体参数化的问题对吧,主要是我们这种大块的扣分,在我们参数等几个分析的参数化问题里面,也是非常重要的一个关键的瓶颈的一个问题啊,那么下面的就对着。

我们在这方面做了一些一些小的工作,第一个就是我们提出了一些基于标价厂的,二维区域全自动四边形网平网格生成的框架啊,比如说我要对这么一个区域啊,我有一个外边界,一个矩形对吧。

还有一个那两个内边界也都是两个圆形,就相当于这边是两个孔啊,我希望在这些部分啊,我能够生成出四边形网格出来啊,那么主要的一个思想,就是去在这个区域上来进行这个呃,拉普拉斯控制方程的求解,然后能够。

首先在这个边界上对吧,我先设置一些他的一些变量厂对吧,然后呢能够在它的内部呢,我希望能够得到一个反映它边界的几何特征,覆盖整个问题的一个矢量场啊,并且结合这个矢量场与标价场呢。

他们之间的一个有一个有色关系,我们可以把现在这个矢量场转换成标价长啊,比如说我们可以通过在上面啊,通过一个得到一个时量产,然后通过求解一个p d e,得到它内部的一个这个问题,遇上了一个矢量场。

然后通过这个矢量场呢,我就可以把它转换成标价上,通过一个隐私的关系对吧,然后通过这个分析这个标价场的其结构啊,就可以发现诶,我这边呃哪些点呢,我这个七点在哪对吧,可以发现在这个边上的变压场转的比较。

然后我可以自动找出这些缺点,这些红色的啊起点也是在这个区域里面呃,我们找到了八个七点对吧,八个七点,那么根据这八个起点生成出发对吧,那我可以去研究出现在的这个蓝色的流线啊,蓝色的就是我的流线。

那么通过这些流线和七点等,我,你看我是不是就可以把这些区域都分割成了,一些大块的大块的这个四边区域对吧,大块的四边区域啊,通过这在这些四边区域上,我通过一些有设法对吧,你可以用控制方法对吧。

创业产值的方法也可以用pd的方法,然后就可以生成这种呃高质量网格对吧,这样我每一块都生成上我整个的这个区域呢,也就生成了这个计划,实现网格就生成对吧,最后呢我就会得到它内整个的一个高质量的结,果。

我们是他发现这个起点收入比较少对吧,网格质量还是可以的,那么像我们这边这个控制方程呢,就说是摆出这么一个条件,就是说啊这是一个拉普拉斯方程啊,拉布拉斯方程啊,比如这个拉布拉在这个啊mia的内部啊。

我应该要满足啊,满足呃这么一个level的方程是吧,然后呢,在我这个边界上,没有满足相应的这个dd的边界条件,就垂直吧,还有他的主页板边界条件,那么当我通过这些交叉厂或者成为这个标价厂,对吧啊。

我可以来设置相应的编辑条件,然后呢通过这个初始的场啊,通过求解刚才的pd方程,我就可以求得什么啊,相应的内部的矢量场,然后再把这个矢量场转化成像的边界层,通过这个标量场,我再去去去识别。

去找到相应的这个缺点对吧,然后就可以找到这么两个起点,我就可以送到大块破分,四边破分,然后对这些视频破分上,我再去生成相应的这个视频网,那么这边呢就是给出了我们的一些结果。

就发现这个实际就是呃这些不同颜色,红色绿色蓝色,就是我们就生成了这个四边区域的破分对吧啊,然后这次就是我们通过生成的,最后的这个网格啊,应该来说这些网格还是满足了第一个,我这个闲置的破分这个全过程对吧。

我都是自动的啊,自动的通过标价厂去去引导的啊,去诱导出来的一些啊四边网格的这个区的破分,另外这个这个起点数目也比较少啊,质量也相对比较高,他们还可以做这种多约束的去传这种分解。

就是我可能呃比如在这个自行车内,我希望你是我生成的网格对吧,它它它能够沿着这些红色的这些约束对吧,红色的约束啊,这网格呢,那么以这些红色的点作为我的这个呃,约束的边界啊。

那么实际我们也是可以通过变量的方法去生存,这边就是呃我通过这个呃变化体,这个呃是那个分区对吧,那你看到这个分区啊,实际上也是把我们这些红色的约束,作为这个区域的边界啊。

让你生出来的网格呢自然也是满足这些呃,都结束了对吧,就说实际上我们在这个里面呢,会会碰到一些问题不大问题,就我们原来呢就就是希望能够生成所有的,这个是所有这个区域啊,都是四边的啊,都是四边的啊。

那么实际上这个里面会带来一个问题,就是说呃第一个就是快速太多了啊,比如说咱这边就是我们呃,生成了一些一些区域的部分,对于这个模型,还有这个模型,生成了一些区域的普遍四面具的部分。

就发现这些有非常密的对吧,非常这个的啊,但是你可以做一些区域的简化,但你简化出来可能也也未必是我们想要的啊,像这个也相比也是非常密的是吧,要说与现有的一些商人里面,手动抛分所得到的结果相差还是比较大的。

那么还有一个呢,就是说我怎么样去满足你的尺寸约束啊,网格走向的约束啊等等啊,那么实际上我们后面就就就就想一想,就说可能也未必啊,你生成的这个四边区,生成这个区域都是四边的,都是四边的对吧。

那么我也是可以允许啊,你是这种t型区域的抛竿,或者也就是说只要是26边区域,我都是可以的啊,为什么是26边的我都可以啊,后面会讲啊,因为为什么二道里面会会,就得到2~6边的话啊。

因为在在我们上对于这种比如两边的三边的,一直到右边的啊,我们都是啊,只要给你这个区域的边界之后啊,边界这个离散段数之后啊,我们都有一个呃,都可以用包办法去生成内部的这个,四边形网格的啊。

那么我们实际上是有这么一个结果的啊,就是理论一个结果是呃,前面别人论文发表的一个结果,就说嗯主要是n大于等于二,小于等于六,我都可以通过一些显示的模板,把它给构造出来啊。

所以说呢我们就可以可能说就是不仅仅呃,只要求我生成这个区域都是四边区域啊,也可以是非四边区域啊,非四边区域就说2~6边的区域呢都是可以啊,你说这样的话,像你说我把整个的这个约束啊就把它加快了。

包括我也可以把一些尺寸的约束啊等等,把它加到这个里面啊,这个里面它就变成了一个什么啊,变成了一个整数规划问题啊,然后去求解,因为我要得到上面的分段数,这边我就跳过了,有时间关系。

那么也就是说我通过这些分段数的计算对吧啊,实际上我最后得到的,原来我认为四边区域的话啊,比如这么一个这些东西是吧,还有这些绿色的,这些都是我要满足的一些约束,对吧啊,如果是都是全四边区域的部分的话。

会得到这么一个结果,就前面那个方法是,但是如果我们是要求啊,是要求存这种非四边的对吧,22~6边的都存在的话,我最后的得到这个区域破分,你可以发现我这这边又是一个t字结果,对不对。

这边也有一些梯度结构是吧,然后我继续说这个剖分的,这个是不是就干净了很多啊,比如这个跑分三,是非常接近于我们这个用商业软件进行手工的,这个跑分的时候,他得到的这个区域分。

而我们这个部分呢是通过我们标价上诱导出来,一个自动化的pop是吧,有时候可以发现上市这两个呃,还是这个它的这个芯片结构,也已经是干净了很多了啊,也非常容易理解对吧,那么基于这么一个分辨结构在上面呢。

我就可以用我们的一些啊,2~6变的这么一个呃,没办法对吧,没办法,就可以构造出相应的这个六面四面体网格出来,四面体网格出来,那么这边呢就是构造出来这个一些网红们,可以发展,这个质量呢还是挺高的。

嗯这边是更多的一些例子啊,就是说我们正是有允许他这种非,四边区域的这种剖分啊,所以我们都会得到了这个区域剖分的结果呢,啊还是挺好的,而且我们说呢这些啊,四片区域或者非四边区域的抛喷啊。

我们上后面也是可能啊,应用到我们这个什么啊,等级和分析里面,作为参数化的一个非常重要的一个工具,这边是一个例子,就是因为我们,而且呃这边呢还是还可以满足这个边界的一些,尖锐特征,对吧,就看下。

比如像这个美女,他这个尖锐特征的,这个也是也是得到了很好的满足,而且使用了这个基点的数目呢也是比较少。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊这边是另外一些更重要一些结果,其实我们原来的是都是把从中,先从三维生成二维,然后再返回三维是吧,中了一些影射的方法,但是后面我们想就是这个标价上的框架,是不是可以直接在身为表面的计算进行分区呢。

啊当然也是可以的,对吧啊,为什么为什么要走这个路线啊,因为你如果是比如我们一个多亏格的模型,特别是封闭的模型也是很难嗯,大家都做做过一些,如果做过一些网格参数化问题的做法,知道了吧对吧。

你必须要切一刀才能做一些网格参数化对吧,然后呢再去再去生成这个传统化的网格啊,而且你这个时候说产生这个扭曲啊,其变可能还是嗯还是非常严重的啊,所以说这个标价厂的机器。

是不是可以直接在三维表面计算平均分区呢,啊我们都能当然也是可以的对吧,这样呢这个时候呢,呃,我们就是说直接在三维表面进行,变压场的计算啊,并且就这个就类似于求解一个曲面上的pd对吧,我们如果有同学呃。

学过一些计算数学的同学都知道,我求解曲面上的p d e,和求解这个平面上的pd一啊,这个相应的这个求解的框架都是不一样的啊,都是不一样的啊,而且在这个里面,我能保证这个算法的鲁棒性和效率啊。

我们在流线延伸过程中,我们要进行这个重新网格化的过程,然后呢,再通过这个全局的整数规划,来进行这种边界分段式的计算啊,是现在我们一个区域分界处,它的这个一些呃。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

相容性的一个问题是,这边就是我们啊直接在三维模型表面来进行,三维标量场的计算,上一边加上对吧,然后得到了这个分区,就我们也是可以允许这种t字的,非四边的这个结构存在,然后生成相应的这个视频啊。

