GAMES 图形学系列笔记(四十三)

GAMES203: 三维重建和理解 - P9:Lecture 9 3D Deep Learning - GAMES-Webinar - BV1pw411d7aS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好我们看三次了,那上上一节课是那个因为我有一些那个中断了一次啊,就是我们这一次还加了这节课,还有两节课好吧,然后我们准备把这个就是深度学习啊。

就是我们前面讲到的这些这个geomege processing python对吧,我们深度学习这一块我们给认真的啊,就是把一些谈一些我的感受吧啊呃大部分文章大家都读过啊。

但是我我希望就是呃就是谈一些我自己的感受吧,啊希望大家有帮助好吧,然后深度学习其实在特别在这个计算机视觉这一块呢啊真正起来的吧,其实就是因为有这个alex net啊,这个真的是就是给大家带来了一个。

特别是对计算机视觉这个领域带来一个突变啊,其实好多时候啊就是机器学习这些东西啊,啊特别像这个就是就是特别是这个architecture design以及一些training max呃,其实回过头来看呢。

就是大部分的东西他都很简单啊,但是它的这个架构设计什么东西都很简单啊,就是实际上现在就是一看就是谁啊,基本上是谁谁,就是他是一个一个一个一个时间赛跑吧,谁谁占先啊,那就谁谁得到的亏的比较大啊。

然后设计项目呢其实就那么几种啊,其实我个人感觉呢就是说呃如果大家对这个计算机重新学什么东西,就是说了解的深入的话,我觉得还是就是对这个地方的机器学习吧,他还就是深度学习很有帮助的啊,这个东西实际上。

实际上就是说对于我个人来讲,我个人感觉就是为什么前面我们讲了那么多非常基础的东西,很多东西都是20年前吧,20年前那个什么东西,但是实际上回过头来看呢,其实这些东西它都是更有帮助嘛。

你如果如果仅仅我们从架构的角度来讲,呃,如果就是仅仅是我看你的文章,你看我的文章对吧,这样我觉得效果不会太好,我这节课呢我要讲一些比较经典的东西,有一些甚至是国内一些老师做的对吧。

我觉得就是说通过对这些东西讨论的结果,学的东西我需要提供一些新的思路来看待这些文章,好吧,比如说你看这个对吧,image generation对吧啊这个这个这是干啊,这是很pl的这个test对吧。

就是说图片对吧,跟这个三维的物体它最大的区别在哪,这个区别就是商务,你怎么表示他对吧,这是这是这是这是那个最重要的,比如说三维物体,我们讲了很多种表示对吧,它有这个网格面片对吧,有这种partnice。

有implicit这个演出曲面对吧,还有这种high cular representation,还有这种还有这种这种这种电影对吧,哎这种representation对不对。

就是说唉这个这个我从从以前管理里面研究的,就是怎么让他们来做做这些建模这些东西对吧,建模啊,这个呃以及这个,对吧,渲染对吧,就是做这方面的工作,好吧嗯,那,怎么在这上面做学习呢对吧,做机器学习。

比如说机器学习呢,当然就是说最重要的一个探索,就比如说做做做做做做分类对吧,就比如说你扫描了很多,就是或者你有很多从three model对吧,你要对它进行分类对吧。

你要剩下的剩下的就是对它进行分割对吧,还有这个,对吧,比如说你有一个全能的mac,你怎么来做对他解决那个,分类对吧,用deep deep learning来说,你如果这个表示一个换的号,怎么来说对吧。

那你分类的话很写,很重要的一点就是说你要把它表示成一个veer对吧,那现在有了那个graph new network,你可以把它表成一个graph呃,甚至有一些是set,就是这个点击上面的这种分类方式。

你可以把它表达成一个点击对吧对吧,然后那从这个角度来讲对吧,那就是说怎么怎么对吧,你怎么表达表示一种某种就是形势对吧,能使得我们能来呃,能很好的来做这个呃深度学习对吧。

哎这个是我觉得是这个比较重要的东西对吧,其实我们前面学的这些东西呢,实际上就是打了一些基础对吧,那我今天要讲的主要是几种,就是point count对吧。

比如bey surface like a live,我等会也会讲一点mac对吧,就是就是就是会会加一点这个全文max的东西啊,然后,稍等啊,我回一个东西,二,那我现在就开始吧。

那我首先要讲的是就是这个深度学习对吧,就是三维上面的是最先发展来是怎么来的,就最开始一个q有发展的时候,其实你会发现没有,就是大家都会比较保守,或者就是说大家都说最先发展起来的往往是什么。

往往是最容易的东西对吧,比如说烧物体怎么表示,那么骚物体怎么表示呢,其实比如说有一个最简单的方式,就是一个word max表示是因为最开始机器学习它是在什么,他是在这种音乐起风了。

这种或者vivo上面这种regular那种非常graduate这种规则上面来做对吧,对不对,这种regular这种诡异的上面来做对吧,就是就是在这个面片上面对吧。

就是说那你推广到spring的永远是那种最追着forward的这种推广对吧,是最简单的对吧,最简单的那比如说最开始大家要做的就是说我把一个曲面嘛,把它把它表示成什么。

就是表示一个one match representation,就是一个就是我用一个vocal对吧,就是三维和vocal去表示这个东西呢,其实你严格意义上来讲分类的话。

那你应该把它分分变成是一种ted representation,就是说其实one meal representation,它是一种impression rap,一种表示形式对吧。

那你就呃把它walter white,所以这个时候呢他就你就把它变成一个bt对吧对吧,它变成一个vector,他是一个体术嘛,这就是这种范围,这种提出的这种表示对吧,那你有了这种体式的表达形式以后呢。

你就得会把它变成一个bo,这个时候呢你就可以在这个呃,在这个这个这个这个one match representation上面的来use the new network对吧,你比如说to d。

如果是做做做这种呃convolution的话,那到了到了11d嗯,那就到了three d,它实际上就是,到three d的话,那就是,呃就会就会是three convolution对吧。

ping都是一样的对吧,然后你可以找three decovolution好吧,就最开始这篇文章呢是一个就是15年,就不是他们做的对吧,就是叫three dishness啊。

呃这个东西呢我想讲一点个人的观点吧,就是说我觉得p他是第一篇,就是把这个dvd把它推广到three d对吧,他就是呃做了这个体术上的考volution,对不对,最后能就能变成一个label对吧。

最后就能变成一个label,哎这点我觉得是很好的啊,就是但是就是他没有做的很简单啊,他没有,其实后面的话有有些别的rapper,他演大家做了一些spired forward的那种extension。

我觉得会比较好,他这篇文章他没有,他他是做了一个就是convolution dc,也比ef network对吧,他是用了这种posic对吧,他就做generality model嘛对吧。

那个时候ga和v a e这些东西还没有出来嘛对吧,就是其实这也是一个学科方面很有意思的东西,就是说实际上就是说他的这个方法会非常复杂,其实大家记住的我觉得并不是真正的后面这个方法。

这个方法我觉得后面大家用的相对来说比较少,但是他的确是开创性的,就是第一篇把这个是或者就是第一篇值就是大家不要弄的对吧,就是把在这个提出上面定义了一些convolution,operation。

就要来做这种东西对吧,就convolution,而别人付了一个connected,这个东西我就我就不讲了好吧,就是我觉得这个东西从从network的角度来说,我觉得现在大家用的不多了啊啊。

然后深圳第一篇,你比如说还有一篇就是佳俊对吧,在三分对吧,他们是把这个嗯gg对gr是从to d定义的对吧,你你把它给看到这个three d上面去对吧,这个工作做的比较早的话,相对来说影响也比较大。

那就是他做了就是cd上这种必考不都是对吧,除了three d上d抛物线就是qd,他是这个嗯这个这个这个这个这个这个这个conclusion operate对吧。

那three d就是three d deution operate是吧,就是从一个net net的这种code对吧。

你能得到这个最后能得到这个three works of space里面的一个shape对吧,对但是对吧,这是一些结果了对吧,就是说你每一个每一个那个class都对,缺一个这样的model对吧。

你可以得到这个当对吧,就是枪的这种这种兼容性model,你可以得到cheers的jl型mod,可以得到car sofa table对吧,这种各种各样的形容挺mod对吧,对各种各样的情人挺好的对吧。

就是啊这个这个我觉得就是现在当然这已经过了,但是我觉得还是要强调一点,就是一个学科发展的时候,往往是最受的这种最容易的,一开始啊我觉得是应用的应用的最广的啊。

其实这个体术的representation后面也有很多发展对吧,你比如说啊大家怎么,比如说比如说你提出一个最重要的问题,很重要的问题,那就是太太计算量太大了,太复杂了对吧,计算量太复杂了啊。

这个这个这个你比如说最开始最开始做的话,你像那个gpu,你做能做到32x30x32已经很不错了,对啊,已经很不错了对吧,呃你如果如果比如说像这篇文章。

它是用这个pose的那种sweet commotion mework对吧,就是就是把那个convolution como版变成spar裂,只能做到这个四层四层40对吧,做不到对吧。

那怎么怎么怎么处理呢对吧,那你想这个比如说比如说这个最直接的问题呃,呃就是在对一个物体算这个叫dience to对吧,就是说我给一个物体对吧,然后我每个点我要看到这个这个前面的区域里对吧。

嗯或者就比如说我们以前讲过这个important service at的那个construction对吧,you那前面那部分呢是在这个mmatch grade上面做的是uniform grade上面。

那最后最重要你就是做了256256256真实了对吧,那一种解决方法就是用什么就用auto,对不对,out去的话,实际上就是说它是一种就是说只有当你这个设计附近的点对吧,我才用最细的那种规则。

那个远的地方我都是用那个用那个比较粗的主意去做对吧,远的我都是用比较粗的规则去做对吧,然后那如果是这样的话,嗯,我们就可以把这个or three,对不对,你可以把它推广到这是重庆老师组对吧。

就是18年那篇文章,就是说你可以把这个不用这个moon matter的东西来做对吧,你可以用这个archer arch对吧,那out去的话,它有一个很重要的问题,就是说如果你用orch。

你你想这个uniform这个green它有什么好处,比如说gpu friendly对吧,你处理这种啊,vvise这种就是这种限量型的东西对吧,你虽然就是说受不了现实,他很快嘛对吧。

gp you hardware friendly,然后你弄一弄成动而去的话,你就得重新去定义,对不对,那我考我不生对吧,重新去定义这些东西对吧,就是说in petition上面会复杂很多啊。

implementation上面会复杂很多对吧,而且特别是就是说你在那种比较粗的那个cell里面啊,你在那个比较粗的那个cell里面定义的这种convolution,你怎么存存,存下来,对不对。

存下来呃,沉下来,这就是我觉得是很很那个什么的对吧,这我觉得是很那个什么的对吧,对吧这这我觉得就是很那个什么的啊,所以就是说这篇文章我觉得就是闪退现象当然很高了,然后我觉得这也是一个趋势嘛,只能2g啊。

相对来说,但是就是说特别在硬件上面,怎么把这个弄得很好,这也是一个challenge啊,这也是个challenge啊,tpu上面其实以前大家做这个the orch,比如说像live cover。

像去tt对吧,最开始做的这个呃,用orch来做做普通这些东西对吧,包括那个做收费重建这些东西,包括psy construction对吧,在二区上面诶,我觉得呃这都是制作很好对吧。

但是怎么在二区上面对定义convolution,我觉得还是就是说怎么把它变得就是让广大观众去接受对吧,我觉得这是一个呃这也是一个open challenge,好对吧,这总的来说呢。

就是说实际上起诉呢呃是一种最直接了当的这种推广的方式对吧,嗯但是从他说easy,这就是如果不是二区的话,那easily increment对吧,就是hardly friendly对吧。

但是呢就是如果不用all去的话,他就是robert motion是吧,同时你也不能害到这种structure formation是吧,然后还有一种就是说最开始这个同一学就是这个三维出来的时候啊。

啊大家有一种感觉就是说必须要用那个to be的training data对吧,to be training data,它是很好的。

你比如说呃这个in internet上面这种这种label data对吧,你three d的话,如果如果直接做word max的话,你就不能用这个tvb这种training类的,对吧啊。

最开始这个东西呢对吧,这是一个需要考量的对吧,那第二种那个representation呢,就是这种呃like field的这种representation。

lifield representation啊,这个东西呢这也是一种从就是image given嘛,就是在计算机视觉里面对吧,大家做的最多的像image文这种representation对吧,就是呃。

对吧,就是说我因为上面我做微考虑,你想做考拉,你可以向我解决啊,我能不能把这个思维的问题把它变成qd的问题,变成cp的问题啊,其实现在这个发展呢,你比如说现在就是做这种recognition,对不对。

然后经常大家会把这个什么sweet shift把project tod对吧,其实我觉得啊这这个东西就是你build这个sd跟two day这种connection啊,啊我觉得这是一个长远的发展啊。

我觉得现在这个东西还没有完,远远没有结束对吧,还有很多很多东西可以做的,还有很多很多东西可以做的对吧,那就是like firefantation对吧,那什么时候来个fs reference。

就是有个sweet model对吧,然后rm rtual camera就是你把一个sweet model,把它变成很多这种image对吧,然后那怎么你有了image以后。

你就变成一个彻底的recognition的问题,比如说你看那个音频内还有很多有1000内的一个每个类有1200类,1000 1000位对吧,1000内每个每个每个每个那里有几千个人类对吧。

然后你可以用那个dn去classic玩,这个也没什么东西,对不对,你可以,然后呢,然后如果我是这个render的形式呢,那你就可以想你可以选择像这个这个东西,你可以做这个事。

你可以用cn去做classification对吧,classification的时候呢,你就可以用你得到的结果,你可以做一个py嘛对吧,就是一个graph,对不对,那就是做一个pin。

然后你再接一个sn对吧,然后就是,也可以做classification,对不对,这个好处是什么呢,就是前面那个cm里的,你可以用1米7的那个对吧,然后那个东西可以匹配很多位置都是很好的,对不对。

然后你你class法后呢,你可以看到整个class a classification,accuracy,就是跟这个three d的比,跟这个three d的比的话。

你可以看到那个不管是这个ation and accuracy,还是这个还是这个,对吧,还是这个什么对吧,那个去过的mp,他都是要比这个都是要比这个这个这个switch,这种卡不如神要强很多的对吧。

这种卡不如选它要强很多的对吧,是不是得考完陆逊还要强很多的对吧,就是这个like you的啊,我觉得现在大家就是,对吧就是真正我觉得这里面如果如果你要问我对吧,有什么open prom需要去解决的话。

如果你要问我有什么open prom需要去解决的话,我觉得就是说你怎么close这个bs对吧,你看这个render english,它是没有tx对吧,因为three one没有tt。

而你这个real images have your text对吧,怎么怎么close这个gp,对不对,那就跟这个ren那当然是有关系的嘛对吧,那当然是有关系的嘛,就是来field,其实它只是取个名称嘛。

来了之后就是说我们一个场景对不对,我们不用把那个smile model重点对吧,我们只需要ctr,就这个场景在很真实的这个view view下面的,很dice view箱的这个english。

有了这个东西以后,我们就可以我们就可以那个,对吧,我们就可以这个呃就可以对这个场景表示对吧,然后可以做些探子什么东西,好吧,那这个地方实际上就是取了这个名称对吧。

就是我不表示他的这个spring model,我表示这个the view,对不对,就rap出来的时,对有一些问题那么几个问题,比如说你你到底怎么样,什么样的view对吧,最重要对不对。

就是一个model对吧,你怎么去run的这个view对吧,你后面当然还有这个view,你怎么把它合在一起对吧,这也是很重要的对吧,对吧哎这个东西我觉得就就就对吧。

还有一点就是什么close game对吧,就是这个啊这个render image跟bo image对吧,在之间是不同的啊,这个cp其实很大是很大对吧,你比如说你from train the new。

难道我对吧,那能close the ga,嗯那第三点就是说你像这个ntr本身它就能运进来qq群里面的对吧,然后呢呃其实你也能benefit,就是说其实做qd问题嘛,就这deep learning啊。

它很有意思啊,那就是说做的人越多对吧,你往往在一个representation上面,他这个普通的其越高,他好的时候他也是有很多就是工程性的东西对吧,你做人越多,你这performance就高对吧。

实际上就是做qd的远远还是要超过做sp d对吧对吧,那你如果把它表述来的fs会利用这个东西啊,但是缺点就是说实际上它就比单了嘛对吧,还有就是view对吧,你怎么去生成对吧。

我今年有篇cp i c本就是学习这个怎么去3号这个位置,对吧啊啊但是我觉得这个问题远没有解决啊,然后tcl对吧,这个符号他们做这个东西对吧,那我觉得这个相对来说从technically来讲对吧。

我觉得这个gp有很大对吧,从这个这种这种大家传统的这种东西到一种新的reaction啊,我觉得嗯后面我会以我下两节课会讲一些小麦,这个d可能给东西啊,就是我感觉这方面的话。

就是说你怎么怎么都是从一种体格的角度去去去思考这个问题,对这point centation其实跟ko还是很有关系的,跟connev sr很有关系,然后对吧。

他实际上他过去为什么就说你这个三维的东西嘛对吧,你从这个扫描仪器里面来,它就是一个点对吧,而且这个点云呢实际上它有一个什么好处呢,就是说它是一种非常经济的表示对吧。

你比如说你high dimensional data,你你这个点对吧,你如果用我的magic这种表述,因为因为像那个音乐它也是一种文完全表情是吧,比如说这个d对吧。

你这个data它有时候比如说像我们做这个b data里面,它有这种hamon data对吧,孩子们真的你可以试对吧,你可以是个d23456 对吧,往上走对吧,你像这个这个这个partisan的话。

实际上它是一种就是诶你如果用这种点云的表示形式的话,它的这个complex对吧,嗯你至少就比如说你用100个点,1000个点对吧,具体表示的话,他他实际上他的任务complexity,嗯。

实际上它是它是呃跟他intro这个dimension,它是比如说它是熟悉的对吧,就是n的引擎是一个单身对吧,然后这exhibition它是linux对吧,就1000个点对吧。

the conditi是对吧,你的东西,那你放出来就几位对吧,我们是表示形式,它就是extremely,那时候他是formation对吧,这我觉得就相对来说他就非常复杂了,所以我觉得在点评上面做的话。

那他有很多优势对吧,不管是从这个工程对吧,就工业应用的角度对吧,还有从我们从这个很简单的微分几何的角度去看这个问题的话,实际上这个点评都是很好的,那点上他并没有完全把这个open的这个fid对吧。

我觉得这个field啊还有很大的发展的潜力,很大的发展的潜力啊,然后对吧,就是说实际上的go就是我们想做首先做classification,对不对,然后你还要做一些分割对吧,这个up做分割对吧。

还有比如说你做这种semantic semitation for english是吧,出来这样b对吧,但做出这种分割对吧,这种很重要的。

那pk呢net呢它是一种就是我觉得是一个open的一个东西去思考问题对吧,就是说把大家从一种传统的思路中给给给给拉出来啊,我觉得这是这是这是那个对吧,你给一堆建议。

你做一个困难就能得到这个object cotation,polication manation,或者是the confession对这方面的东西对吧,对吧,好它的核心是什么呢。

它的核心就是说你这个point呢啊实际上它就是说啊,就是说你这个network的话对吧,我没有这个point in order,对不对,那也就是说你把一个pcd作为输入的输出。

它肯定是你希望这个fmc symmetric section对吧对吧,我们或者叫把它叫做这种set section对吧,就是说你的这个network肯定是要一个set action,对不对。

然后这个bation它就有一个很inter定理,它实际上就是说我觉得这是一个这是一个很重要的东西,就是说大家第三network的时候对吧,有没有考虑从从这个30多的角度去考虑这个问题对吧。

就是说你一个cption对吧,然后这个它一定能被一个什么fashion表示呢,能被一个h对吧,就是说h是一个,continuous tention对吧。

就是说他能力一定能被一个continue function,它在这个这个里面的max和和一个呃那个gma对吧,肯定是section去approach me对吧,他一定能被这个faction却pom对吧。

但是他没有说啊,这篇文章他没有说这个东西怎么样是吧,对吧好,那既然是这样的话,就是说那那既然是这样的话,mobile放这个它就抵上一个network tech对吧。

这个detach最后他肯定是就是说就是从design的角度来说,就是你看到的任何一个architech,对不对,它复杂对不对啊,他肯定是design的时候。

就是说因为你要在那个data set上或者解决实际问题,你要解决一些问些问题对吧,他做了很多extension对吧,但是你首先看就是这里面就是有时候看这个东西啊,就是说你看一个东西啊。

你要习惯就说你看一个architecture的时候啊,呃你不仅仅是看到最后对不对,最后是长什么样,你还应该看看他是怎么发展过来的对吧,他肯定最开始的话,你比如说他肯定是你看啊,这个地方肯定是这个毛病。

对不对,就是你有一个n乘三的那个cocd对吧,m l p对吧,这个是share对吧,就跟这个里面的这个h这个bank一样对吧,但是sh对吧,你得到了这个东西以后呢。

你再拿一个fly connected这种东西对吧,就就就能得到就能得到一个这种得到一个那个output的,对不对,就在每个点上搞ml p对吧,然后你在呃再再再再再把它开在一起,对不对。

然后你做一个max pooling对吧,你看这个模组好吧,你看这个猫女,然后呢他又做了哪些改进呢,首先它抄了一下,他抄了对吧,就是他做了一个字recovery module对吧。

像那个什么oracg这些东西都是做相似是吧,前面的他用了一个ort transform对吧,也做了一个,也做了一个transformation,也做了一个transformation。

就是ort form,他能把什么弄这个东西,就是比如说你很多创的cd对吧,他可能有这个orientation的问题对吧,唉他把这个东西就是用这个transformation吧,做了一个做了一个改进对吧。

做做了一个那个orientation这种calibration对吧,哎然后就合到了一个这样的东西,最后他一个负lip mac的那个是吧,对吧就是当然核心的底端也就是实际上你就在每个点上处理对吧。

然后你再把它合在一起,对不对,就是实际上他的就是说学的实际上就是呃呃哪些点就是给定了,这是哪些点,哪些空间中哪些点对吧,哪些点的位置比较重要,大家给处理了一些对吧,哎这是一个要注意的东西对吧。

然后model t shift forty class classification对吧,你看哎就是非常非常efficient啊,非常非常efficient,但是就是performance也不差啊。

但是后面比如说这个point light加加,比如说pcnn对吧,这些东西我觉得都都有长足的进步啊,都有长足的进步,对吧,然后我想说的就是什么呢,就是说,这对吧,这只是一种思考问题的方式。

就是一种思考问题的方式,就是说比如说呃后面比如说胆namic n在这块单块不对吧,这个有就是你像这个破站里面,他没有利用那个,虽然你这个点的ordering它是不一样。

但是你这个每个点跟哪个点的那个connectivity对吧,neighboring的information我觉得是很重要的,nebling的information我觉得很重要的对吧,这也是很那个。

就是我觉得村号上面还没有把这个问题完全解决啊,但是我觉得就是破站的,至少open这个field,我觉得这个很重要的一些工作啊,嗯也是oppo的一个就是非传统的方式去迪拜六network。

非传统的方式去抵抗用那种牛奶的word,其实我觉得就是说我个人感觉吧,就是我别人我就不管那个啊别的学科,我就说计算机图形学,特别是几何处理对吧,我们有30年的基础对吧,你去看最早那些工作。

比如说包括我那个讲点名的时候,我讲了什么,我讲了这个点评上面这个simplification modern啊,自己直接放弃了对吧,我觉得那里面还是有很多东西可以借鉴的,很多东西可以借鉴的对嗯,我觉得。

为什么开这门课呢,就是我总觉得就是最开始的这些东西给大家讲讲有好处啊,就是然后我再讲解这种new network的defy什么东西,但是我个人感觉还是有很多东西还是可以挖掘的,很多东西可以挖掘的。

ok这个点云对吧,我就讲到讲到这,然后我下面再讲两个我认为是非常好的工作吧,就是说一个是d和s d f啊,当然我就是说我只讲一篇work,比如说像bh他们都有work,嗯这个也很好啊。

我觉得d和sd f我觉得将来他的这个就这一系列的东西,它的潜力还很大,特别我觉得如果你喜欢做这个啊,这个比如说喜欢做点redeep learning的话。

你喜欢做si这个deep learning的话呃,那我觉得这个你然后你想再去把这种力机器提升经济学习,应用到这个remodel 3呢,我觉得进步s d f第一个非常好的非常好的开开始的东西,非常好的。

开始的东西,嗯我觉得这是很重要的,你可以可以从这个角度去看一看,好吧,就是如果比如说我们希望把呃在其实deep learning的这个理论,把我们做mming对吧,your measumi。