四边形网格啊也会得到比较好的结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊而且我们这个在保持尖锐特征方面呢,也是有比较好的一些结果的呈现。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这边是一些例子啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对其网格射程,现在呃是我们国内也是非常关注的一个方向啊,因为它确实是第一个,就是它是连接我们cad和cae的啊,特别是在有限元这个框架下,一个非常呃重要的一个步骤对吧,重要的一个步骤。

而且现在网格生成属于前处理的过程对吧,然后在这个前处理里面,你可能不仅仅是单纯的网格生成的算法,还有一些章几何的一些处理的一个,给一些方法对吧,一些问题啊,这个也是非常重要啊,这个也是非常重要。

另外一个是网格生成里面特别是抛分啊,这些对我们整体和内鱼来讲,也是一个非常关键的一个步骤,非常关键的一个步骤啊,像我这个呢我说我们说呢在网格生存啊,现在关注的人也是很多的,包括我们国内。

特别呃也是没有这种自主可控的,网络生活的引擎啊,然后最近几年啊,最近几年,特别是在我们这个数字风洞工程的这个,这个支持一下啊,我们这个绵阳这个气动中心啊,在唐宇飞老师的带领下啊。

像我们也是把我们全国的几个做网格的啊,一些优势单位聚集在一起啊,然后呃实际上在网格领域呢,也是先做了一些相应的一些软件平台,比如这个n w grade star是吧啊等等啊,那么在2021年的时候呢。

我我我们一个呃浙大和的行列啊,一块联合举办的,全国应该是最近的第一届的一个,网格生成的即用的研讨会,当时参会人数呢也是将近了300人啊,那么今年在2023年呢,我们在大连有大连理工大学呃。

雷达老师这个承办的呃,这个网格生成及应用研讨会呢,会在7月14号到16号啊,在大连召开啊,也欢迎感兴趣的同学和老师啊,多投稿,然后特别是一些呃企业的单位啊,如果你像这个占座也是非常欢迎。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好今天我就给大家介绍这么多,主要介绍了这个网格生成啊,这有些人分析啊和网格生成啊,那么三嗯,也希望呢就大家通过这次课能够理解啊,我们这个优先要分析它的基本的思想,是通过一些简单的例子啊。

然后知道我这个一些简单的语言分析信息,我应该怎么去做对吧,这对我们后面理解登记和分析的呃,这个求解过程呢是非常有帮助的啊,那么说网格生成的是原先分析非常重要的,前处理的步骤啊。

那是不是我们等你和就不需要网格生成了啊,那么我们前面也说过了啊,其实不是的对吧,那么我们后面就会给大家介绍,面向等级和分析的这个呃参数问题啊,所以这个参考问题三,就是和我们有限元分析的网格生成。

是类似的问题,而且里面他们可能最终呢都啊殊途同归啊,同归变成了一个什么大块颇丰的一个问题,大块颇丰的一个问题啊,也就是说实际上我们实际上说,有些人里面的这种特别是结构化混合生成,和我们登顶盒里面的呃。

特别是参数化啊,无论是这个平面传送化还是体操的问题,最后都变成了规矩,成了一个呃,现在目前大家非非常关注的一个大块颇丰啊,也说我怎么样通过一些,自动化的一些技术能够实现这种大块的部分。

进而为我们高质量网格生成,还有等级和分析的参数问题啊,提供一些呃非常好的借鉴啊,非常好的一个工具啊,这是我们呃目前大家都非常关注的一点啊,那么这个方面既有我们既可以从理论上,然后做一些呃做一些推导对吧。

又可以什么啊,又可以从一些比如b站场上这些方面呢,来做一些工作,来做一些工作啊,应该说我觉得这这两个不止这两,这两个大的这个路线,我觉得都是非常有希望啊,都是非常有希望的,好后面还有点时间啊。

看我们这个呃线上有没有一些同学,有没有一些问题,我们可以交流一下,今天因为是用了这个w ps,因为里面有些公司啊,他中国中那个ppt就又乱掉了,因为时间的关系来不及改了啊,用w ps来放啊。

所以可能没有全屏啊,而且大家谅解,就是我这边是全屏的,但是肯定在你的那个画面上,不是没有全屏,看大家有没有问题需要交流,有限元方法到底是基于理是吧,还是加滤镜啊,我的,我的理解就是离吃法。

它实际是一种变分方法的对吧,加六金山我们有加六金有限元对吧,所以说我觉得加热金,应该是有限元方法的一个子集,而力有限元呢是通过理财方法推导出来,还有同学问这个i game view安装等会给视频教程呃。

群里已经有同学这个安安装成功了,而且我们已经把那个安装的一些环境啊,还有这些都都已经呃放到我们这个github上面,大家按照那个上面的要求来一步步来,我想应该是没问题,因为有些同学已经在群里就说的。

运行是可以安装成功了,对说到这个i game will啊,说到这个啊,i game will,就是呃,我们后面呢也是希望大家能够把i game好用起来,我们现在已经把这个i gmv。

给我们这个开源的这个样条库是吧,已经放到了tt hub上,那么也是希望能够可以在上面呢能够做些输入,但也希望大家在使用的过程中,如果有一些bug啊什么之类的,可以给我们提一些a小。

这个2~6边区域都可以的,这个模板生成四边形广告模板生成论文,有的,不压产生成网格的,我们这个论文应该是有的,为啥非得非得划分为这个四边形三角形不行吗,三角形单元当然也是可以啊,就是四边形网格单元。

它实际上有的有些就是说可以有非常好的呃,呃,在有限元单元计算里面,有非常好的一个性质对吧,因为有些三角形单元你如果划分的话,它实际上只在某些方面,它无论是计算的精度啊什么之类的啊。

是啊嗯要比这个三角形要好,其实也非常容易好,非常容易理解对吧,剩下的人应该都是这种杂乱的对吧,除非你是高智能的三角形,但四边形如果是以高只能四边形的话,它实际上就是会和我们这个情况是。

非常就是沿着形状特征来分布的,对不对,还有一个就是四边形,它的一些计算里面,它实际上就是自由度比较少嘛啊,而三角形的自由度就可能比较多,所以在计算效率上也是有区别,br厂的网格生成这个文献也非常多。

那么我们也有发表的一些文章,好如果大家没有进一步的问题,我们今天的这个直播就到这儿啊,再次感谢大家,祝大家周末愉快,我们下次课会讲,这个登记和分析的参数化的一些问题,因为下次是五一假期啊。

到时候会不会上课,还还那个呃,到时再定吧,再通知在群里面再通知啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES302-等几何分析 - P4:4. 等几何分析中的计算域参数化 I - GAMES-Webinar - BV1dM4y117PS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊各位老师,各位同学,大家晚上好,那么我们现在正式开始,刚才有那个评论区,有同学说我们这个噪音底噪有点大啊,可能确实是就我现在用的是苹果系统啊,我不知道为什么打开这个o b s这个直播软件。

他这个风扇就转得特别厉害,这个这个还请大家见谅,那么我们这次课给大家介绍,这个登记和分析中的计算与参数化,那么前面,几次课啊,前面三次课,我们上次分别给大家介绍到这个等级和分析的,这个它的一些背景对吧。

还有这个曲线曲面躯体建模,以及这个有限元分析和网格生成,那么呃因为五一假期的原因啊,我们也有这个两周没有见面,那么上一次为什么要给大家网格生成啊,实际上就是说,也是为我们这次课做一次铺垫。

通过上次课的学习啊,大家已经知道,网格生成是有限源里面非常重要的一个,前处理的步骤啊,那么对于等几何分析来讲,是不是就是啊没有这么一个前处理的步骤了,或者不需要这么一个前处理步骤,实际上是不是的啊。

那不是,也就是说呢,等级和分析呢也是需要一个前处理的步骤,那么这个前处理的步骤呢,就是我们这里的这次课要讲的这个,计算与参数化的问题啊,计算与传统化的问题,这是我今天呃所介绍的四个装部分的内容啊。

首先介绍呢这个计算与参数化问题的由来,那么然后呢介绍这个计算与参数化的,它的质量评价,那么它和我们这个呃有限元分析里面啊,有限元方法里面的这个网格,生成它的这个呃质量评价有哪些不同。

最重要的呢是我们的第三部分,也就是说这个计算域参数化的构造,在这一部分呢,我们要将重点介绍一些呃计算预算的话,呃构造的一些方法啊,当然主要是呢还是我们课题组这边的一些工作,那么最后呢给大家讲一下啊。

这个计算与传统化这么一个研究方向啊,他的一些开放性的问题还说呢,希望能对大家的注意,以后做研究啊,能够有所启发,那么首先介绍第一部分。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是说这个计算域参数化的由来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们实际上是在前面也给大家介绍的啊,这个等级和分析的主要思想啊,他就是啊用和这个cd系统同样的表示啊,就是这个nb表示啊来表示同样的这个几何,还有相应的这个物理场,从而呢可以实现这个几何建模。

物理仿真,他们真正的从这个数学意义,也就是说这种呃数学空间上的一一字表达对吧,那么实际上在等级和分析里面啊,我们再来回顾一下啊,那么实际上它的这个计算单元啊,实际上是比较能够体现这个等几何和有限元。

它们之间的这个本质区别对吧,也就是说在等银河里面的这个计算单元,是我的这个样条奇函数的定义域,也是我的节点区间所对应的纸面片啊,也就是说的这个节点区间呢,它实际上就是如果回到我们的物理遇上啊。

他就自然对我们这个计算域实现了一种呃,大块的颇丰啊,那么这个大块铺分所形成的这个每一块啊,就是我们这边所谓的什么啊计算单元,计算单元对不对,而在有限元分析里面呢,我们的计算的m就是呃小的三角形。

或者这个三维问题的就是四面体是吧,那么所以呢,就是说在传统的有限元的方法里面啊,有限元的方法里面,我们希望实际上是从cad到这个有限元,我们还是希望能够把,还是需要把这个cad的这种解析的表达对吧。

这种nerous的表达,把它通过网格生成这个阶段来生成离散的网格,然后在这个离散网格上面呢,摘一种有限元方法来进行仿真分析对吧,得到你所想要的这个物理层,那么这个呢是它的一个主要的一个流程,对吧啊。