它的这个数学基础叫做oppositiation theory,gmal modern,它的祖先是要收费对吧,我希望我们应该学过这个东西,就是参数局面对吧。

这个东西它是从这个paration theory来的,deep learning,他有一些ko对吧,ko的东西对吧,还有一些这种operation啊,我觉得就是如果把这两者结合在一起的话。

我个人感觉做研究这个d f s d f啊,这个是嗯很好啊,然后s db和d f呢,你看这他的那个基德对吧,它是这样,就是说啊就是那个science fanction of shapes对。

然后他就说还有两种对吧,给给了两种架构对吧,一种架构就是说呃我给一点给给给现实的一些点对吧,然后我对这些点进行插进行插值对吧,呃进行探索对吧,嗯这个结果我觉得是非常striking的。

看这个你从左边最左,比如说椅子,你从最左边那个椅子,你查到最右边那个对吧,然后你可以查出来这个,所以说你可以看这个shift,它这个边没有没有没有被不漏掉,你发现没有,这边没有被不漏掉对吧。

这个边没有被不漏掉对吧,然后呃这个这个东西是很很那个对吧,那边没有被剥落掉对吧,然后你看他的他这个model的这个aergy都非常的像对吧,待会我会问你们为什么哎其实这也是值得去思考的对吧。

就是有时候你读文章嘛,就是说假设这个文章的result we produke,你你你是仔细去揣摩的,就直接想对吧,你看下面也是对吧,你看这个点它都非常像,你发现没有变回了sp对吧,然后呢ok对吧。

它是比如说如果你弄了一个jing model的话,我假设大家知道galing model,你们这一高课我不会讲这个东西,jr是jony mode,就是给定一个雷同的code对吧。

你呢就是我刚才我刚才剩那个我能满血的那种,generally给另一个nation code,对不对,我能直接得到这个,我能直接得到这个得到这个family的models,对吧对吧,然后对吧。

我可以做通过这个code做一些差距吧,然后呢这个东西怎么来的呢,它实际上是从这个3b43 d fection,它不是不是像我们一般3d session后呢,这个东西怎么来的呢。

它实际上是从这个3d3 d筛选,它不是不是像我们一般3d筛选做的活动mc那种形式,它真的是一个又science ence sation,它是有一个new network得到的,他不是不是啊,虽然是这样。

就是说啊你他首先是一种隐私的表示形式对吧,哎演示的表示形式,然后呢你给一个这个给一个空间中的一个点对吧,他用一个new look去determine这个点到底是它的值是多少,他是零还是大于零对吧。

它是小于零还是大于零对吧,然后呢然后呢你就可以用这个流量,我去这个非常简单,因为我觉得这是一种非常简单的方式啊,然后呢你可以用一个点去做毛囊也很好对吧,你可以用一个点去,然后有了这个东西的话。

可能就是d f s d f对吧,然后就有了这个东西,那你就可以用什么用毛巾q5 的方法把它转化成一个mesh for visualization,对不对,诶,这个思路非常简单啊,非常非常简单。

然后呢他这个design就是fully connection,new network对吧,比如说你这个新single shape这种d s d f,它就是说给定一个点对吧,我就能想得到的值对吧。

然后呢我用一个八个layer这个fully connec,但是我loop对吧,然后你就能得到这个output对吧,然后如果做jing model的话呢,我就不断的给给了一个就是每个点的坐标。

你还给给了一个雷神的cos,对不对,然后你用一个fully connec这种network,你就能得到一个sdf对吧对吧,哎这方面的东西我觉得很有意思对吧,就非常非常简单非常非常简单啊。

然后呢比如说你如果要train这个order in code,order decoder的话呢,对不对,就是它就是它有两种network对吧,就是说你有一个input对吧。

你有一个fully connected的东西,把它变成一个code,对不对,然后你然后你再把它变成一个output对吧,变成output,然后还有一种auto decoder的形式,对吧啊。

auto decoder的形式啊,这个我就不讲了,这个这个东西它就是一个地址单位,然后我们简单看一下结果吧,啊简单看一下结果对不对,就是比如说你如果有了这个东西呢,你如果有这种。

你也有这种cod cod这种形式吧,那你就可以做什么,你可以做重建对吧,你可以圈一个network,把一个input call的对吧,你可以把它变成什么。

把它变成一个那个变成一个later后再再出来对吧,你缺一个这个jn auto,就是java model,你可以ultimate,比如说给你一个point card。

the automa那个nt那个code对吧,这个出来这个shape就是fate那个input call the best对吧,你可以做这种sex,对不对对吧,对吧,这都是可以可以可以弄的对吧。

然后他也可以做这个noisy这种input cod对吧,你可以做这个shift complication对吧,你就可以把那个generation就ultimate那个内存的code在best feat。

然后我想有些问题呢,就是就是我首先你可以看就是为什么这个deep sdf还能model这个shedge对吧,大家有没有想过想过这个问题,就是其实你看最开始这个这个图片的话,开始说看这个图片。

你可以看看这个这个这个这个这个你看这些效果怎么都非常好对吧,就是一个network能做成这种形式,我觉得非常striking的,为什么能做,为什么能做到做到这种形式呢。

为什么d f s d f能做到这种,大家有没有想过,为什么能做到这种情况,你们谁谁能给一个答案,有谁能给一个答案吗,这个这个这个这个回答就是因为有有软弱,你知道吗,那不是你说的能力啊,他是这个rrot。

知道吗,rrose它是一种什么东西,它是一种peace white,他就是下次你知道吗,就是小于它,就是你这个大于它就是linur是吧,它是一种ky木质的这种,什么路子这种行,对吧。

因为你p出来的mood它就能摸到这个香粉,如果你比如说你这用的是这种地方demoy的各种翻身是吧,他这种瞎掰也觉得黄的这种能力就怕很多嘛对吧,上面也写这个model,因为软路对吧。

所以你的model这种p非常沉默,非常像的东西,然后他他到底学到了什么对吧,他到底学到了什么东西对吧,它实际上学到的就是一种插值的东西对吧。

就是一种lining interpolining interpretation,学到的是一种产值对吧,就是把你这个把你这个input model对吧,他用一种就是passive的东西对吧。

他就是用一种其实你像他这种福利connected工业,让他只学的各种那种puter嘛,但model skill是吧,他能去他们去能能能重新put the ship tract这种东西。

但是这个这个df df你肯定需要所谓的shift,它都是is l train点,还要满足这个条件,否则的话,否则的话就会出问题对吧啊。

然后我觉得还是大家还可以考虑有没有别的increased repetition,也可以做这个东西,好这个东西呢它产值是一方面,但是你如果你看啊,比如说你看这个东西对吧,就会发现什么。

比如说比如说你看这这些这是什么这个机械零件,什么东西对吧,你发现就是,它它它是一个圆的,对不对,但是你没有保,没法保证它是一个圆的,就是说就是说他他有一些就是还有一些ob,对对吧,对吧,对吧。

所以我觉得就是低分sf它也是一个开端对吧,你怎么把这个呃后面的呢,我觉得还有一些别的东西对吧,还有一些这种低级这个这种这个这个呃,这个space partitioning对吧,这种东西,对吧。

但是后面最后我再讲讲pigs to mesh啊,这个是复旦的一篇一个工作,我觉得这也是怎么说呢,嗯我觉得这个工作现在国内有很多工作做得很好。

我觉得这个工作他其实就是说嗯把这个match上面的一些poverty,就是说一些东西它用上了用上了,我觉得这个呃其实大家读东西的时候,你去看这些东西,当然我就说你最后你在这上面还是可以做一些简简化的啊。

首先用了一个什么东西呢,用了一个graph convolution在做的思想对吧,什么是gravcmotion呢,就是说你,这个思想他这是18年的18年的工作,其实18年出现这个思想。

我觉得还是非常不错啊,特别是最早的时候也能有这种想法,就是非常好的,就是其实像那个mac上面对吧,比如说你写你在mac上面写解波动方程对吧,我觉得就是这一系列的工作,他那个,对吧,这一切的工作你,对吧。

你可以对吧,那那实际上得到一个什么启示呢,就是说给定个match对吧,如果你在mac上面对吧,比如说match moving your max flow的话对吧,你可以把它变成什么呢。

你可以把它变成这个for cation对吧,你像moon这种东西对吧,就是就是lafast smooth这些东西我们讲过这个东西对吧,就是说你在mac上面做这个东西的时候,实际上是什么。

是一种insert procedure,insert procedure,就是不对吧,你都是什么,你都说把周围这些一一个ne或者周围这些点的这个这个这个值对吧,linux combination。

然后再加上加上一个点赞,就做一个offset对吧,对然后呢他做一个什么东西呢,你去看这个图,我就看了,看不清楚,但他做的这个pass我一直解决的,就是说task实际上相对来说这次大家都做过很多的嘛。

其实我觉得这篇文章完全可以直接在mac上面定义这个,定义这个级别的东西,我觉得也是可能也可能影响那个更大,我这是个人观点啊,就是说嗯他做的这个探索是首先就是说你还是要在于给定一个。

因为最后能呈现出一个three d model对吧,呃这个model是match表示的,然后这个model是tx zero,对就是这个network呢很复杂的一部分。

是怎么把这个image的这个把这个传到mac上面去啊,传到这个mac上去,当然这个很重要的,但是我觉得最重要的贡献啊,本来就是说他把一些上面最传统的一些operation来给给用上了对吧。

把它就把它破解到这个deep learning的那个呃era对吧,比如说一个东西很重要的,就是说你用你用的如果决定对吧,每每个那个water他的offset对不对,第二个东西呢就是说它有个细分差。

别人这是很重要的,对对吧,它实际上是这个subversion,你可以把它看成是什么呢,可以把它看成是一种低convolution对吧,就是说你在mac上面,你把他的revolution提高了对吧。

你马上the resolution也提高了对吧,你把他的resolution给提高了对吧,对吧,你把resolution给提高了对吧,然后,然后呢你把resolution提高以后。

你还可以做一些modation对吧,还可以做一些特别对ation对吧啊,我觉得这就是这个文章最大的贡献啊,当然前面这波我讲他这个tp我觉得就是说这个visual这个fish对吧,那现在比如说有一些工作。

他是直接做这个pixel dependent对吧,嗯对吧,他是然后可以把这个fish呢用pixel来弄对吧对吧,每个pixel对吧,你跟那个remodel你可以做起来一个,然后可以做一些。

然后继续看对吧,你比如说一个mamagic formation对吧,它自然就多了,给你一个corny对吧,corony给xu d i z,这是在i前一个这个类的对吧,这个这个level对吧。

f和i i减一这个level对吧,这个section,然后呢它有一些他把image feature弄过来,然后做一个这种对吧,然后得到的是这个在a下一个来layer的这个呃cornfish对吧对嗯。

这个mainformation block对吧,这实际上是这个graph convolutional network,是这样的,我觉得最开始就match上面就是最最开始出现这个东西。

其实是一个genetic the magic flow对吧,1999年大家用这个东西去做那个顶流云,甚至最早的时候,比如说95年那个top在mac上面做这个的,出现这些东西诶。

那现在的话你们可以把它推广对吧,这时候这些东西比牛奶的我来说,可,对吧,然后你这个但是这个potential fishing对吧,它实际上是有这种,它是它是用这种project recordate。

然后你去到这个two d对吧,然后你可以用这个to d这种fish对吧,你对吧,去铺这个这个fish,这都是一些很先进的思想,很先进的思想,ok,然后你像to relax的这个开心还是黑车。

它实际上就是说他是一个非的风格的太多做的这个事情,然后这个东西从哪来的呢,是国家fping的,也对,它实际上是做了这个subdivision,就是全狗。

你可以把它py breaker这个increase the number tx对吧,hip这次cos你30,我再试试,这种这种形式对吧,这种形式,train loss能够扛不了很多吧。

我觉得大部分其实都是在这个时候,你像那种champion对吧,这个是换成量才有用,包括那个so point to point set,那个全是危险的,因为normal是吧。

它实际上这个东西呢它实际上是seed这些shedge,seed这种shuh,就这个了啊,然后,还有一些recognization对吧,就是make a very good location。

那就是lafarequisition,我最近也做一些工作对吧,就是怎么用这种reputation reputation对吧,来那个来来解决这个all over fee的问题是吧。

他要h nulation,然后呢你就会看一些结果对吧,其实它有一个input image,如果你把安徽去掉,它就只能在非常cos那个来我去d对吧,然后你如果把right left去掉了。