也就是说同样这个网格生成呢,是在里面只占了一个非常重要的一个地位,那我们说对于等级何来说,是不是就没有了网格生成这么一个步骤,实际上也不是的啊,也不是说也就是说呢,商是对于特别是三维问题来讲啊。

对于等级和i j来讲啊,实际上你还是不能直接在这个cad上对吧,因为我们现在这个cd系统给大家的都是什么,边界表示,边界表示,对,你说也是不能在这个边界表示上直接做什么啊,这种ig的。

除非你做翘的问题啊,或者一些一些表面的一些问题对吧啊,但是如果你要做一些结构的问题,这种需要一些实体表示的话,需要一些实体表的话可能就不行,可能就需要我通过什么啊一些体量化方法。

把它内部的液体能来给填起来,所以说呢这就是呃,也说等你和它同样需要这么一个呃,参数化的一个一个步骤对吧,怎么这么一个步骤呢,呃也是对应于我们等你和里面的这么一个,前处理的步骤,那么爷爷说呢。

当时这两者之间呢,我们说在有限元里面这种离散的网格对吧,而且等几何里面,等你和里面我们是用光滑的刀妹啊,光滑的区域使用样条来表达的这种形式对吧,那么实际上在有限元里面这个网格的质量,它的quality。

实际上也是一个在有限元分析里面,是一个非常重要的一个a9 对吧,非常重要的一个a9 ,那么啥在我们图形学或者在有些人里面,都有一些方法,就叫做比如叫remix对吧,就重新网格化,重新网格化上。

也就是说可能我原来给你的这个网格这个质量,它的这个节点的分布是不均匀标,哎你们说呢它的质量或者一些雅各比啊,又有小的单元,又大的单元大小不均不均匀对吧,可能还有些退化的三角形啊。

那么像这些呢在我们仿真的时候呢,是也是或多或少会产生一些影响对吧,那么我们通常通常需要可以用一些,重新网格化的一些算法对吧,这个如果大家学过前面的这个,数字几何处理的课程啊。

那么实验就应该付晓明老师对吧,也应该也给大家介绍了啊,里面的一些重新网格化的这些呃一些一些技术,那么实际上这个重新网格化呢,就是我来怎么样来提高这个他的一些呃,网格的质量对吧。

实际上这个在有限元里面呢也是非常重要的啊,那么对于等级和来讲啊,我这个网格质量呢又体现在哪呢,这个呢大家可以想一想啊,可以思考一下,就是我这个呃对于等级何来讲,这个网格的质量体现在哪啊。

三也是我们自然是15,是计算与传统化的这个质量,也就是说,实际上是在我们修士院士的这个书里面,他已经提出来了啊,对于等级合来讲,它面临的最大的一个挑战,就是我怎么样从边界信息啊,再把它的内部啊。

用一些三维的样条参数化表示,能够把它给填起来啊,这也是因为我想的就是,等你的分析发展到今天啊,至于它能够呃广泛应用的,非常重要的一个瓶颈问题,那么也就是说在等级和分析里面它的计算域啊。

对于二问题的就是一个什么啊,平面的一个b样条曲面对吧,就像这么一个区域,它就是我们的一个计算域啊,它就是我们的一个计算域,它就是平面的一个呃变调曲面对吧,这些白色的材料控制网格对吧,那么对于三维来说。

他的这个ig里面的计算域就是一个什么,一个有是有了右位,还有w3 个参数方向的呃,一个变量条体,变量条体就是等级和的计算与那么相应的啊,对于爱问题我们所得到的这个solution field。

就这个这个物理场对吧,我所得到的二维的数虽然它是个标量场,但是如果把这个标量场和我的这个计算意义,把它组合起来,你所得到的算是一个什么啊,我们后面也会有个例子,就像是一个什么啊,空间的一个变量调曲面。

也有说我这个平面的是吧,只有sy分量来表示它的什么计算域,那么另外一个高度啊,z的分量就是来表示这个什么啊,它的物理场,那么对于三维问题来讲,它可能就是一个比如类似于这种带颜色的啊,一个变量条体啊。

也就是说这个变量条体它的控制定点呢是什么,是有这个思维的,四维的一个一个一个一个向量的一个表示对吧,它的第四维的这个分量呢,就是来控制它的这个物理层这个分布,那么这是在等几何里面。

他的这一些基本的表示啊,就是说实际上大家一定要去理解,这么一个问题啊,把这个表示啊,就等你和他一些特殊的表示,要把它理解好啊,这样的话,你才能够真正理解这个登记河的这个精髓啊。

那么为什么我们说这个在等级和分析里面,这个计算域的参数化啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就显得特别重要啊,就显得特别重要啊,呃实际上我们说呢第一个啊,像这个呃计算域的这个参数化,实际上就是我们这个什么,有限元分析里面的网格生成的过程对吧,咱没时间呢是等价的,那么为什么它显得尤为重要呢。

因为我们前面讲过啊,等你和为什么会带来效率上的提升啊,是因为它的什么啊,他的这个嗯这个自由度啊,要比有些远呢来的来的更少对吧啊,那么所以相应的人呢我这个参数化的质量,它实际上最终是由什么来决定的。

唉三就是也是这个内部的控制中间,比如说对于这么一个区域,它上市由我们就是一个平面的计算域,对吧啊,他这个平面的计算域最简单的,你可以就他的理解成是由我有呃四条变长曲线,这是一条这是一条,这是一条这条啊。

这么四条变调曲线对吧,围成了一块这么一个棕色的区域啊,那么这么一块中色区域的话,你最后要把它会变成这个b样条表示对吧,变量条表示啊,实际上这边的话大家都知道呃,如果我给你了这个四个边界的。

它的这个这条曲线的话,像这个这个样条曲面的什么,他的这两个方向的这个节点信息对吧,也就确定了,那唯一不确定的是什么呢,唯一不确定的就是这四个绿色的控制,顶点的位置,对不对啊。

也就是说只要对于中午给你这么一个区域来讲,这四个控制顶点的位置,你是可以任意放置,你是可以任意放置,但是不同的放置的对不同的放置的方式,可能会带来什么不同的这个参数化的,这个结果对吧。

那么你相应的这个参数化的质量呢,呃也就不一样,所以说呢就是我们这边我这边想说的是,就是说就是因为在等你和里面,他的这个呃进度唉比较少是吧,所以说呃它的质量是完全只有这,比较少的自由度来确定。

所以说就是这四个控制零点的具体应该怎么放,就显得比较重要对吧,另外一个呢就是在等几何里面,在等几何里面,它的这个,加戏也要说细化的,为什么要做加戏,就是为了为了提高这个仿真的自由度对吧。

哎为了提高这个仿真的这个呃精度对吧,我需要增加这个自由度,所以呢就说我需要对它进行加一,加息呢,对我们样条来说,我可以进行什么节点的呃,插入对吧,我让这个节点区间变多对吧,那节点区间多了。

你现有的这个控制顶点的这个数目也就多了,对吧嗯还有一个呢就是说我可以升阶升高次数,升高刺激的话也是可以增加自由的对吧,因为大家知道这个北站曲线一个三次的,他有四个控制点,你如果把它升高到五次。

那就有六个控制顶点啊,比如说控制顶点数目,你的自由度数目就多了,那么你后面做仿真,它的精度就高了对吧,嗯所以说但是这个它和有线里面有什么不同的,有宣言里面它也有可以增加最多的方式对吧。

我也可以插入小的呃,把这个三角形进行细分对吧,给一个变成四个或者一个变成三个对吧,那么这种细分的加息的这种操作,它实际上在我们这个有线网格里面,相对来说是比较任意的,对不对,但是对于等几何来讲。

你不能任意对吧啊,特别是基于numbers的话,哎你只能说按照这两个方向啊来加对吧,来增加自由度,来插入节点或者是升高次数,但是说但是说对于我们这个呃,等你等级和分析里面的话,你上是不能够任意的加息。

我们当然后面有一些可以局部加息,比如我基于这个t像条啊等等这些来做对,这个也是可以的啊,但是呢这种任意的加息的方式呢,确实是没有像有些人那样来的这么自由对吧,来得那么自由,所以说呢我们说呢。

实际上就是说这个好的参数化,对于等级何来讲呢,就显得更加的这个重要啊,更加的重要,那么刚才讲的实际上是给你啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一个封闭的一个平面区的边界啊,这边都是呃同一个区域,同一个区域是它的这个边界信息啊,都是一样,都是四条标标条曲面的曲线对吧啊,那么实际上对于这个平面的时候,大家非常容易理解对吧。

我给你这个呃边界之后上这块区域,我就我就给定了对吧,但是这个区域内部它这个参数化怎么构造啊,就是不一样了对吧,也就是说你的孔子零点可以是这样,非常高质量的对吧,这样均匀的啊,毕竟是垂直的这种分布对吧。

你也是可以这种非常低质量的对吧啊非常集中,都都集中到这儿来了对吧,可能还会产生一些自交啊什么之类的对吧,也是可以这种对吧,他们所带来的是吗,虽然这两个区域你就会得到一样的。

但他为什么这个区域的参数化是不一样的对吧,所以说这也是为什么,我们在呃等级和谐分析里面啊,在ig里面把这种呃他的这个钱处理的过程,就是说啊网格生成的过程把它称为是什么啊,计算与参数化的这个过程啊。

这么一个东西,你还说呢我这个区两个区域啊是一是一样的啊,但那个区域内部的参数化呢是不一样的啊,这个这个不一样是由什么来带来的,是由这个内部的控制电缆的分布所带来的,那么这我们可以就是根据这两个呃。

平面参数化的这个结果,也是它的控制顶点的这个分布的这个情况,去是去算一些问题对吧,就算一个算一些等级和分析的问题啊,比如这边我觉得应该就是呃在这个两个区域上,分别算了一些呃。

他的这个呃呃一个热传导的一个问题啊,然后我会得到这么一个减曲面,我们叫做srs surface对吧,这是就是刚才为什么说,我们说对于二维问题来讲,我用i g a得到了这么一个标量场的表示。

和它的这个计算域复合起来,实际上就是一个空间的三维空间,的一个变道曲面,对不对啊,大家可以看到这个高度啊,这个高度这个z实际上就是它的这个什么啊,温度场的这个大小啊,越高说明这个地方温度越高啊,越低。