就是这个这个东西他就非要他就那就是不能飞的details对吧,就不能飞的detail,如果把normal去掉了对吧,他就非常的不是物质,非常不错,其实normal也就是给了一种rap的那plus。

去掉的话会hachen noise对吧,h nt的话就这个问题非常像后面的reaccusation都是对对,因为因为这个问题很难哈,实际上它是improve generalization。

是最后还是这个东西是一个mode,这,就是呃当然你说这个这个就是像这种cao猫的话,你如果如果从这个建议是b类的角度来说,我觉得更慢一些,后面特别是后面那部分你还是很难。

当然这个东西它也从一个音乐就进来了对吧,但是我觉得就是很难,有时很难跟那个东西去考p的,是不是就是说我觉得如果一个重要的研究方向,就是你怎么把match跟着increased完美的结合在一起。

有一些工作,比如说mac对吧,我后面会讲啊,我后面会讲一些别的东西诶我觉得都是在这方面开了一些头发,但是怎么把这个mesh这种implicit。

包括一些high level representation,对吧啊,把它结合在一起啊,我觉得这方面的工作还是很重要的,多少啊,是指这个nflush motion啊,它实际上是指就是说他加了一个lot。

就是说就是你出了这个mac每个点啊,你必须在周围那些点的平面是附近,这是一个remization,其实这个revenation是不好的对吧,真的也就是说你下载edge。

其实你是尽量让它尽量让他补取报纸对吧,像这种就是有两种recoration,一种recoration就是见证内容,它都是好的,因为那本身都是好的一种representation。

就是他真的跟别的turn,他是computer啊,这种的话其实他会对你这些东西它会有一个损伤吧,总会有损伤好吧,今天就我想到这好吧,因为我自己确实嗓子也不行啊,我今天少讲一点。

我后面两节课我争取再给大家给我多讲点东西好吧,我主要是谈一谈我自己的一些感受吧,啊呃核心的东西我跟你讲,就是说大家如果做比设计应该注意什么,注意的就是你怎么把这个比作计算机。

重新学这个企鹅处理30年发展这个结晶啊,用到什么,30年发展时间,把它用到这个,这个现在的这些东西对吧,哎这个是最重要的好吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES301-曲面参数化 - P1:Lecture 01 曲面参数化介绍 - GAMES-Webinar - BV18T411P7hT

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那个各位亲爱的games小伙伴啊,早上好啊,我是中国科学技术大学刘利刚啊,这个很高兴又和大家见面啊,今天是games 301专题课程啊,曲面参数化的迪斯科啊,这个在2年前gm 102啊。

我上了那个几何处理与建模的基础课程,之后呢,受到了广大啊,game小伙伴的一些热情的反馈啊,因为那个内容很多,然后课时有限,所以其中很多内容啊并没有讲的非常深刻,本来也想考开一门二开头的高级课程。

但是内容忍了很多,所以呢从今年开始,我们决定啊开设三字头的专题课程,把里面的一些比较重要的一些专题啊,通过一门专题课程的形式啊,啊给大家分享啊,并且这个让更多小伙伴们啊能够入门,并且从事相关的科研开发。

和那个软件一方面的一些研究工作好,那么呃今年这个课呢,呃我们看可以看到我们这个科技大学啊,中国科技大学组成一个比较大的一个啊,讲师团队啊,除了我本人以外,我还邀请了我们啊数学学院的陈振基老师。

胡晓明老师和方向老师一起啊,啊,对这个专题课程,进行非常更深入的全面的一些介绍啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当然首先欢迎这个大家来到301啊,这是我们呃这个呃对我本人来讲,也是第二次开始这个在线课程。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一起成长,那么今天是这个专题课程的第一讲啊,我开个头啊,简单全面介绍一下啊,曲面参数化的一些基本概念内容,然后后面其他三位老师呢,会从各个方面来详细的讲解,各个啊技术细节。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

以及更多的这种实现细节啊,这是我今天第一次课的这个提纲啊,可能嗯我在开始会全面介绍一下games,的一些情况啊,跟到现在发展了5年啊,这个除了在线报告,还有很多课程也开得起来啊,形成了非常有特色的啊。

我相信也能帮到帮助到了广大的啊,那个年轻学生啊,学者啊等等,从中受益,我们也希望做更多的创新,所以会尽量介绍一下,后面呢就介绍一下曲面,3d化的一些这个概念,还有啊应用,还有一些主要方法啊等等啊。

所以今天呃内容还是比较丰富的啊,这个看看一个半小时能不能讲完,好看这个具体的进展,我们看看这个超频时间节点时间,那么games在线课程呢啊,首先games众所周知啊,它并不是游戏的靠。

所以games是啊graphics and mixture,environment sympm这个缩写啊,这刚好形成games,这样容易记住的这样一个名字,所以呢它是呃。

我们面向经学及相关领域的一些这个,在线平台,他开设了是2016年创建,但是17年啊才有线上平台,可以看到这5年发展线上平台发展啊,除了啊,我们坚持每周有高质量的这种,在线学报告之外啊。

你可以看到需要报告分为其他方向啊,就是这这个原本图就其他方向,那个几何绘制啊,模拟视觉可视化,cdc和现实之外啊,还有好多其他的一些学术沙龙啊,明星大咖面对面活动,特别是在2020年2年前。

开设这个在线课程啊,后面我会详细介绍,取得了非常啊多的一些进展啊,这个通过这个在线课程,是不是邀请国内外的工作,在一线的这样一些优秀的年轻学者来讲解,分享他们的这个啊课程。

得到了广大这个games小伙伴们的支持,那么这个5年下来啊,这个人群也从当时的一两千人,发展到1万多人,并且啊,我们坚持把这个每一期的报告课程,都制作成高质量的这个视频共享,在我电子网站上。

现在上面资料非常丰富,那个适合你的这样一些内容啊,其实总播放量达到300万人多了啊,那么当然这个组织架构啊,games也是属于我们中国金融学会下,计算机图形学与啊啊这么会下面的。

所以这个可以看到17年6月,我呃我负责创建以来经历过这大啊,做小贝老师,还有现在是深圳大学胡瑞珍老师啊,在运营这个现场平台,所以最后有非常多的老师,在背后付出了辛勤的劳动啊,课程形式等等。

都参与很多的这样一些讨论指导,执委会就是怎么安排每个星期的这个报告,所以啊小伙伴们表面上看到的,每一那个常年有不同的报告,还有课程是否有大量的老师,这些都是我们国内国外,在背后默默的付出了很多的劳动。

好我这里在一并表示感谢,好咱们今天重点介绍一下这个在线课程,这个课程呢,事实上,这个在2019年运行2年的时候呢,呃报告已经运行比较嗯成功啊,也比较规范化啊,那么那时候我们是一个想法。

能不能开设一些基础课程,让更多小伙伴从能够更快的入门,因为学术报告,对于一些还没有入门的小伙伴来讲,还是有点困难,因为缺乏了很多背景知识,所以19年啊,我就在物质以及在思考怎么来啊,开设一些这个课程。

帮助到这个我们这个领域啊,这个中心学及相关领域的一些同学啊,能够很快了解到中心学的,这样一些基本知识和技能,因为这个呃,大家知道这个人工智能这10年发展非常快,因为他们的这个入门门槛比较低。

所以很多同学很容易上手,所以我也想通过这个在线课程呢,也帮助到小伙伴们更快的入门,所以在19年在澳大利亚开sars的时候啊,就碰到一些年轻学者在探讨这个想法啊,在其中啊,跟闫力齐老师那个聊了很长时间啊。

这个不开耦合啊,这个他也希望能够开设一门这个,基础课程啊,那么我们我跟他非常啊深入探讨了一下,这个可能性,依据这个方法,还有这个内容,决定就从2020年春节之,后啊他那个后面刚好碰到疫情啊。

这个就从电子101开始,由杨立新老师来抽奖,101之后呢,我们就又又在物质和邀请了更多的老师,还有呃从11010系列,从啊几何动画仿真,还有马上即将10号啊,马上下周一开始的105啊,记得去决策动画。

就建构建出一系列的这种基础课程,让你能够啊非常轻松,非常直接的了解到这个各个途径,学各个行呃领域的这样一些基础知识啊,之前结束的104啊,王,晰老师这个讲解的非常好啊,这个整个怎么把各种技术串起来。

形成一个庞大的游戏引擎,当然还不仅是中心医学技术,还有更多的网络呀,哎呀呀,还有这软件工程之类的哈,所以大家有一个直观的了解,二开头的课程呢主要是一些比较高深的啊,更高级一点的。

可能会讲讲解的更加深入一点啊,就是现在正在啊开设是204计算成像啊,嗯正在这个假设,那么呃我们今年去年啊再去规划,今年规划就是想规范更多的一些,这次的课程就是三开头的课程,三开头的课程呢就是专题,就是。

啊不是呃很很棒的一个大领域的一些主题,因为每个每个大的方向,都有好多小的课题方向,所以呢我们把这课题方向变成一个专题啊,所以啊301我们现在开始,301,就是关于几何建模与处理中的,一个非常基本的问题。

叫曲面插画啊,所以呃通过啊14节课这个课程呢,给大家全面深入详实的来介绍一下啊,注意可以看到我们对课程也啊,组成一个比较大的这个讲师团队啊,也之前做了非常啊好几次的这个同步啊,思路对齐等等。

那么另外明年大家应该值得期待,还有302,303关于其他这个啊专题的啊,这个明年你们会有啊其他方向的,所以啊无论你是在图形学或者三维视觉,哪个方向都会找到你们这个专题啊,我们希望在经过下一个5年啊。

能够把这个各个专题的课程给它构建起来,啊,这个呃这个303赞扬非常之期待,好这个我就不剧透,可以看101202303啊,是是什么规律好,那么后面还有四个四开头的课程呢,也在架设之中呃,四开头呢就更加是。

因为从104课程中反馈,大家对软件系统这个特别是门槛,就是入门门槛啊,啊这个,提出了好多这样一些建设性意见,所以我们想我们通过一些图形学相关的,开源系统啊,或者是渲染的还是仿真的。

还是动画或者是几何的好,我们我们呃通过自己啊,这个无论是专委会的努力的评奖啊,还是什么方式,找到了一些非常好的开源系统,也是我们华人来做的,所以啊希望通过来对这些图形,相关的开源框架进行详细的讲解。

以及在上面做相关的应用,这时候呢啊,同学们更加容易很快的进入到这些框架中,进行一些开发研究啊,甚至在呃这个未来的这个企业中,你就可以找,到应用,升级之后马上就会开设啊,一些这个关于物理。

仿真几何的一些阵容框架,但但框架可能不会很大,因为很大的话就像那个104的游戏引擎,那是一个非常庞大的一个系统工程,所以我们会从一些小的框架开始,怎么去搭配一个图形框架,怎么去使用它们。

去做你们自己的工作,当然国外也有很多优秀框架,所以呢你们只要掌握这些东西以后呢,可以很快去上手啊,这也是我们开设四开头的这个课程,的一个驱动目的,也,就希望这样一批啊。

这个图形开发的这样一些这个优秀的啊,这个啊软件工程师,或者是一些研究工作者啊,这个无论在科研还是在软件开发,都有很多的这样一些啊机会好,那么301课程,这个呃刚才简单介绍四这四位老师啊。

这个都是我们科学,中国科学技术大学数学学院的啊,那么呃这个呃在这个我们宣传的时候,已经把我们主页也给到,大家好,大家呃,或者是微信群里面的宣传文件里面,可以找到这样主页链接啊,这这个首页组织安排是。

个教师啊等等啊,那我下面就简单介绍一下,那么首先这个so co讲师团队,还是我们发动了四个老师啊,都是我们团队的啊,计算实验室是依托于数学学院的,所以啊,因为我们都是呃认为数学是非常重要的。

所以这个做图形学方面的话,需要很强的数学背景和知识,所以啊,我邀请了几位数学学院的老师来进行讲解,啊,啊这这是我本人啊,那么陈仁杰老师呢是啊,博士毕业于浙大数学系的啊,是我以前的博士生啊。

啊后面在m p i做这个主连结员啊,三,年前回到学校啊,国内啊青年千人啊啊,引进到我们中国科学技术大学数学学院,那么付晓明老师很多啊,小伙伴应该也很熟,他前几年开设了一门数字就要处理,放在b站。

也是深受广大那个呃,那个软件啊功能那个功能啊关注啊,他那个在几何方面方面特别在常态化啊,建模方面学到非常多的成成绩啊,这个他会给大家带来非常多的,令人期待的一些呃内容,那么黄金呢是今年这个博士毕业。