这边低呢就温度越低对吧啊,就大家可以看到,就是说我基于左边这个参数化的结果,所得到的这个温度差对吧,它的分布是这个样子啊,应该说它是比较贴近于我们要解的这么一个,p d e的这么一个方程的啊。

毕业这么一个方程,那么如果基于我们这个右边这么一个参数化,质量比较奇怪的啊,比较奇怪的这么一个,在这么一个参数化上去做相应的这个pd的求解,我最后得到这个solution surface啊。

啊是这个样子,为什么是这个样子的啊,因为它的参数化是不好的对吧,也就是说它实际上是在他的这个右半部分的,自由度是非常少的啊,可以说是没有的啊,所以说你最后剪出来的这么一个。

得到这么一个solution surface啊,它它只能是这个样子啊,怎么是这个样子,当然我可以怎么做啊,我可以加戏啊对吧,我可以这边如果增加一些自由度对吧,增加一些自由度。

然后这边呢就他可能就会变成变成这个样子,变成这个样子就大家可以看到啊,虽然虽然对于同样的这么一个区域啊,我我用的什么控制顶点的数目是一样的啊,但是这个控制电缆的分布不一样对吧。

那我所带来的这个呃他的这个仿真的结果啊,计算的结果啊确实有非常大的不同,而且这个不同啊,不仅仅体现在它的分析的这个精度上,而且还体现在它的什么啊,他这个收敛的速度上,对它的收敛率,收敛效率啊。

也是有这个呃比较大的这个影响,所以说呢就说这个等级和分析里面啊,这个参数化啊是一个非常重要的一个问题啊,大家也通过这个例子呢也可以看得到对吧,也就是说如果我们把这个物理场的,比如它的这个等级线啊。

变量当中一些颜色银色啊之类的把它画出来啊,这是野核对吧,哎这两个结果是一样的对吧,就大家可以看到唉这个它的呃,基于我们这个左边的这个参数化,均匀的参数化所得到的结果呢。

就比较呃比较贴近我们真这个真实的点对吧,但是基于这个差的参数化,我得到的这个解呢就比较非常奇怪对吧,和我们这个千丝线的,还是有比较大的这个距离啊,比较大的这个距离,那么这就是说呢。

我们通过这么一个简单的例子来说明一下,就说这个呃等几何的,他的这么一个,他的这个参数化呢对这个等级和分解啊,它这个影响啊,那么让我们在2013年的时候,就说这个发表了cad上一篇论文。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们也是对这个计算与参数化质量,对分析结构的影响呢写了一篇论文啊,在有些同学呢可以去去查一下,这个时候我们也是对相应的这个商务问题,也进了一些调研啊,就是说如果你这个呃体的这个控制网格。

是这种正规的分布对吧,而另外一个体操的话呢,它的控制网格是一个呃比较一个,奇怪的这么一个分布的话啊,奇怪的一个分分布的话啊,实际上还是会有些对,他最后的结果呢是有比较大的影响对吧,包括它的收敛效率。

所以说既然这个计算与参数化啊,计算与参数化对我们这个呃,最后的这个这个这个影响呢,等你的分析这个球也影响是非常大的对吧,所以说那怎么样才能够去构造一些嗯,好的这个参数化,来满足这个登记和分析的要求啊。

就,变成了变成了呃,我们这个呃这个这个问题里面比较重要的呃,我们等你的分析里面比较重要的一个问题对吧,啊,原油商我们先从一般来说,我们就先从简单的这个问题开始对吧,我们就先来看这个平面问题。

二维问题就是说给你一个,四边的对吧,四条边界曲线bbq啊,然后我怎么样构造这个内部的这个,绿色的控制顶点对吧,然后去呃生成一个适合我们等几何的一个,参数化的结果啊。

就是我们这个问题呢可以这样这样来来来说啊,这样来说,那么三对于这二位问题上来讲,那对于三个问题上就说过,如果给你呃六个啊,对于体的问题,大家想看什么问题啊,也就是说如果我给你六个,对吧。

如果是六个边界曲面,这个计算域的边界曲面,我怎么样找到里面的一个最好的一个题材的话,也说这个体的一个最好的控制顶点的分布啊,控制网格,然后来呃呃来作为我这个计算有的传统化,比如说我们这边呢。

呃所未知的这个变量的就是什么,就是啊内部控制点的变量变这个分布是,当然这个计算与参数化问题啊,它确实啊还是呃目前来说,对于这个三维复杂问题来讲,我想我们还是可以把它称为一个open的一个问题。

open的问题你说他并没有真正得到彻底的解决啊,特别是对于这种啊有裁剪曲面的对吧,复杂拓扑啊,我怎么样去构造这种适合分析的参数化,目前仍然呢我觉得还是有非常大的空间呢,值得大家去探索,上次呃,自从这个。

我们这个一些参数化工作提出来之后啊,后面有很多人都来follow呃,follow对吧,后面也是这个先生的论文呢也是非常多的,我这边基本上就是只统计了这个,17年之后的话,后面还有很多很多论文出现啊。

但是我们大概把它分一分的话啊,可以把它分为这么四大类,我想目前应该还是还是应该就这么四大类吧,第一个就是说我怎么样去面相分析,来构造一些最优的传统化,对吧嗯,也就是说实际上这边会面临一个问题。

就是说我们刚才讲到。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

刚才讲到就是说呃他要分布的均匀,要正交是吧啊,那么实际上对于特定的一个问题来讲,比如dotu等于f,我要在这个区域上求解这么一个pd 1,实际上就是说我这个控制顶点,是不是越均匀越好呢,嗯可能也未必啊。

可能也未必啊,我们只能说保证了他对大多数的问题是好的啊,就要求这个均匀啊,正交啊,这些条件对吧啊,但是对于某一个特定的问题来讲,未必均匀正交啊,就是好的啊,就是好的,那我们后面呢呃应该是比如下次课啊。

在呃呃给大家讲完这个整体核桃,它的一些基本的修甲框架之后呢,我们要给大家介绍一下,这个最优参数化这边的一些工作啊,然后这个里面就在这个有限元里面,也有类似的工作,他们叫做r ref啊,r版本就这个r加。

那么在二维方面的三,就是我觉得它应该叫做和这个remix啊,什么之类的,这个r开头的吗,应该是差不多啊,方言说,就是怎么样能够让这些控制顶点重新定位,对吧啊,然而对于某我的某一类问题啊,他这是最优的啊。

它是最优的,那么还有另外一个类的工作呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是说哎我通过一些拟合的思路啊,通过一些拟拟拟合的思路啊,既然我直接构造啊,比较难对吧啊,那能不能通过一些拟合的思路来构造这样的呃,这个呃提样条的参数化呢啊当然是可以的对吧。

当然这个这个里面他们的输入呢,一般都是一些边界的一些三角化啊,那么来我怎么样去通过一些比如呃,类似于polly cuba啊,或者其他的一些股价啊之类的啊,然后我怎么样去呃,构造相应的这个体参数化的变量。

体的这个参数化的一些工作,实际上这个里面啊这个里面呢呃非常重要的啊,重要的工作呢,啊,我们这个美国这个克莱基梅隆大,学的杰西卡教授课题组呢做了很多重要的工作,在这方面还有一个呢。

呃就是说我直接直接反对吧,啊我直接从这个样条的这个边界啊,去构造适合分析的这个传统化,然后这个里面呢我可以把它分为两大类,将就是分别对于我的二维问题和商务问题,就是说平面参数化和体参数化的一些问题。

但目前我家的这个相当于这个等级和参数化的,论文呢应该也非常多了啊,我觉得可能总共加起来,我觉得也有也有上百篇了吧,可能会超过100篇了啊,那么对于这个呃,特别是最近几年应该也是呃现实中也比较多啊。

那么上我们在202011年也就12年前了,发了呃,第一篇这个关于这个呃等几何里面,这个参计算与传统化的一篇论文啊,目前的他他也已经达到了啊235次啊,235次啊,那么我们相应的也代先生这个体上的话啊。

方面呢也也发表了一些工作啊,现在的这个太尹树木呢,也是应该都是我这个发的论文里面呃,排名最靠前的这个动物的,大家都超过了100次啊,那么,实际上啊实际上就是说这边我列出了一些,就是从2年以来啊。

就是引用我们的一些一些文物的文章啊,相应的这个算数化的一些工作啊,比如像这些呃中科大清华莱老师啊,他们把这个呃t h b样条,就这种结带的多层次呃,样条把它用到这个题材的话里面,这是22年发表的啊。

包括这个黄健老师啊,我们一块合作的一个工作啊,就是我们通过这种,b形式的这个polly cube或者polly square的这种思想,在这种派系结构的简化,像这个厦大的曹曹娟老师啊。

他们把这个tcb一样调用到这个登记盒里啊,还有一些类似于这种发函数的方法等等,也都是发在一些像semi啊,c g d啊,cad啊,这这上面啊,这边的不接电了啊,这边是一些。

比如啊啊最近今年的工作也是有的啊,比如说还有这个像陈老师把这种呃,深度学习用到这个登顶盒的这个参数化里面,他们主要是解决什么呢,一些边界对应的问题也是如果给你的意思,一个蜂蜜蜂蜜的一个曲线啊。

蜂蜜的一个曲线我怎么样啊,我怎么样去找到相应的最佳的这个角点啊,最佳的角点我怎么找啊,是呃呃就是所谓的这个边界对应的问题,边界对应的问题,好这是我们第一部分啊,来给大家介绍我们这个等级和啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

里面这个计算与参数化它的由来啊,它的由来啊,就是大家呢我也想到应该对这么一个问题呢,现在呢应该有了一个基本的理解对吧,基本的理解,那么下面呢我们介绍一下这个啊计算与传统化,它的这个呃质量评价就是什么。

到底什么样的一个参数化,它才是好的呢,啊它才是好的呢,啊我们非常希望去呃去找到这么一个答案对吧,唉那啥我们在1年的时候,我们提出了这个适合分析的这个参数化的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这么一个概念对吧,像我们这边的主要的这个思想上,是来源于这么三点,第一个就是说我最后的这边的四个控制顶点,它的位置怎么放啊,那么第一个呢就是他应该满足这么一个条件,叫做这个体,也是说呢。