也是我学生博士生啊,今年啊留下来在各大主播之后,房间呢在那,这个做的非常深入啊,他会在课程的后期给大家介绍啊,共给你视相关的一些参数化的内容,这是我们的课程安排,我们课程初步计划是十节课。

那么连续七周啊,每周的周六周日上午好开始啊,那么因为因为明天8号我们呃要上课,刚好有人冲突,所以我的时间有点冲突了,所以提提前到啊,节假日的最后一天,7号今天来讲解啊,就是这里就调了一下。

后面如果没有特别的这个原因,就基本上按指的时间来来讲讲授好,首先由我这个开始做介绍,后面,的傅晓敏老师呢会讲讲一下,那个面向离散的方式,这个参数化技术,然后呢,整理金老师会讲一些连续性的,这个强化基础。

那么方谦老师呢会讲一下共情,常态化的基础啊,这样的话就整个把那个啊,我们山东化相关的所有基础都还关在单位,形成一个非常完整,系统和深入的这样一个知识体系啊,呃不仅是能帮助到啊这个没有做过图形啊。

参曲面战争化的同学,能够很快的了解到这个啊合理方向啊,也可以帮助到,即使在参全面分化领域做过工作的同学,可以更深入地了解到这个一,些动向,还有一些问题,以及未来的一些科研科研方向啊。

这是我们希望在七周啊,过程中给大家一起啊,这个我们来通过分享,通过讨论,通过交流啊,记起来收获和成长,那么这课这个课程呢呃这个是个专题,所以我们呃会讲的稍微深入一点。

所以需要大家就是可能啊有一些基础知识,特别是101这个或者是102础知识,那么呃还是需要自己去补一补,这相关的一些这个图形学啊,几何的一些基本知识啊,当然这个呃我们给课程。

每次直播之后呢也会录屏把它保存,可以啊,课后再去看回放好,可以不断的那个啊,去去去去去看这个呃讲解,另外的话呢我们会群里面啊,也有我们的助教啊,所以如果有任何的问题就可以啊,自然我们还有啊。

这个bbs bbs gm是这个网站提供的好,所以大家有任何问题还是可以的,非常及时的跟我们交流和沟通,另外的话呢让让能够让同学们学到啊,真正的那个一些东西啊,我,们也布置了四个壁纸作业啊。

考虑到这个呃ges网友的啊啊分布广泛性,所以我们有两个框架会给大家,一个是c加加,一个是matlab的啊,就适合于不同的这样一些啊对象啊,就是如果你更擅长c加加,可以用c加来写。

那个我在在科大的这个同学,学这个课程里面,我是要求同学们全是用c解加啊,来写完成作业的好吧,然后我们的助教也会啊,非常认真的来批改大家的作业,只要大家能够去提交好吧,他们会给到你们一些啊。

这个非常好的建议啊,好那么,这次我也感谢两位我们的助助教同学啊,刘世博和梁宗轩同学啊,他们在背后已经提前就做好了,非常多的工作,还有直播相关的一些内容啊等等,后面工作量也会非常大啊,我能看情况。

如果作业量很多的话,我们也会增加一些主教来帮助到大家,然后刚才提到一些知识知识,我就不展开啊,数学当然先行,微积分大一的东西哈,数字方法啊,自由化,上次大家如果听过102的话,就听清楚这些都是基本的啊。

需要掌握的知识,当然还有微分,几何等等啊,这个人有些知识啊,在在这里我谈一下体会,就是数学中心呃,在实际用的过程中边用啊,呃不懂就去学啊,是学得最快的啊,也没必要,所以我一定要学个几年数学才能可以去做。

有些有些有些知识完全可以在做中学啊,学的过程中不断体会,然后又来又来是实践,这样的话呢知识掌握起来也会很快啊,因为它这个这个具体到某个问题来讲,它的知识点不是不会cover到数据,所有东西。

它只要那个点你掌握出来,你就可以去用了,那么重新学知识呢,大家我我我们是三开头嘛,所以,我相信大家一和二啊,11101啊,101和102大家都听过好,至少有些基本概念啊,如果没概念再来听的。

可能就会还是比较困难的好吧,然后还有一些其他的,前沿数学课程,每年都会邀请非常多的学者来讲讲,一些前沿技术,这个当然是更更更多是开开脑洞啊,这个开开天窗的一些这个课程,可能啊你如果你不搞。

不搞相关的这个方面的研究,可能很多内容对你们也是比较高深的好,但多听听啊,这个知道这个领域啊,这些学者在做些什么,也是,很有好处的好,还有付了付老师的那个数字求和处理啊,b站上挂了也有将近2年啊。

这个也也也好几万的流量好,就是大家,当然这个课程稍微呃不不仅是商业化啊,大家啊如果感兴趣也可以去看一下,好,前面20分钟,我把这个啊这个game以及301的这个内容,大概简单介绍一下啊。

后面我们进入到主题啊,首先介绍一下曲面参数化啊,这个参数化这个词估计大家都已经听过啊,这个特别是在102这个2年前我讲座的,那个几何建模与处理的,课程中啊,第11讲水平上的话就讲了一节课是吧。

这个那时候因为只有一节呃,两个课时一个半小时,所以只是非常宏观的啊,介绍一下曲面上画,当然第12讲去几何应试相关啊,大概有半节课啊,这个相关我也我也提了一下内容,因为12项的后半段是讲那个优化的。

所以啊我就把11 12讲两讲呢,给大家回顾一下啊,就是大家如果那个有印象的话,这两这两次课就是关于,但是现在可以看到301,我们把这个曲面碳化这个专题,变成14个杰克,像他的28课时来讲,所以应。

该是比啊那时候的内容更深入更广泛,更全面,好好,那么嗯他的话相信很多人都懂啊,但是我还是更想这个,让一些可能第一次接触,或者是对这个不熟的同学有个概念啊,比如说我们一个地球啊。

我们地球是三维中的一个球体球体表面,但是我们人类更多的是看二维的东西是吧,所以我们要把它变成一个二维的这个啊,这个图形的显示,那么这就是地图是吧,我们我们看到地图就能从我们脑袋去空间。

想象它的三维的这样一个对应,所以怎么把一个三维的一个球面把它展,开成一个二维的一个地图啊,这个就是我们人类啊非常早的时候,就就就在啊这个做的事情,好像这个就是一个参量化的,一个非常直观的例子啊。

怎么把一个空间的球面,把它剪开展开起来啊,当然怎么剪,你可以啊,沿着经线剪是吧,然后就长成,我们通常看到这个叫横向地图啊,当然你也可以纵向减沿着纬线啊,这个啊20多度的这样一个地方剪就可以。

就可以是一个竖版地图啊,这数量居中呢在军事上用的更多一点啊,因为啊等下你们就清楚,这个每天两个系统的这个对这个扭曲,就形变量是不一样的,所以他对距离这个度量好测,测量是不一样的,举个例子。

比如说我们测啊,从中国北京到美国纽约这个这个距离,如果你是直接这样连线去测,肯定是不准的是吧,因为球面距离是沿着大圆的距离才是,然后这个呢是不保持大圆的,而出版巨头呢因为是沿着这个纵向去展开。

所以说这个距离就更更精准,从北京到纽约就更更精准啊,比横版要精准啊,相差啊会有40%的误差,所以可以看到这个不同的这个展开,也就是说,不同的技术对这个应用这个要求是不。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一样的啊,好那么另外一个句子呢,就是我们快到冬天啊,这个剥橘子是吧,也是把一个封闭的橘子皮儿啊,把它剥开,当然我们平时不会用技术去思考,这个剥橘子对吧啊,所以这也是一个三维的曲面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

把它展开成平面,只不过这个橘子皮你把它摊平,就是这个平面好呃,这里这个视频估计很多网友都看过是吧,就是也是我们啊sara 2019年工作,当时可以看到,就是如果艺术家用小刀把一个橘子皮啊。

通过某些割缝啊,就能把一个橘子皮啊展开成,一个非常可爱的啊,这个这个一个动物形象啊,这样的话,那就啊这个激发了我们对这个工作的去去,这个研究,就怎么样去寻找曲面上的割缝,能够让它展开成一个。

人们期望的一个图案啊,所以这个呃也是一种碳化的一个应用。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以看到啊,你这个对餐的话,这个问题如果有深入的研究,你就清楚我们应该怎么去啊做这个事啊,能够呃得到不同的歌缝,把一个曲面展开成一个平面图案啊,这个是怎么做到的啊,这个后面付晓敏老师会有一节课。

专门讲到啊,会来讲解其中背后的这个技术。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么另外一个才能化应用,在生活中应用的一个实例啊,生活中应用的实例可以看到一个复杂的,如果你你只是展开成一片是比较困难的,像这个乌龟这样一个复杂的啊,你可以看它有这个细小腿,还有还有可是。

所以展开成一张曲面呢是比较困难,所以我们会把它展开成多多片啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是把它分割进行多片,那么如果你这个进行多片以后的话,你对这个多片进行一个这样的这个裁剪,然后呢按照这个拼接的顺序,把它们用纸啊,用胶水把它粘起来啊,就可以形成一个三维的这样一个。

表面啊去看看通过这样一个呃拼接,就可能把用纸拼接成一个,这个可爱的兔子啊,就是这个背后的技术,也是差生化的一个应用啊,就是我们不是一片,而是多片啊,刚才那个布局是平时一片,这时候是是这个多片啊。

这是今年srah我们的一篇文章啊,背后怎么样让让这个这个啊建数尽量少,而且参杂化这个展开的这个扭曲,或者叫形变尽量小,就是我们这篇文章的一个背后的技术,后面啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

傅老师也会在后面的课程中进行讲解好,所以从前面那个两个生活中的例子,可以看到啊,三个生活,中例子一个地图,一个播剧的题,一个是这个直指这个啊,展开可以看到水面上的话啊,实是如果直观来看的话。

就是给定一个左边的这样一个三维的,一个蚂蚁这样一个曲面啊,这个曲面啊怎么样啊,这个能够把它展开成一个平面的图啊,就是啊就是说的直观一点,就是怎么把它把它摊平啊,混淆啊啊这个这个这拍屏是吧,就拍成平面的。

那么数学本质呢,如果你把这个蚂蚁曲面看成是一个xyz,三维空间的一个曲面,好像这个曲面呢,加上这个曲面跟它所对应的这样的,二维的区域进行一,个叫做一一对应啊,那么从啊在数学某些学科啊。

像拓扑学里面这个就叫嵌入,我把一个某个空间的一个,这个数据表达形式嵌入到另外一个空间啊,这个只不过这是三维空间,那么呃,这个曲面为什么能够把它嵌入到一个这个,低维空间啊,比如说这是r3 的。

我们看起来这个上面是个r3 中,就是三维空间中的一个曲面,能够把它嵌入到另外空间,这是这是因为从透过来看,他们是拓扑同胚的,什么叫拓扑同胚,就是他们的为数,就每个点领域它都是等价于一个圆盘。

所以呢他们两个实,际上啊是什么错,不同配错不同,非表示这个这个曲面,虽然在这个观察空间是三维的,但它本质上是二维啊,我们数学上有个名字叫二维流行,就是每个点无论取多少小的这个领域啊。

它都是跟一个小圆盘是一样的啊,它没有其他的这个这个这个top结构啊,不像一个体体的话,一个点取他的一个球状领域啊,它就充满了这个球状领域,但一个表面,你这个点取一个周围的一个球状领域,它里面只有一小片。

是是在这个小球面里面,这小片呢是一个圆盘,所以它是个曲面所,以它是个二维的啊,所以如果如果用严格的这个数学语言,需要定义一大堆这个符号才能把它讲清楚,但对我们来说没有没关系,我们就是一个三维空间中。

我们肉眼是这个叫啊这个啊,嗯叫叫这个可视空间,就在空间上看起来是个三维形状,但它本质上它是个二维,所以它能够把它嵌入到一个二维区域,所以这个就是给这个方面曲面,如何把它迁到一个二维区域。

并且构成点对点边对边面对面的一对应,理解和定义,好好就是这个这个定义是非,常容易理解好,那么呃应用刚才我讲了很很多是吧,就可以看到这个我我在看到,为什么要做这事儿,为什么要要把一个三维的这个曲面。

把它把它剥开展开,摊平到一个平面上啊,形成这样一个对应关系啊,除了这个地图是吧,从地图上看到,刚才我啊仅仅解释了横版地图跟竖版地图,是可以看到地图制作中,还有好多别的形式的地图。