我最后形成的这个编导曲面的这个等参线,这个等差结构啊,他应该啊他应该是呃没有自交的啊,也就这些绿色的线对吧,和黄色的线啊,他们这些资产是应该没有支教的啊,也就是说我从参数域到这么一个物理句。

他们之间应该是一个什么啊,一一影视楼,one two one的一个一个一个一个影视才行对吧,比如说是凭第一个没有之交啊,那么这个等拆线这个大家应该理解了,你看那就是我对这个右方向和位方向分别。

比如这个采亚马,比如这边我采用了,比如是比如说是20分对吧,这边也是20分啊,那我就就会生成新成这些黄色的和绿色的,这个等拆线对吧,那么这个jective也就是说这个单色啊,这个他的这么一个要求。

就是要求我这些就反映的就是我这等菜业呢,它不能有支教啊,为啥不能自交呢,因为我后面求等于和呃,分析里面的我就要用到一个雅克比变换,我需要从这个物理域把它变换到参数域,然后在参数域方面的求积分是吧啊。

如果你这个变换是有直接的话,也就是说你这个两个比呢可能就不大于零的,可能就是啊对吧,小于等于零啊,这样的话实际上是对于我们这个嗯是有问题的,是有问题的,对于我们后面的基转,另外一个呢。

就是说我希望最后这个形成的这个等参线啊,这个绿色的线和黄色这个等餐结构啊,啊就是我这边不行的一些小块吗,选择单元吗,这样小的单元呢应该它应该是越接近越好啊,实际上这个也有反映出来。

就是我们这个呃在等个几何里面,它的这个计算单元啊,是啊,最好大小比较一致才比较好对吧,实际上这个对我们和在等级和在有限元里面呃,踏上也是比较一致的啊对吧,也有这个要求,另外一个呢就这样。

等产业呢最好是相互正交的啊,也就是说是相互垂直的啊,比如这边的这个黄色的线和绿色线啊,我这边的最好对称的都是90度才行,90度才行,那么有了这么这么些要求对吧,有了这么些要求。

那我怎么样去求解这么有问题呢,也就是说我怎么样由你给我的这四条边界曲线,我去构造内部的这个呃,内部的这四个控制顶点的,那么怎么样把它转换成数学模型,或者计算机的一些算法对吧。

恰好有的同学啊仔细想一想就可以想到对吧,嗯这三个条件如果把它合在一起,就是一个什么约束优化问题对吧,约束优化问题啊,也就是说我无论是非线性约束啊,还是非线性优化也好。

我总是可以把它变成一个约束优化问题对吧,我的约束是什么,哎约束是什么啊,就是我这个injective对吧,就说没有直销,这是我的约束对吧,那么我的优化是什么啊,优化就是什么啊,每一个单元尽量的均匀对吧。

尽量均匀,这就是我的目标函数啊,啊然后呃这些等参线尽量的自交对吧,这也是我的另外一个目标对吧,也就是说这样的话,就是我就把这么一个适合分析的参数化的问题,把它转化成了一个约束优化问题,约束优化问题。

但是对于约束优化问题来讲,我们来一般来讲的话,一般都要什么有什么啊,初始节啊,初始节特别对于这个非线性这个约约束来讲,对吧,那么我这个初时节怎么来构造的啊,怎么来构造的啊,实际上是。

如果大家对这个c e d比较熟悉的话啊,都都知道的啊,都知道的啊,上次我有四条边界线,边界曲线我怎么样去构造一个曲面,最简单的方法是什么啊,就是超限差值啊,特别是这个控制的什么超限杂质的方法啊。

cos上是我们前面也在介绍这个曲线,曲面建模的时候,也给大家介绍过了,对吧啊,cos是上次在我们cad基地里面,是做了非常重要的一个贡献,就是以他的名字来命名的,这么一个控制超限产值的方法。

超限材料方法三,就说我给你呃,四条边界曲线,我怎么样去构造啊,相应的曲面模型啊,这种超限差值的思想来做啊,但当时他那个那个思想呢,他这种什么啊一个解析的方式对吧,也就是说无论你这四条边界曲线呃。

是b2 条也好,还是其他的参数曲线是什么,sin cos引发的,其他的参数曲线来号主要是参数表示的,我都可以,我都可以来生成这么一个公式曲面对啊,但是我们对于我们等于和来讲呢,我们这边的是什么啊。

就是一个给你的边界呢都是b样条模型啊,所以我们这边呢呃可以怎么来做呢,可以怎么来做呢,实际上就是我们可以用把这个控制的方法,进行推广啊,当然啊我们将来讲一下,首先来给大家讲一下。

这个就是说呃怎么样才能保证它的一映射对吧,啊一映射,那么如果是一个应用设呢,呃就要买这个东西啊,就这个雅各比啊,这个雅变怎么算的呢,啊,就是我们如果假设这个b样条曲面,平面的变调曲线。

它是一种张量积的形式对吧,这是它的表达式对吧,但他对u的一阶偏导,对x方向,还有对u u的偏导y方向啊,对v的一些片段x分量,对v的偏导的y分量,它们形成这么一个矩阵啊,叫做雅克比矩阵啊。

那么这个雅各比矩阵的行列式啊要大于零啊,如果这么这个变平面的变量曲面,它满足这一个条件的话啊,满足这一个条件的话啊,那么我们说这个f u v啊,就这个平面的变量曲面它就是没有直角的。

所以形成这个等差结构就不会有直角的啊,所以说啊所以说啊这是一个什么,就是它的一个约束,我们前面讲的对吧,那么具体来讲的话,如果我们把这么一个它的这个呃,雅各比矩的行列式,就是雅各比的值。

把它让算按照这种一去运算对吧,去运算,然后我们可以知道这个求导的一些公式对吧,通过第二条的一些理论都可以把它推出来啊,上我们就是说呃如果按照账来算对吧,因为它是2x2的一个矩阵。

它的行列式呢也也比较容易写出来对吧,那写出来之后呢,我最后呢实际上这个东西啊就是这个东西呃,我是把它可以把它通过一些整理啊,按照一些b样条的一些公式啊,啊我实际上就是可以把它写成什么。

把它这个b样条曲面的雅各比的行列式啊,的值啊,它的算法呢写成一个圆,形成一个战斗机变量的形式,那么无外乎就是它的这个次数都升高了,一个是2p减一次,2q减一次对吧,因为这边是两个,你看两个求导相乘嘛啊。

所以说他这个肯定会次数升高了啊,那么我这边呢gi键就是我的这个控制系数对吧,那么实际上这样的话我就会得到一个条件,实际上就是说我们对于边条或者北京,我们前面也都学习了对吧。

它都有一个叫什么图包性质对吧啊,也就是说如果我要想让gf键这个东西大于零,我只要让什么啊,我是不是只要让这个g i g大于零就可以了啊,为什么啊,因为第二条函数它满足突破性的,也说我睡了这个图函数啊。

加起来都等于一的,当然都是大于零的对吧啊,也就是说如果jj都随着j i j都大于零,那我这个键呢肯定也是大于对吧啊,所以说这样的话呃,只要我想就是只要让这个什么j i j啊,它大于零啊。

然后我最后生成的这个编号曲面呢,它就是没有自交的对吧,没有自交,比如说我们我们进一步把这个条件,可以把它放松是吧,还有一个就是我们呃说呢,什么样的一个一个东西它才是好的对吧,这个平面参数化才是好的呢。

啊这个参数化的这个计算机参数化才是好的呢,还有一个非常重要的就是在我们有限元里面,就那个刚度矩阵的条件数,刚度矩阵的条件数啊,也是一个非常重要的一个指标啊,那么也就是说我最后把每个单元的刚度矩阵。

把它装起来啊,单元的刚度矩,主要你的声音形成一个整体的一个,刚度矩阵对吧,那么这个整体刚度矩阵它装我可以把它什么啊,这个条件数条件数把它给算出来,就是可能是dio是吧,这个条件数它实际上是表征矩阵稳定。

就求特征值了,就是表征矩阵稳定特性的一个,非常重要的一个标志,你如果条件数说是越大的话,就说明你这个矩阵后面求解起来越不稳定,而且呢啊对,特别是对于比如这个求这个线性方程组啊。

这些数字计算的一些求解器啊,它的呃你如果用一些迭代的算法的话啊,可能这个呃收敛的速度也是比较啊,慢的也是也是对他有影响的啊,所以说呢,呃这个条件数量也是非常重要的一个指标啊,实际上目前就这个像这个呃。

中科大的陈发达老师啊,他们课题组做了一些参数化的工作啊,也是就说怎么样,我通过一些嗯优化了一些方法对吧,我融入到这个最后形成了一个刚度矩阵的条件,数尽量的少对吧啊,12是在2014年的时候啊。

奥地利这个这个,约翰开普勒大学的这个啊波特教授啊,波特教授,波特ut,实际是在我们cg里面比较,也是比较有名的一个课题组啊,在他们课题组呢提出了一个呃做了一个工作啊,它实际上就是说。

研究了我这个计算域的参数化啊,包括它这个节点的分布,对这个等级和里面,它的数值稳定性的这个影响啊,那么他们里面的一个主要的一个结论就是说啊,我这个最后形成了这个高度矩阵的这个条件数,高度矩阵的条件数。

适合我们这个计算域的参数化,包括它的这个节点的这个分布啊,是有比较大的这个关系的,那么也就是说呢,他给出了一个他的一个条件数的一个上限,一个上限啊,那么我们当然后面这样了。

有了这么一个理论上的一个一个支撑的话啊,像我们说的,就是说可以根据这么一个理论支撑来去哎,优化对吧,来让我们这个就来给我们做一些指导,就说我怎么样去构造一些最好的这个参数化啊。

那么这边的一个非常重要的呃,你看这边的h1 h2 ,实际上就是说呃是他这个两个方向啊,形成了这个这个这个单元的这个大小啊,单元的大小啊,也就是说h一乘以h2 对吧。

呃如果我要让这个这个东西我要尽量的小嘛,而尽量小,让它尽量的大对吧,那么要尽量大,也就是说什么呃,大家都知道,有技能可以让这个h一和h2 尽量的相等对吧,也就是我最后申购这个单元要尽量的均匀啊。

见到的均匀,也就是说30前面我们提出的这些标准啊,再通过这么一个工作啊,实际上就是得到了一些验证对吧,得到验证,也就是说这边他给的一些原则对吧,比如说我在两个方向的这个偏导数的,这个这个模对吧。

他尽量要相等啊,而且这个他们这个偏导数求导的,尽量是要接近90元,一说我们前面提的,我们在11年提的工作就是要尽量的正交,对不对,尽量的正交啊,另一位,另外一个呢,就是说我这些小的面积的这些单元呢。

尽可能要避免啊,尽可能面避免啊,而且呢就是说呃,就是他们这个单元之间的面积的方差啊,要尽量的小,对a h的小说,尽可能这个单元之间呢它们之间要尽量均匀,尽量均匀,也就是说呢大家有兴趣的话。

可以去看一下这个这篇论文啊,开这篇论文,这篇论文给我们做参数化呢是一个非常重要的,我觉得是一个理论方面的一个支撑,那么所以呢我们后面要给大家讲一下,就是说这个计算与参数化的一些方法对吧。

好我们刚才讲了啊,一个是要求什么啊,没有正交对吧,没有自交,另外一个呢就是这个呃这些等参单元啊,要尽量的越均匀越好对吧,还有一个呢就是说我这些等参单元,这个等拆线要尽量的垂直,尽量的正交对吧。

如果我们把后面两个作为我的目标函数,把前面的这个无没有自交,就是这个j i j大于零对吧,作为我的这个约束,我就可以用一个呃最直接的一个想法呢,就用这个约束优化的思想呢去求解对吧。

约束优化的思想去求解啊,但是对于这种约束优化的问题非常重要的,里面呢就是要求什么啊,要有一个初始节啊,那么初始节我们这边用什么方法啊,就用一个我们这个furry,我也起了cad的主编。

在99年提出了一个叫做离散的一个控制方法,一个离散的超限材质的方法啊,那么这个这个想法这个问题是什么呢,实际上就是说啊,如果我给你的这个边界的这些控制顶点对啊,这就是我边界的控制定点对吧。

这些啊给你这边界的控制边界,我希望我参数化,上次就是希望把这些绿色的控制链,把它构造出来对吧,那最直接的就是这种离散的控制方法啊,这个离线的控制方法呢,他上次也用超限杂志,它你可以看成是沿着右方向的话。

我做了一些线性插值对吧,就这一步对吧,另外呢沿着v方向我又做了一些线性差值啊,把他两个加起来,但加起来之后呢,肯定多了多了这些东西啊,多了这个东西我多了,结果又减去什么呢,又减去什么呢。

减去就是我这四个角点啊,他们之间的一个一个一个一个组合啊,一些信息啊,这样的话就不多了,然后就嗯构造出来的就可以啊,形成这么一个呃内部的一个参数化的一个结果,但这么一个但它是一个非常简单的一个方法。

对不对,它里面没有任何用到任何优化的东西啊,就是一些线性的计算,线性的计算,你若简单的东西吗,你得到了对吧,没有免费的午餐,你说到了这个参数化质量,对于一些轻音可能就会有问题。

比如这边你看控制网格就自交了,对不对啊,因为这边它是一个all的边界,对吧啊,然后你就用这个用这个离散的恐龙方法,来促使构造一个一个一个一个传统化的话,它就可能会产生直交了啊,会产生直交了。

当然我们也是可以把这么一个呃,离散的孔子的这个曲面上的这个工作对吧,把它推广到这个到体上,也说我有六位三个方向,那么无外乎呢就说我这个推广的话对吧,我这个推广的话就会啥也不是那么直接的对吧。

也不是不直接,我要考虑啊这么八个交点的位置啊之类的啊,还有他的一些一线性插值对吧,那我八个角点的位置我都要把它给考虑进去,那么所以整体上显得要要复杂一些,要复杂一些。

所以我们给出了一个就是叫做离散的孔子的,一个体的构造啊,也就是对全面曲面的一个过一个一个推广,要是有的话,这个东西的话,就是说给你呃边界的六个六个曲面啊,六个边界曲面它的控制顶点。

我就可以通过这个离散的孔食疗方思想呢,我就可以把内部的这个控制电脑,它的初始位置啊构造出来,那么后面我们就说这个问题的描述啊,实际上对于我们这个体的体的这个方式呢,就是这个问题的方式呢。

就是说哎我给你边界的六六个变量曲面对吧,我怎么样构造出内部的控制定点啊,让他能够满足我们前面所提的一些条件对吧,所以说你最后生成的这个呃压态体呢,它是应该是没有直接的啊。

然后呢呃这个这个质量呢应该是呃比较高的,就主要是呃这个等差单元,甚至这个单元啊要尽量的均匀,并且等三线的要尽量的垂直是吧,所以说我们就可以把这么一个问题,变成一个约束优化问题啊,约束优化问题。

那么这个约束优化问题啊,这个约束优化问题啊,那我这个当然这个约束就是我刚才讲的,就是这个亚比个别的控制系数,这个j i j k要让它大于等大于零对吧,嗯那么其他的两个指标啊,那么这个均匀性和正交性。

我尚可以通过这些它内在的一些能量函数,作为一个近视,那比如说这一项啊,应该就是和这个正交性相关的,增加线相关的啊,相互垂直啊,增加线性相关,那么这一项就是和它的这个均匀性相关的啊,均匀性相关的。

有同学说诶,这个东西怎么会和这个呃正交性相关的啊,因为正交的话应该就大家应该知道,我应该是这两个方向的,它的点击等于零,对不对啊,就说明这两个两个向量是正交的对吧,那么点击等等我可以把它放松一下。

就说哎这个东西它应该是小于等于什么和c的,什么这个模平方加上这个它的平方啊,到1/2的,所以这个我们我们是知道的对吧啊,所以说我就放松了一下啊,把这个等于零这个东西啊,点击等于零。

这个东西啊把它放成这个样子啊,也就是说我通过呃这么一个约束优化问题,也是我们目标呢就是让这么一个能量函数啊,因为它是一个体重的问题对吧,所以它有三个传送方向啊,这么一个流量函数啊,最小啊。

并且要满足这个控制系数j i j k的待遇,然后通过这么一个求解,这么一个约束优化问题去求得啊,我这个内部的控制点的,它这个分布,这么约束呃这个优化的这个方法对吧,当然我们可以进一步的啊。

进一步的把它推广到这么一个呃多块的清洗啊,多块的清洗,而且我可能要求这个呃每一块之间比,这一块和这一块之间,不要满足一个c一连续性啊,所谓c一连续呢,就为虽然这个和我们这个啊。

曲面里面的这个c一点零呢是一样的对吧,不外乎呢就是说嗯这个表达更复杂一些,更复杂一些,这就是对连着这个可c方向,它对可c的一些偏导呢是相等的啊,那么这就是我们说啊,这是我们是一个c一连续的变调。

blog变二条体对吧,嗯也是我们前面讲过啊,就是说从曲面推广到躯体啊,呃有很多的这个问题啊,可能都是一些平行的推广啊,但是比如像这个c一连续这个问题啊,是个平行推广是吧,但是可能对于其他的问题。

还有某些问题并不是那么直接的啊,我们后面也会提到,那我想在后面花点时间啊,可能再给大家介绍一个这个我们在g cp上啊,做了发表一个工作,叫做变温调控的一个思想来做的啊,因为今天可能这个时间关系。

就是说呃,我们可能参数化这一部分呢不会完全讲完,那后面留的部分,剩下部分呢我们可以下次跟他来继续讲,那么这个变更调和,这个思想是来源于来自于哪里的啊,来自来源于什么的啊。

上去说我们主要是啊来自于这么一个结论啊,这么一个结论啊,也就是说呢如果啊如果一个影射啊,这个西格玛如果这个影射它是调和影射的话,那么它的阴影是它的阴影是,也就是说从p到s的这个区域的这个影射。

这个阴影色对吧,它就一定是one two one的,就是一一对应啊,一对应啊,也就是说实际上我们有了这么一个结论的话啊,我们说等你合里面,不就是希望能够生成这种一一映射吗,就没有直角吗,对吧啊。

那我是不是只要满足对吧,只要满足呃,让这个西格玛是调和就可以了,对不对啊,也就是说实际上这个问题就变成了,我怎么样构造这个s,我怎么构造这个呃,这个s它内部的一个控制顶点对吧,那他最后设置这个参数化啊。

对应于也就是说从西格玛到p啊,这个颜色是调和的,是public的,就mapping就可以了,对不对,那么这么一个东西,也就是说我这个p是对应的对吧,我是知道的对吧,也就是说是是我的边界曲线来决定的。

边界曲线嗯,确定之后,我这个参数预算就确定了,它包括它的节点向量啊,次数啊,这些信息就确定了对吧,所以说后面的问题就变成了诶,我怎么样找到这个s它的内部的这些控制定点,对吧,让我最后形成了这个影射。

从s到p的影射,它是一个调和影视啊,那s到p的影射呢我就可以三,就是如果这个参数域是可see it对吧,see it,那么s4 p到到p的色调音色来说,coc对我这个物理空间的这个坐标。

x和cc对我这个位置坐标啊,这两个参数方向对吧,也是要满足德尔的cos x y等于零,带的it x y等于对,有人说这样的话,所以因为目前大家都知道诶,我知道s我对我有这么一个表达式,对不对啊。

像我如果知道s,我对cca的求二阶偏导是是比较容易的对吧,但我这样反过来我是coc对x求y角偏导,我怎么来求,我怎么来求啊,所以说呢这边呢就会转化成了这么一个问题啊,转化成了这么一个问题。

那么转化成这么一个问题之后啊,转化成这么一个问题之后啊,我们那怎么样能够把它把这么一个对吧,这么一个模型,这么一个pd把它转换成我们一求解的方式呢,啊,所以我们这边呢,就需要把这边的这个调和条件啊。