因为保持的东西是不一样的,刚才啊横版地图跟中版地图啊,保持这个距离是不一样的,像像这种地图啊,中间这个是保持角度啊,就是在地球上的经纬线,一定是垂直的啊,一定一定是啊,这个正交叫90度。

那么在这种地图呢就能保持每个点,它的这个方向跟正方向是保持一个,这个垂直是吧,有的时候我要我要去计算角度的时候呢,就这种地图是比较精准的啊,这个就叫共性影射,这个在方兴老师后面会详细展开好,那么参的话。

实际上在同一学里面最大的应用是啥,就是贴图啊,就是我要在一个曲面上,把一个图片给贴上去,那么这个曲面是空间的,我很难想象好,那么如果我把它work扒开,打开成这样一个形状好,你就把你要的纹理好,我。

们再看一遍哈,你发开以后,你只要把你要的这个图像这里,只不过我们这个图像是一个棋盘格而已,如果你你你这个图像换成是一个啊,这个其他的图图案是不是也可以,就是里面就每个点啊,我这个光标这里哈,每个点。

因为这个每个点跟曲面上,每个点有对应关系,所以这个图像在这里的颜色,就自动的去附着在了这里了,这个应该很好理解是吧,所以呢这就是纹理映射啊,我怎么把一个纹理图案,把它映射到一个曲面上啊。

那么在这个游戏引擎或者在啊这个工业界,这个就叫uv图因,为什么刚才这里有有个坐标,我这里是用二维的,二维上是空间中坐标,我们喜欢喜欢用x y z,但是在二维中呢我们喜欢用uv u v意。

为什么一个一个u方向,一个v方向,为了区别于x y好x y z,当然你因为你把它解释成x y也可以,但是我们更常常常用uv啊,也是一种参数表达的符号,所以啊有的时候工业界叫u v土啊。

所以是一样的概念好,所以你uv展开以后呢,我就可以啊,去在这个上面呢就定义曲面的性质,最简单就是纹理啊,颜色啊,这个颜色是啥对吧好,可以看到后后面假,设你把它展开以后,我我上面这个这个点对应这里眼睛。

那么这颜色是黑的啊,那么这个是对应这个兔子的背部啊,颜颜色是棕色的啊,这时候呢你就可以修改这张图,就修改了全面上的这个啊纹理了是吧,好这就是那个啊纹理叫uv图,当然呃你刚才是一片,现在我是分成多片。

这个多片把它拼起来,这个就叫纹理地图叫texture atlas啊,所以你们在如果做过游戏的同学,或者是呃美工啊,就这些概念都在很多工具中都有概念啊,都都有提到的是吧,好优惠图。

游戏图这个这个叫uv展开,所以怎么把,一个复杂的模型展开,正在uv图是一个非常这个啊,这个不平凡的过程,那么这里因为什么,一你要这个uv图尽量的小,因为这个uv图啊,这个是要占这个显存。

就是这个空内存空间的,这gpu的显啊,空内存就是显存啊,所以你不能太大啊,所以尽量怎么怎么怎么小是吧,第二个还要保持这些特征和特征,后面我们就会去讲这些概念,好好这就是这个好,大家再想一想。

有人那张图是不是,我们构建了一个平面的区域,跟空间复杂曲面的一个表面上点的对应,这时候你竟然可以存颜色,是不是我,也可以存别的东西啊,曲面上有啥,我就把它存在这里,这张图来就很好理解,也很好控制也好。

很好生存和修改啊,比如说我们曲面上还有一个属性叫法相,是不是我可以把法向存在这个点的颜色,对吧好,所以这张图uv图就是曲面的一个,虽然差距较差的话会叫uv图,实际上它就曲面的表面的属性的一个代理。

它可以存储曲面上别的性质好,你可以在上面绘图啊,你你你就可以站在上面存存别的东西啊,材质你刚才想象到了,好的,这个法向是不是还可以变东西啊是吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以大家就可以,看到我先先把这个放放过来好,你是不是还可以去存储啊,它的那个材质好像颜色就是啊比斗是吧啊,还有材质可以存储它的b r d f,比亚迪f只不过有不同表达啊。

那么你可以从这个金属度粗糙度啊等等啊,你你实上在在那个啊这个这个渲染过程中,你还可以存储它的一些中间状态啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

比如它的反啊,反侧度等等,所以这张图就什么就度量了,就记录了曲面表面上的啊这些所有性质,曲面上有这个点有啥性质,你完全可以用这张图来存储,这时候呢它的这个存储就变成二维了,二。

维的二维的图一旦变成图像以后,你就可以用图像的一些技术去压缩传输,绘制处理,这时候呢你去处理这张图,等价于处理浙江这个曲面的啊,一些性质当然更极端,你可以把这个顶点也把它编码成图像,形成一张图。

这就是几何图像啊,geimage的思想,所以你甚至连这个网络都不要,向材质,光照等等,你就可以去存啊,这时候你就可以做很多事情了啊,这个如果用过maya max霍霍迪尼啊,blender这个软件啊。

这个图是非常重要的,好你可以绘画啊,这些这些我就讲到这,那,么还有一点呢,在几何建模里面的那个这个参数化,也很重要,很重要是啥呢,这个叫拟和,这个在102我讲了也讲了不少对吧,就是啊我一个点序列。

你要一个样子,这个曲面屏你和它因为它是单单参数的,它有啊,所以说上面哪个点都要有个t i,所以呢你这个曲线p跟这个pi,这个某个点对应,你要做个误差的话,你一定要知道这个pi的参数是几啊。

因为它它是单参数的,所以这个啊就必须要有个参数啊,那个对于这个点云的拟合,你如果我扫描出去就点云啊,这个你需要拟合出一张,曲面来,你们因为这个因为这个曲面是二维的,所以要把这个点名。

把它参数挖到一个平面ui v i,那么呃你这个通过这个双参数的,这个这个基函数曲面产生拟合它啊,所以这是曲面拟合啊,所以这是非常有用的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这个刚刚才我已经讲了啊,这个曲面渲染里面呃,这个虚拟纹理,虚拟几何等等,b map啊,还有i o d都是基于这个图片跟,就是你可以理解成这个参数化的这个uv图,就是曲面的一个代理,这个代理呢。

或者记录它好多好多一些这个信息啊,那么你把这个曲面的一个处理啊,或者一些信息变成一个图像的处理啊,这样的话你的i d也可以做啊,你的这个其他的那个mmap这些都可以做好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当然啊这里啊这个应用很多很多啊,表示比较有研究的同学,就这样做,无所不在啊,因为因为三维呃,这个曲面可以很复杂,但是一一把它拍平到二维结构就很简单,我们可以很很多方法,很多思路就可以在二维上去去去做了。

好好,那么他的话这个概念刚才呃介绍一下,那我们下面看一下他的话这个怎么做好吧,这个我今天只是开开个头给大家,一些直观印象,后面我们还有13节课,老师都会详细的展开和解释好,那么参数化表达呢。

就是说本质上就是求一个三维,二维三维曲面啊,变到一个二倍区域这样一个映射,这个映射是从一个x y z r3 空间中,一个点把它映射到一个r2 uv,在一个过程对吧,但是这个过程不是啊。

这个可以任意设计是吧,所以它可能有它的要求啊,比如说我我要保持距离啊,保持角度的关系啊等等啊,所以对f的求解,就是曲面参数化这个专题里面啊,我们需要去重点关注的好,那么怎么去表达这个。

f就从如果从逻辑上来看,它就是一个r3 空间到r2 空弦,一个映射啊,这个映射就是函数嘛对吧,所以函数呢在从函数论的角度上,我们函数是没法定义的,所以说我们就会把它把它进行一些约减。

所以基本方法叫化繁为简好,我们这个函数呢不用太快广泛,我就建议一些g函数,一些某些基本的函数,然后通过他的性质和章程,一个线性空间啊,这时候我们就从这个线性空间,线性函数空间中去找一个函数来满足。

我的应用就够了,这时候呢你就把这个函数的求求解啊,变成了这个,基函数的线性组合系数的求解啊,就就把无限问题变成有限问题啊,这是函数空间简化,当然还有一种呢,就是说哎,我这函数。

这个找这个函数空间也也挺挺麻烦,那么我就把这个曲面啊,把它剖分成很多小单元,比如是三角形啊,这个是反正提供一些采样啊,就把一个曲面呢把它啊简化成了一个分片,三角形啊,分配三角形是线性的。

所以叫也叫分片呃,线性逼近,这时候呢我只要去搞清楚每个三角形,这对应关系啊,函数我就我就用这个分段,线性函数去逼近了这个f啊,所以呢你可以看,到从两个维度思路,从一个函数的简化可以去有函数空间。

那从地域简化就是用这个游戏有限单元,单元三角形为为主啊,所以后面啊,我们的课,就会围绕着这两个思路来给大家啊,一起来这个探讨好,那么第一种呢就是连续啊,连续上呢就是呃如果经过102前面的。

你和那那那几节,几节课的同学就清楚了是吧,我们可以构造各种各样的函数啊,像这个是一个波茨坦基函数,通过它的组合,就是组成出这个红色的,非常复杂的这个曲线啊。

这时候你就去就去找这些a i b i a b i,就,变变成了有限个点是吧,就是把一个寻找函数的问题,变成一个这个若干个系数的问题好,那么分配线性的方法呢也很好理解,就是把一个曲面像这个这个人脸啊。

把它变成一个呃很多三角形,三角形倒三角形影射是非常简单,是个线性映射,是个反射的对吧,所以呢这个f呢就就很容易设计,那么如果你里面这个三角形,到三角形之间呢是一些简单的线性啊,这个函数可以它导出不连续。

可以看到这里就发生了一些,这个三角形之间的扭曲,但是三角形内部还是非常光滑的啊,但是内,部还是非常棒方法的啊,但是边界的啊,这个就导数才能不连续好,那么如果你用了这个三角形,内部还用了一些高阶圆。

比如说是二次曲面,三次甚至更高阶,这时候就保保证拼接的过程中是连续啊,所以这个在这个本课程的后面,我们也会提到这些技术好,给大家稍微有个印象好好,那么这是参数化的,这个表达就是你可以是连续函数的表达。

也可以是离散的,这个分片线性表达就是都是在做一些简化,那么简化是为了做更好的计算啊,但是有个问题就是诶,我什么样的参数化是好的,参数化啊,所谓的最优啊啊这个最优我打个引号啊,大家知道我们做做计算。

或者做那个实际工程啊,永远没有最优啊,只只只有更优是吧,就是最优一定是在某个度量下最优,你度量不一样,你如果度量的位数一高就没法比较了是吧,所以你还是要度有个度量,你才能自由。

所以你可以看到我即使是我们地图展开啊,这是一张图啊,这个图呢这些呃城市的小球呢或者椭圆呢,都是球面上的,等大小的球的一个对应关系啊,也就是说啊像知道在这里啊,这个这个球基本上不怎么变形,保持原。

来球面上啊,这个以嗯想象一下,在知道上踩一个点,然后以它方圆多少啊,这个画个圈啊,这个印过来以后,在平面呢它不大会扭曲,不大会形变,但是你可以看到越到北极和南极,它形变就被拉扯了。

就被一个球被拉扯到一个椭球啊,这这是因为你这个映射啊没有保持很好的,没有在每个点保持很好的这样的度量,比如说没有保持很好的这个面积,没有保持很好的距离啊,所以你一个球面要把它展开成一个平面。

肯定是会破坏一些几何度量啊,面积距离等等是吧,所以这里面就有啊,要问,我们要做一个好的参数化,你到底要你需要什么性质,你才能做好好,那么从数据上来讲一个映射,假设我一个区域啊。

左边的一个欧米伽运到这样一个区域对吧,这个f假设是算出来存存在的,那么我们对某个点x这个点啊,x我取它一个小领域,这个小领域叫欧米伽哈,这个欧米伽是这个点的小领域,那么这个小领域通过f就印到了这个红点。

所对应着这样一个小领域啊,你们在大一微积分的时候,学那个一个词叫雅科比啊,就叫叫后边啊,雅科比亚克笔是什么呢,这个点的亚克笔是,这样定义的就是这个这个映射的啊,对两个方向的一个偏导组成一个矩阵。

这个叫雅克比,就它是一个啊,比如说二维就是2x2的啊,它的还有个行列式,行列式是度量啥呢啊,我不知道大家有没有学过他的球,就你们在学数学的时候,一定要知道它背后的求意好。