把它转化成在参数域中的一些约束,对不对,一些约束啊,那么我们这边叫主用的用到的是什么啊,就是链式法则啊,就是链式法则,也就是说我可是对x的求导对吧,我可以把它变成是什么啊,把它倒一倒是吧啊。

在这个链式链式链式法则都都都学过的,我这边就不仔细推导了,那么实际上我通过推导之后呢,我们就可以把前面的这个东西啊,这个东西把它转换成,这个样子也就是说原来是这样子对吧,我把它转化成这个样子。

那么这样的,它实际上就是对于我们x对coc的这个求导啊,这个东西加起来,然后再u对对,u呢,实际上就是也是我们这个啊,x和y的这个分量对吧,你可以把它看成这个样子啊,也就是说像这样的话。

它上去变成一个什么啊,非线性的一个方程,对不对,非线性的一个pd一是吧,原来你如果对x y的话,看成一个线性对吧,但是如果我通过一些呃,那是法则啊,也类似于这个雅阁比吧,变换吧。

然后我得到了最后我得到了这么一个东西啊,双子变成一个非线的一个东西对吧,那么当这个思想啊,这个思想在网格生存里面也有啊,也有通过网格通过调和影射啊来做啊,但是我们这边的一个创新点是什么呢。

啊实际上就是说我们可以发现呢,实际上是在一些比较凸的地方,或者比较凹的这个边界的地方,它的这个单元啊还是不是那么均匀对吧,还是会产生一些呃面积,这个相差比较大的这个情形比较大的情。

所以后面呢我们呃商又做了一些创新啊,或者又做了创新,那么我们就是把呃前面的这个啊,特别是这个面积对吧,均匀性对吧,我们前面不在,所以说这个这个这个能量对吧,就是我的这个呃参数化的这个,均匀性相关的对吧。

这个能量,这就和我们这个参数化的这个正交性相关的啊,正交性相关的啊,那么我们就把这些呢,和我们前面的这个就这个东西啊,把它合在合在一起,就会变成了这么一个新的目标函数是吧,新的目标函数。

也就是说我们把这个均匀度量,和这个增加的度量啊,这两个能量函数放在一起,然后前面有个系数对吧啊,然后呢这个呢就是我们前面这个调和条件的,调和条件的放在一起是吧,那么这个l是什么啊,我们讲的。

那么这样一来的话啊,这样一来的话,我们实际上就是说啊,又变成一个一个一个优化问题对吧,我我就可以先用这个控制方法,去构造一个初始的啊,然后再用一些比如梯度下降之类的优化的方法。

然后去纠结这么一个非线性优化的一个问题,然后去纠结好,当然这个速度上效率上还是呃有待提高的啊,但是他最后的结果上确实会会比较好啊,会比较好,比如这边就是呃是这种离离散的控制嘛,就是初始构造的对吧。

就因为它的边界应该是什么样子的,就其他的三个边界还好,都是直的对吧,但这个比这个边界就就特别的凹对吧,特别的复杂啊,稍微比较复杂,那么实际上对于这个边界的话,你如果用这个控制方法直接来构造的话。

就可以发现有大量的制造区域是吧,这块区域和这块区域对吧,这都是自交呢是边比较严重的比较严重的嗯,那么对于这些自交的这个区域,我怎么样区别啊,那利用我们这个变频调高的方式对吧,大家可以看到。

就是说我可以生成这么一个传统法,那么像这个传统化,实际上就是说诶在这些呃地方,我上次是啊避免的指教了对吧,所以说,可以有效的避免地方直角,那么这玩意这是另外一个地址啊。

它的边界实际上是我们这边都看不出来了对吧,它的边界是什么样子的啊,这边边界三就是像这样对吧,像这个就是这个区域的边界是这样子的对吧,你如果用这个直接用控制方法来构造,去构造这么一个啊一团糟的一个东西啊。

一团糟的一个东西啊,也就是自交也更加严重了啊,更加严重了啊,那么用我们的这个变温调控方式,然后去构造啊,那么上去会可以有效的去避免这种支架啊,避免这种直角,当然我们也是可以啊,可以把这么一个一些结果。

把它怎么推广到这个呃体的情形啊,体的情形,当然对于体的情形的话,我就有有三个三个方向了,对吧啊,也就是说我这边呢这个,那更复杂了对吧,那就应该就是cos x对x的二阶偏导,coc对y的二阶偏导。

还有coc对z的二阶偏导对吧,然后艾特也是有三项对吧,都给你,那么还有一个什么,可是还有另外一个方向对吧,第三个方向啊也是要有这这三项加起来啊,所以说这边我也有有三个三个等式才行是吧。

那相应的把它转换之后呃,通过这个链式法则对吧,还是通过链式法则来做,我现在这个这个l啊,这个表达式啊,这个l前面的这个东西就更加复杂了,更加复杂了是吧,这个没有也是把它给简写了一下啊。

有一些记号和一些记号啊,比如a所以就是这个a2 a3 减去2x,那么这个a这个a一有什么啊,就是他们你看交付需要巨大的就是s队科技,他的这个点击他的点他的点,然后它会直接点。

所以说呢就是说呃如果对考虑三个问题,现在这个调和条件,调和影视的条件呢会呃更加的复杂啊,更加的复杂啊,当然这个推导呢还是还是能够推导出来的啊,那里面啥也不难啊,又到了啊。

大家看到就是一些就微积分的一些知识对吧,那么有了这样之后呢,我们就可以把这种呃二维的,二维的这个呃一些能量把它推广到三维对吧,那么比如这个就类似于我们我们这个,均匀性相关的啊。

那么这个呢就是我们这个增加性相关的啊,增加性相关的啊,那我们来去求解现在体上的问题,比如说我们搜一天用这个第三控制方法,将构造内部的这个呃压桃体的这些控制顶点,然后通过求解这么一个非线性优化的问题。

来得到内部的这个解,来得到这种高质量的t3 化的结果,这边也是给出一点,这就是我给出了一些对吧,边界的六个六个曲面对吧,就是相应的边界的曲线是可以看出来,可以看出来啊,这通过控制方法所构造出来的啊。

就很不均匀,质量比较差对吧,那通过我们的方法得到的就是两个一起,那我们在相应的在上面进行这个呃,等几何的求解对吧,大家可以到就是在这块上他这个呃嗯记住了,肯定是没有我们想象的那个样子对吧,像这个的话。

就是和我们这个真实的这个简单更加接近啊,更加接近这边是它的一些呃,那么我们说样条曲面,我们是有等差线对吧,那么样条体呢我们是有等差曲面了对吧,嗯那么这是对于其他的一些例子啊,就输了一些边界曲线的是吧。

就用库存的方法来做啊,然后用我们的方法来做,那还有点时间,你可以再继续往下讲一讲啊,那么这刚才讲的这个调和对吧,调和一个方法啊,变分调和啊,为什么要变分调和呢,我们就记住了这个调和的这个条件啊。

又送了一些优化的这个变身优化的一些思想啊,所以我们把它称为一个变温,调和的一个方式来做,当然现在目前的话我们所考虑的对吧,我们都假设呃我给你的这个边界都是都是参数,都是给定的对吧,都是给定的啊。

当然这也是我们一个本质的一个要求啊,就是说呃我给你边界曲线,给你边界曲面对吧,我希望把内部的这个呃控制里面把它构造出来,然后再得到一个没有自证,没有自交的啊,就是相等参与结构。

相互垂直的等差结构比较均匀的呃,一个呃计算域的参数化的结果对吧,但是有的时候呢,我的这个所给你的这个边界曲面或者边界曲线,它自身的这个参数化就不好,啊比如说这边就是一个大家都知道对吧嗯。

我对于同样的一条曲线啊,同样的一条参数曲线,我可以有多种的参数化的方参数化的形式,对不对啊,像这个圆对吧,像这个圆我可以用sin cosin,我也可以用这种nb表示来进行表示,对吧啊。

那么对于样条曲线啊,同样是样条曲线也是一样的,也是一样的,对吧啊,我既可以是一种啊这种非圆弧的参数化形式,也可以这种弧长参数化的形式对吧,这种非弧长参数化的就大家可以看到啊,就在这一部分它是非常密集的。

但是在这一部分它就是非常稀疏的对吧啊,应该说如果你基于这么一个参数化的结果,去构造这个呃,无论是平面的参数化还是体的参数化的话,你所构造出来的内部的这个呃参数化的结果,它的均匀性啊,特别是它的均匀性啊。

是不是很难达到对吧,是不是很难达到,所以说我们这边呢就就想就想啊,我能不能对我的这个边界参数化来进行优化呢,但是可以的对吧,所以这边就是我们这边这个工作的一个,主要的一个想法。

就是说我可以对左的边界来进行重新参数化啊,重新参数化啊,就是类似于我们对什么网格来进行重新网格化,一样的啊,来进行网格化一样的,你说我怎么样,哎我这个边界还是这条曲线对吧啊,但是呃它的参数表达变掉了啊。

通过这么一个参数表达的一个变换变换,我就它最后生成的这个这些曲线,这个它的参数化是非常均匀,就变成一个什么啊,我们所谓的弧长参数化啊,弧长参数化,那么怎么样来做的啊。

怎么来实现这种真正的边界的重新参数化的,就大家首先要要记住,要知道这一点,就说我在呃通过重新参数化啊,那么这个原始的这条曲线通过重新上的话之后,它的形状是不变的啊,这个大家一定要知道对吧。

它的形状是不变的,外形是没有发生变化的,变化的,只是什么指标的参数表达,变化的只是它的参数表达对吧,那么我们这边怎么来做呢,啊,实际就是就是我们这个叫做曲线参数化或者,曲面重新参数化的这个思想啊。

那么商这边我们的目标就是来构造一个最优的,mobile重新参数化变换,重新到呃最优的一个mobile变换,来对这个边界曲面或者边界曲线来进行,重新参数化,然后来得到一个高质量的一个等差结构啊。

但是呢在这个过程里面,它的这个边界的几何呢要没有发生任何改变,所改变的只是它的这个参数表达形式是吧,那么这个mobile是纯新人的话,实际上就是这里啊这个这个框框里面的这个啊。