我这个几何体稍微呃定性的描述一下啊,你把这个点的这个小领域,因为这个假设取一个这个,无穷无穷小邻域啊,这个半径为r,他运过来以后就印成这样一个这个呃,一个一个任意形状或者不规则形状,这样一个黄色区域。

你把这个黄色区域的面积,比上这个蓝色区的面积,当你这个r趋向于无穷小的时候,这个面积比值是一个定值,这个定值就是这个亚科比的行列式啊,也就是说这个雅克比行列式度量呢,这个小区域的一个伸缩量。

如果这个比例是一,表示这个点附近附近没有被拉扯是吧,两个比等于一表示什么都没,这个点没有贝拉词保持什么,保持了面积保持的长度,保持距离对吧,因为它它是保持这个几何特性的好,如果这个这个是大于一。

表示局部有拉伸啊,如果是小于一就有收缩,就很容易很,很容易理解对吧,就是这个雅克比行列式的值,行列式的值,度量了它的这个啊,局部这个点的一个伸缩的状态,当然我们这里这个面积,我刚才只是讲的面积。

实际上这个面积还是还有个叫有效面积,比如说这个圆它是顺时针朝向啊,是这个这个方向朝向,但通过f呢,也可能是顺时针朝向一个小区域,当然也可能f心态不好,变成逆时针一个区域,这时候这个行列式就变成小于零了。

所以如果这个这个一个顺时针的一个区域,通过f变成一个逆时针的区域,表示iphone什么行列式小于零表,示什么表示他这里局部发生了一个翻转啊,翻转就就就是这个函数呢,发展一个镜像的一个啊这个这个变化啊。

学表示局部是有重叠,有翻转,你就可以判断出这个函数在这个点,这个点啊,这是它的一个局部性质,如果f这个呃这个雅克比行列式小于零,表示它翻身了,翻转如果是大于零,没有反转,但是如果它的行列式小于值小于一。

发生了收缩,等于一,没有收缩大于一,所以通过一个这样的一个简单的,这样一个亚科比这样一个,行列式啊,这数学就可以度量这个映射函数,在局部点的一个非常直观的几何造型,如果你理解这个东西以后。

你很多东西就后面就很容易看懂好,这就是雅克比啊,我记得花了一点时间来讲一讲好,当然还有很多映射的过程中,我还希望保持别人,比如说我我想我想变形过程,映射过后我想保持夹角啊,这里垂直我始终要保持垂直啊。

这个叫这个保角映射啊,实际上是在数学上有有个词叫共形映射啊,共情conformal啊,这个映射,然后呢还有些这个要保保持面积,可以看到这个右边这个这个这,个这个映射啊,它虽然那个不是这个特别啊这个规则。

但是呢它每一个小块面积啊,是被保持住了啊,可以可以看到它是这个叫做保面积好,那么还有最好的一种特性叫等距映射啊,i do magic,或者叫做那个名词叫i shi啊,就等于运势等于什么。

我既保持面积又保持角度,所以它是等于等于什么,等于输出,等于如果每个点都输出是等于变换,它就是可展的,因为因为它没有任何的这个形变啊,就一张纸把它卷一下,卷成圆柱啊,圆柱上呢跟纸对应就是一个等级。

意思好,所以这些是一些基本概,念好coupon mac呢,因为在空间上,这个在平面上很好理解,就是这个点的两条直线的夹角,但空间上的话两条曲线夹角是杂度量的,就是他们的切线夹角啊。

只要有这个概念就行了啊,我这里提一下好,那么可以看到,如果你你这个保持这个特性不一样,你地球展开有不一样的展开啊,像刚才我提了一下,如果你想保持角度,那这个叫共形映射,这个就是比较好的一个方式啊。

如果你是想保持面积啊,数学上我也可以给你算出来一个地图,是这个地图啊,你可以看到它卷曲跟跟跟刚才那个图不一,样这个椭圆是斜的,因为它保证命题啊,虽然我不保持那个那个距离啊,所以说这这个是叫啊等级啊。

这个地图这个叫保角地图啊,所以你可以在看到在呃实际这个工工程中,你希望我保值的车型不一样,我都可以给你算出一个这个地图来啊,这个这张这种地图在民用的比较少少见啊,那么我们来看看这个共性啊。

conformal mappp的这个呃呃几个概念啊,这个概念我不会详细解释,后面后面的课程会详细展开啊,呃放心,老师会讲的更细一点,那么共性运算呢,实际上是刚才我讲了这个这个映射过,来以后跌f v。

你可以把它表表示这个一个几何量啊,它跟那个dv啊中间是有个关系的关系啊,如果如果取它的一个对数啊,就叫做共性因子,所以共性因子呢也是度量了一个,在保小因子下面,它的一个局部的伸缩量啊。

这个质量在后面会经常用到,实际上跟这个跟我刚才描述的牙科比啊,这个概念是一样的,它就是一个啊这个深度,因此只不过是在共情影射下,它就比较好算,比较特殊啊,那么共性映射啊,这个还有一个非常重要的方程叫。

亚麻比方程啊,就是表示了一个啊一个一个一,个一个曲面啊,它的高速区域的一个变化啊,这个我提一下,那为什么放这呢,跟大家有个大概有个印象啊,这个印象呢后面会解释的非常,后面会解释。

虽然他的数学背后背景很深刻,但是截肢啊后面会讲的会比较直观一点,好拐角有两个概念,那个稍微提一下,还有一个等距变换,等于变向,就我刚才提了,每个点都是保角和保面积,所以就叫等距,如果处处等距啊。

这时候可以可以可以证明啊,这个曲面就叫可展曲面啊,可可转曲面有个等价的一个定义,或者一个性质叫就是高速曲率,处处,为零高度曲率就是两个主曲率的乘积啊,你看到,那么在从在微分几何里面可以证明。

高度曲率是等距变换的啊,不变量,所以你如果能展开成一张纸啊,如果等距它高曲率处处一定一定是零啊,因为这个不不变量啊,有好多不变量好,低级本性也不变量哈,进行变换相好,所以呢呃这个高可转曲面呢。

上次可以证明它只有三种曲面,一个一个叫柱面,切一刀展开来,这个很容易理解是吧,拿张纸卷一下,或者卷卷成锥面,还有一个就随便弯,把这张纸随便折一下,这个稍微稍微稍微稍微扭一下。

啊这个这个这种面呢啊叫做切线面,因为它存在于一条曲线,然后呢这个这个呃这个点这个点的切线啊,啊就是就在这个曲面上,所以这个曲面是这条曲线,在于所有的切线的集合,所造成的一个曲面啊,这个叫切线面好。

然后在这个前面讲讲的那个呃,前面一些基本概念那么好,还有还有一个就是我们要关心啊,形变是刚才形变只是讲面积跟角度,当然更一般是怎么来度量呢,啊我们有这样一个度量,就是三角形,倒三角形,可以看到三角形。

倒三角形有一个这个叫仿真变换啊,反正变换,前面这个系数就是雅雅克比行列式,可以可以看到这个变化呢,可以把一个球,把把这样一个圆变成一个圆,就是啊就没有变形,如果被分成一个椭圆,那么它有两个这个阶梯啊。

阶梯是个阿三的矩阵,是矩阵,可以做一个s u v分解,suu分解的话,中间这个u和v呢都是正交正啊,那那么中间有一个矩阵这个角,它的奇异值矩阵两个两个对角线啊,啊这个是个最低要,矩阵是西卡梅因和西格玛。

我们现在约定七个嘛,那么就这个两个词差的其值其实是几何,意义是啥呢,就是一个一,个圆无穷小圆变成一个椭圆,这两个轴啊,所以可以看到诶,你如果如果理解,理解这样一个几何意义以后呢,啊我清楚了新冠疫情干嘛。

就是度量了这个点的,局部的这个或者三角形,这个变形的量好,大家去看,如果西格玛一等于西格玛,但不等于一,假设这个等于哈这个单单位圆,如果在这两个只是相等,不等于是不是表示一个小圆变成一个啊。

表表表示三位唯一的缘分,是一个大圆或小圆,所以这个就叫保角,如果等一刚好是圆,是一个全等的啊,就是等距好,如果不满足这两个一大一小,但是它们的乘积相相同啊,不就是椭圆面积等于这个圆的面积吗。

因为椭圆面积就是派a b嘛是吧,派西格玛一西格玛,所以这个叫等级,判断他们在局部是等级还是等角啊,保角还是等等距也可以,就是说这两个其实是非常重要啊,这这张图大家一定一定要理解啊。

就是后面的那个减少几何形变的,很多基于三角形033角形来来度量的,都是用这两个西格玛一切慢来来度量啊,这个是以及数学上啊,这个挖掘到这样一个好的这个,几何量来啊,这个度量这个扭曲好,有了刚才那个概念。

大家在看啊,如果我要把一个曲面拍平到一个平面,或者是呃就排名到一个平面,那么问什么样一个参数化或者uv图是好的,uv图或者叫好的参数化啊,这里就啊我先提两点啊,一点这个叫by jective。

还有一个叫logiortion,这个叫单色啊,叫小伙叫双色啊,就by by jectivity,是双色啊,这个叫单色好,那么我这张图用个二维来来解释一下,这张图呢是把这个点往往往这里转。

这个点往这里转就可能得到三种结果啊,那那么看中间的这个中间这个没有任何的,这个扭曲啊,没没有任何的那个啊这个重叠是吧,像这里已经这个重叠起来了,所以这个是啊,已经发生了这个香蕉或者叫叫叫翻转。

就我刚才说的翻转啊,那么但是呢这个呢就扭曲很大啊,啊我说这个扭曲啊小一点是吧,所以可以看到即使是同样一个任务,我我可能有三种结果,哪个结果好呢,哎我可能希望啊扭矩小一点的,就是保持双色的好。

那我们来看一下这个图啊,所以这个双色如果是局部双摄,等价于单色啊,单单色就是一啊,就是我有一个x只有一个一个y哈,就是啊或者两两,个y不可能对应同一个x好,那我们看一下,如果我这个点往下拽。

它可能慢慢变变好,到这时候你可以看到就这部分的这个群,这个点啊已经跨越了这个边界,跑到这边来了,就这里重重叠区,看到没有,就是这一块的点一抛到这里来,这是不是表示啊,这个附近的点就发生了翻翻转。

发生了部分的重叠,当然这个是重叠的更更厉害是吧,所以这时候呢这个就不是不是叫injective,你这可比较单色,因为它是双色了啊,就是非单色,因为什么这里有个x,x和y可以对应两个x。

一个是这个点的x1 ,个是这个点的x啊,所以这个这个算状态有表征什么啊,如果如果做做贴图时候,就发现这里是有个鬼影,因为两个几何的两个部分出现了同样的纹,理出发生的鬼影啊啊这个叫ghost现象好。

也就是说如果你要保持局部双侧,你或者叫单色,是不是我刚才那个刚才解释了,就是什么雅克比大于零引擎了,雅克比刚才那个行列式,这是行行列式的符号啊,这是雅克比行列式是不是大于零,那叫行列式。

大于零就不会发发生反转,这个结论马上就推出来了,当然这推不是数学,严格的推,是我们刚,才用纸几几何直观来解释了啊,这这个这个大家能理解对吧,好就是说你如果不想发生局部的翻转。

那么雅克比行列式一定要大于零,这个条件要满足,不满足可能就会发生翻转,就会出现鬼影啊,这个或者说这个结果就不能接受,好好,那么还有另外一个叫global的这个百jive啊。

就是因为global百家q能出推出logo,就是每每个点local的百家就in jia,就是说是行列式大于零啊,就雅克比行列式大于零,但是呢可以看到这里,我每个点局部都没有发生翻转靠。

但是呢我弯的很厉害,我这个部分跟很远的,这部分这个地方开始发生了碰撞,叫相交,所以你你单个看这个这个每每个点来看,都没问题,雅克比都大于零,但是全局呢发生了重点,这就是全局是双色。

虽然它每个点局部是单色啊,就注意,这时候呢就有点像那个物理模拟中的,这个碰撞,就是我这个物体的这一部分,跟另外一部分发生碰撞了,虽然局部看都是好的,但是全局看是有碰撞了,这时候呢我们也要避免。

因为如果出现这种长的话,同样会出现鬼影,因为我一张贴图放放了,这就是这个图这个两个几何,一个是这部分的几何啊,就是这部分几何跟这部分就这么结合,这时候来也发现这两个节目,什么像素是重叠的啊。