就是相当于就是说啊我原来的这个nb是曲面,那是曲面对吧,是这样来表达一个这个有理的,差账机的一个形式,对吧啊,那么c i j是我的控制顶点那么多,i j是我的全因子,然后a i p d j。

q是我的两个方向的这个奇函数对啊,那么我现在做mobius变换,mobile重新三分化怎么来做的呢,就是把我这个的u和v分别啊换成下面的啊,也是u呢,我让它等于这个东西,we呢让它等于这个东西。

也就是说用的是关于coc的一个表达式,可视的一个表达式,v呢是关于a的一个表达式,那我们把这个变换呢就是非常著名的一个变化,叫做啊bob变化啊。

大家知道这个有个叫莫莫比五代mobile stream是吧,但在这个末末古时代就知道了对吧,就是一个蚂蚁在上面爬,怎么样,也也也也你也爬不到尽头对吧啊,就这个mobius带对吧。

那mobius变换的重新重新开的话呢,也是就这样来定义的啊,啊也就是说我就可以把这个u呢换成关于coc的,dlv呢,换成一个关于呃a它的一个表达式对吧,然后我把它带进去之后。

把它带入到这么一个r u v里面对吧,那我i u v是变成了一个什么啊,关于r c a的一个表达式对吧,那么这个表达式那肯定发生变化了呀,那它距离变成了一个什么样子啊,具体变成什么样子啊,实际上。

我们可以证明啊,我们可以证明就说把这个u换成这个表达式啊,v换成关于艾特这个表达式之后,我们会得到一个新的nx曲面啊,我们会得到一个新的,那是曲面,那么这个新的那是曲面。

这个新的那是曲面和原来的这个number曲面,iu v,也就是说这个arc it和这个i u v,它具有同样的什么控制零点啊,但他的全日制和节点向量发生了变化,发生了变化。

那么这是一个非常重要的一个结论,我们是可以把它给推导出来的啊,也就是说通过这么一个mobius变换之后,我可以实现这么一个重新参数的过程啊,那么我这个重新参数化之后,会得到一个新的novs曲面。

这个nova曲面它呃,和原来的模组曲面具有同样的控制顶点,但是具有不同的呃全因子和不同的节点向量,也就是说全意识和静电计量发生了变化,那么这个权意识变成什么字呢,啊这个这个上面加一个帽子啊。

就是我新的权益值对吧,它会变成这个形式,那么这个kl呢,就是和这边的这个阿尔法和贝塔,相关的一些东西啊,bt相关的一些东西就变成这么一个啊,所以说这样的话我们就可以有我们的目标了,对不对啊。

我们的目标是什么啊,我们希望来对这个边界曲面的这个参数化对吧,来来进行一个优化,那优化的目标是什么呢,让它这个边界参数化,边界曲面的这个参数化呢更加的什么啊,均匀它的等等,三角和光大的均匀对啊。

所以说啊我们这边的自由度是什么呢,唉你这种优化的变量是什么呢,唉是只有这里什么阿尔法和贝塔,也就是说我怎么样找到一个,最好的阿尔法和贝塔啊,然后经过这么一个mobile重新参数化之后啊,我得到一个新的。

那不是曲面,这个那不是曲面,它的等差结构更加的均匀,更加的均匀啊,这就是我们的目标对吧,好有了这么一个东西啊,有了这么一个东西啊,实际上我就我们找到了这个问题对吧。

也是我怎么样找到一个最优的阿尔法和贝塔,但我最后的冲击参考结果呢能够存在均匀,那均匀怎么办呢,啊那我们有也可以给出一个呃目标函数来,那么这个目标函数就是和我的这个等差结构的。

均匀性均匀度量相关的一个目标函数啊,有了这么一个目标函数之后,我们就上就是我怎么样找到最好的阿尔法,贝塔来满足,来优化这么一个目标函数就ok了啊,那么下面呢给大家看一个例子对吧。

这边就是说比如说是呃我边界的啊,兰博是曲面啊,这是我初始的这个边界的,这个它的一些参数化的结果对吧,就可以抬到来,这里比较挤啊,比较容易啊,但这边比较稀疏是吧,这边比较稀疏啊。

那么通过这个mobile重新参数化,找到这个呃阿尔法和贝塔之后,然后我最后得到这个b界参数化的是吧,他就肯定要比这个来的均匀是吧,来的均匀啊,那么基于这么一个基于这么一个边界的,重新参的话。

来构造相应的这个题材的话对吧,那么所得到的呢也会更加的这个体,这个等差面对吧,行政结构也更加的均匀,更加的均匀,这就是我这个最后整个的这个体态化的,它的控制的一个金额对吧,控制的这个金额啊。

所以大家可以看到这个控制定点还是挺多的,在这个例子对吧,这边是另外一个例子啊,这边那个例子大家看到这部分,他的这个初始的参数化也是比较,也是比较这个不均匀的对吧,这边比较挤对吧。

但我最后的这个结果啊就显得比较均匀啊,通过这么一个重新上的话,相应的在上面来来构造下一个这个呃,提倡法就可以,好吧,那后面的内容呢,我们呃就是下面这个,就是我们变成这个复杂拓扑的这个平面。

遇上我怎么要来构造现在的这个呃,汽车有的传统化啊,这是我平发展在这个c8 比,2018寸的这个位置,因为时间关系呢,我这边就呃就不往下进行了,我们就就停到这儿对吧,那么后面的这点时间呢。

大家看有什么问题啊,我们可以交流一下,就大家可以看到啊,首先我们通过这节课让大家来理理解,就是说啊等你和这个计算与传统化,它具体的来来呃,是来做什么问题对吧啊,他是怎么由来的对吧。

那么这个质量是什么要求对吧,我刚才说的这么几点吧,第一个就是说它的呃,这个等差结构不能有自交啊,另外一个就是它的等差结构啊,要形成这个单元啊,等参单元啊要尽量的均匀大小尽量的均匀啊。

然后这个等差线或者等菜面要尽量的垂直啊,就两个参数方向或者三个参数方向的这个图,它就要尽量的垂直对吧,还有一个我最后形成了这个呃,某个问题里面的这个刚度矩阵,组装起来的刚度矩阵。

它的这个呃条件数要尽量的小啊,要尽量的小啊,这个也是一个更更高深层次的一个指标,然后我们介绍了基本上就是呃呃三种吧,计算与参数化的方法,第一个方法就是约束优化的方法对吧,约束优化的方法。

我们可以把这么这些呃财通化要满足这些指标,变成一个约束优化的问题对吧,第二个呢就是这个变温调和的方法啊,那么为了满足这个1~1映射,我们利用了一个调和,隐私的一个优美的一个性质啊。

然后把它转换成一个啊也是一个约束,有约束问题,然后来纠结对吧,然后呢我们又研究了这个,又又又给大家介绍了这个边界的重新参数化,也说你这个边界它的这个等差结构不均匀啊,那么我怎么样啊。

能够通过一些重新参数化的方法,让边界的这个等差结构呢来到均匀啊,来到均匀,这我们也主要是这么介绍的这三个方法,三个方法,但后面呢我们还有其他方法呢,呃包括啊这个复杂的一些情形啊,包括一些开放问题啊。

我们下次课啊,下次课再给大家介绍,因为我们本来也是安排了两次过了啊,就是计算与参数化这一块啊,一个是平面上的话,一个是体操化,但我这边呢就是呃为了就不重复吧,我我是把它放到一个一个一个完整的。

一个系统的一个ppt里面来给大家介绍。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好后面大家看大家有没有什么问题需要交流的,这边有同学问高阶精度也不行吗,嗯我的理解你说的就是那个呃,如果控制零点分布特别不均匀对吧,就就像刚才那个问题,就是说他如果到了,他如果到了这一侧对吧。

哎他如果到了都集中在这一侧啊,那我上这边是没有自由度的对吧,所以说我最后得到这个结的可能是这种情况,可能是这种情况,确实会出现这个这个这种情况的啊,确实会出现这种情况的,即使用高阶。

我们以为这边已经是高阶精度了啊,有同学问控制顶点不在计算单元上计算的量产,准确吗,准确的啊,就是说我们虽然这个控制点确实不在,我们这个呃实际的雾面上,对吧啊,但是我最后的呃这个屋面上这个量产。

我最后是就是把它又把它转换到这个控制顶上,来算的啊,所以说他们之间,控制顶点和我这个屋面上的这个单元的位置,我们是有一个什么隐私关系的,对不对啊,通过g函数这个来进行影射的啊。

少爷说他可能没有像有些人那么来的直接啊,但它里面呢确实也是有一个关系,可以找得到的啊,这个是啊,没有问题,奇函数没有差值性,为什么控制点的量产要差值,这个问题我没有特别明白。

我想应该你和前面的那个那个那个这个问题,应该是类似的一个问题对吧,也就是说实际上是我虽然我们这个啊,波斯坦基函数变量基函数。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

它没有像这个拉格朗日基函数那样有差之性,对吧啊,但它中间呢是通过一个呃控制定点,和这个这个曲面,这个雾面他们之间建立了一个影射关系啊,通过这个引线关系来完成的,而且准确来说这个影子关系应该是参数域。

比如说我这个呃,casu和为了这个参数域到我的s y空间,这个隐私关系来完成的啊,而不是而不是通过什么啊,而不是通过这么一个,就你说的这么一个差值,这么一个概念来来实现吧。

啊干同学们还有没有问题需要交流的,啊有同学问适合分析要求,空中网格也不能自交吗,这是一个很好的问题啊,也就是说控制网格自交并不一定代表,它的参数化真的会自交啊,因为他们两个之间是没有一个一个。

一个一定一定会计较的这么一个关系的啊,但是我可以通过一些约束对吧,因为他们控制网格和这个孩子,好像和前面那个同学问题也是类似的问题,就是我的控制网格的呃,空中网格和我的曲面上的这个雾面的这个点呢。

它是有一个隐私关系的对吧,你说空中网格自交并不一定啊,并不一定你的参数化会提交啊,所以说啊所以说就说即使空中网格直接了,我可能也是能够进行pd求解的啊,但我并不觉得空中网格增加了它这个参数化嗯。

还是适合分析的,如果同学们没有其他的问题,我们这次的直播啊就到这儿,我们下次再见啊,应该是周六晚,周六晚上七点钟。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值