也会出现鬼影现象啊,所以也是不也是不允许的,那这个呢这个付老师后面也会讲,怎么去做这种全局的这个双色好,那么刚才是是指这个局部性质哈,双色单色性质,那么还有一个怎么数量,这个扭曲好有趣,刚才这张图啊。

这个大家清楚了,两个西格玛一西格玛的一个几何意是吧,那么那么如果不是每个点都能都能都满足,这么特殊的性质,那怎么办啊,那么什,么叫做这个扭曲或者叫形变的大到呃,什么叫做形变的小呢。

大家如果不去看这个公式啊,能不能想出一些策略好,我我一个这样的一个单位圆,变成一个这样的两个长轴,半轴的这个啊两个的这样一个椭圆啊,你们觉得气脉一颗星吗,形成什么关系才能保持这个椭圆,尽量向这个圆。

当然最好的就是让他们俩尽量相等于一,是吧,当然啊这个往往这个啊这个不好去度量啊,或者是呃也可以这样度量,但是但是呢他有些镜子保证不了,那么可以看到人们发在这个实际过程中,发明了很多。

很多这样占占占一些度量啊,你可以看到我们先看这个,它用信马一除以信号加信号除以线管一,可以看到这从用结合不等式大于等于二,当前简单它们俩相等,就等等于二的结果才成立是吧,所以哎这个果然符合刚才那个是吧。

就只要这两个尽量相近,并等一,这个值是最小,这个也一样啊,当然还有用,还有用一种这种对称的迪克雷能量,所以你可以看到啊这些不同的度量啊,当然还有西格玛1-1平方,加上西格玛2-1平方,这种度量也有啊。

对我们a i p就是正数量,好像上次这,种度量人最近几年发展很快,是因为后面有一个啊没有翻转的这个约束,为什么呢,如果西格玛一接近于零,接近零表示是不是发生啊,这个圆圆椭圆退化成一个很扁的圆。

甚至退化成一个啊零面积的圆的时候,有一个轴等于零了,这时候就马上就发生翻转的这个,这个趋势了啊,那么我就避免这个一个短轴趋向于零,怎么呢,我就在度量中我就特意设一个解码一,你们新款米小嘛是吧。

所以啊倒数的这样一个度量,也就是说我当这个信马一变成零的时候呢,这个值非常大,就让你这个能,量不往不会往那个方向发展,而而是保持住这个新玩意大于零,这样一个状态啊,这就是为什么大家啊。

这个最近几年为了保持翻转啊,就为了避免翻转采用这样一个能量形式啊,好所以呃从刚才的这个解释来看的话,那个啊那个一个好的唱的话啊,我们希望一那个扭曲尽量小啊,不要不要被拉扯的很很厉害啊。

第二就是不要出现鬼影啊,去鬼影可以看到这个这两部分这个纹理啊,发发发生了重叠啊,就是所以这是一个比较好的uv图,叫参数化的一个啊,这个非常直观的一个要求啊,可,以看到在这个领域。

我们做一个什么样好的参数化,就是围绕着这么两个要求啊,一个我不能形变,形变的话,我贴个格子,我在这个地方很小,但内容很大,就就你这纹理不好控制是吧,一个这个动画师美美工,你就没法再再在那在那很好的控制。

还有管院可不要出现鬼影,你不要出现翻转,也不要出现这个这个全体之交,这时候你的三化uv图就是好的一个位图好,我这个在讲后面的过程中,我看看啊,b站b站有一些问题我先回答一下。

看看那个学这个solar works能用吗,当然能用,就是在what sol works,它是个工具,所以它里面背后都是用这些技术做的,所以如果你掌握这些技术呢,就知道那些软件到底是怎么操作。

背后是什么原理啊,可能能让你掌握得更好好吧,嗯要判断match的三角面反转了,可以用这个吗,哎对呀,就是判断这个三角面的那个啊防止变化,它那个亚科比啊是不是大于零啊,是不是小于零小于零。

就是啊发生翻转了,嗯终于可以理解二维纹理贴图了,对的这就是呃我后面讲的那个uv图,就是啊动画啊,游戏背后贴图的技术,所以这这些这个课本质上就在,就在告诉大家怎么去生成uv图,好吧啊,然而正是这个技能啊。

让我那些学生啊在一些大厂的游戏啊,这一些制作软件里面发挥着非常重要的作,用,能够把现有软件的一些uv图的技术啊,这个改改良啊,并且创造了非常多的价值啊,好这这就是啊为什么掌握这些东西啊。

能够发挥很大的这个作用,也会贡献啊,这个给工业界的一些技术进行一些改进啊,这个课会讲非流行的参数化吗,哦非流行,它的话是一个比较比较比较难的问题,因为非流行它结构就没有,就没有很好的数学性质啊。

所以我们在业界也没有很好的,那个我们课计划暂时没有这方面内容啊,呃我们看有需求,后面啊交流一下,看看是不是我们会做一些研讨,课程中会介绍前沿进展吗,会的,我们后面的13节课,基本上都是介绍这几年的。

非常前沿的一些工作啊,srah啦,top一些文章啊,都是代表着最新啊,这个5年吧啊,其实至少最近5年的一些工作不会漏掉啊,绝对放心啊,所以这也代表了这个业界的这个领先的啊,这个水平啊。

因为参数化的这个中枢文章啊,业界已经有好多,有些是10年前的,有些很多年前的,基本上还是一些老的一些知识点啊,我们这个课就是啊,请问会有具体离散数学点计算吗,哦离散数据点这个啊。

你和这个很重要的就是离散点,云的参数化也是个很重要的课题啊,这个我们后面不会重点讲啊,因为离散点跟网格的参数化,或者跟网格的区别就在于离散点没有领域,所以呢,你只要有办法构建离散点的一些相邻关系。

比如说你就用最新零啊,然后保证最近零的这个一些结构啊,这个同样的这个网格参数化基础,可以用过来啊,但我们没有专门去去讲解啊,如果需要的话,我我会在最后一节课,来给大家介绍一下思路,嗯。

好其他的其他的暂时没有问题的话,如果有大有问题,给到我们,我们助教会收集,我在课的最后再给大家讲解好,我们继续啊,时间过得非常快,那个诶好可能今天时间我稍微拖一拖啊,因为今天内容还是想给到大家更多信息。

好曲面参数化的有哪些这个方法啊,那么呃后面啊,我是那把我这个主要方法,进行一个归类和总总结啊,你刚才同学问问是不是最新的啊,咱们这个方法呢主要有这么啊三大类吧,我们啊后面这个郭老师啊,呃这个呃。

其他几位老师都会围绕着这三个方法进行,详细的展开好吧,我这里就是给大家一个宏观的一个overview啊,就是一个宏观展开啊,一个呢叫线性方法,就是以x的方法为主的啊,还有呃优化方法。

还有一个是保证没有翻转的方法啊,这个是最近几年的一个热门,好我们每个方法我稍微提一下啊,tt方法呢是早年的一个非常早的,你可以看到它是来源于163年,上火的时候,是在中医学,就是上个世纪末97年左右。

floor方法为主,他的方法呢,就是说我把一个这个一个曲面啊,它的边界把它映射到一个二维中的一个突,然后里面的每个点呢跟周围的一领域,这个这个满足一个啊线性关系啊,拉普拉斯关系,或者是一个这个保行什么。

什么笔可以自己去调,这时候呢tx这个这个定理呢,它实际上是来源于图论的一个定理,是说,我只要每个点跟作为一领域,保持关系不变啊,边界的如果是个凸的,这个一定有一个解,这个简单是不会发生翻转。

所以说这这个定理是非常非常强的,所以它但是它的要求这个边界是突啊,圆呐啊四边形啊,所以这个呢他只要解一个方程组就可以啊,写方程组也可以,所以这个实现非常简单,你只要学会怎么去调用吸收。

线性方程组的求解器啊,就可以很快实现啊,在很多课程里面啊,那可能付老师后面也会布置这个作业,让大家先练练手好,但但这种方法呢就什么会有很大的扭曲,因为什么我我把边界如果边界很小。

它就会把这个相当于是怎么把这个边界拉,扯一一个一个一个圆形的这一区域,里面的点呢,就把它变到这个这个里面,所以它里面可能有些地方很密很挤对吧,如果你想象边界很小的话,很多点会挤在一块。

所以它有非常高的扭曲,就是虽然它能保证是一个没有翻转的,但是很有效,很大,后面啊这个他为了这个更多复杂的形状,也有些发展,我讲好,第二个方法呢,就是这个几何的方法有很多方法啊,有些是啊这个保缴啊啊。

就是早年的a b f后面都会展开啊,还有啊,我早年年轻时候做的一个方法叫a r a p,08年啊,十几年前了,然后呢,这个方法呢,呃这个当时这个取得很大的成功啊,这所以方法啊出来12年左右。

就被很多软件集成了啊,也是开源软件的一个比较主要方法之一,那么这个方法呢这个后面也会简介绍啊,也它是保持啊,这个呃三角形映射的这个这个旋转分量,就叫刚性变刚性啊,所以呢它的这个变形扭曲非常小。

当然它同样也没有办法保证没有翻转,因为它是优化方法,它没有去对这个顶点的这个,这个flip进行约束,所以它仍然会发生翻转啊,还有一些这个呃用这个那他以前是三角形,它现在用边来做。

作为这个基本单元的一些方法啊,后面都会介绍好好,那么这是解决方法呢,虽然说结果呢都保行保缴啊,还还是保其他的一些反射变换的,一些这个这个这个特性,但是都有都可能会发生翻转。

所以这种方式方法呢就后面是什么呢,都会什么都会做一个后处理来消除翻转,就是说结果中已经出现方向翻转了,比如它的方法,如果边界是非凸,它翻转是有可能发生的啊,这些红红色三角形就是表示嗯。

跑在这个是十字形以外的地方了,就翻翻转,所以呢后面呢就产生了好多来怎么消除,发展的方法,就是我有翻转咋咋办,我就一步步让翻转不断消失掉啊,那么有有有有很多策略啊,加什么函数啊,还有加这个这个这个。

这个变形的一个上界啊,啊,就让让他让他不要跨过这个翻转的界限啊,还有一些这个投影方法,我翻转有个空啊,不翻转的这个解有个空间,我把不翻转的这个翻转的解呢,把投影到这个空间上去。

尽量希望尽量的去减缓解这个翻转,像这个例子啊,这个右边两张图啊,这个啊我们dino就是右边这个呃,这个三角形发生翻转了,那通过一些后处理修复,可以把它消除翻转,所以这个消除翻转呢啊。

不仅仅是在参照画里面啊,是使用的,在做很多网格生成的时候也会使用的啊,因为翻转经常出现的三角形啊,一个顺时针a呃,p1 p2 p3 的战经变成了逆时针了啊,就是这个这个这个这个朝向反了。

从一个右手系变成一个左手系的,这个翻转就出现,这时候怎么消除,所以这类方法呢会是一个很大类的一个,代表方法啊,那个啊应该付老师在在在在,在那个第二节还是第三节课,就会讲到这个方法好吧。

大家可以可以可以详细去了解好,那么第三类呢,就是因为上面一个方法避免不了翻转,但是我们通过后面的处理方法去去避免,但是避免是过程中呢,也是没法理论上消消除,我只能说尽可能消除啊,所以没法理论保证。

那么那么这种方法呢就是什么理论,严格保证没有翻转的方法,这是最近啊五到10年啊,非常非常让大家关注的一个,因为大家对于这个参数化的结果,要求越来越高了嘛,是吧好,那么这个方法你不可能跟前面一样的哈。

你去求一个再去消除很难的,他是他的什么什么思路呢,我呢就从一个没有翻转的结果出发,我不断去向治疗啊,我不断去优化它的这个顶点的位置,但是我一定保持没有反转,然后呢,极小化它的那个每个三角形。

或者所有三角形的一个这个几何形变,就变到最佳位置,我就认为这个是因为过程中,我没有发生任何三角形的翻转现象,你就可以了是吧,好,如果掌握这条基本的方法论或者主要思想,大家看没有翻转的结果。

是不是开始讲了,他的方法就能保证中间过程,只要不保保证那个三角形不发生翻转,这个是什么条件,是不是对应三角形的仿射变换的压缩比,行列式要大于零就行了,好那么什么什么叫低的形变,我刚才讲了形变的数量。

所以这套思路方法论很快就出来了,好我们来讲讲解一下好,首先能不能有一个初始值是valid的,就是没有翻转,很容易touch float就就保证了,所以这个初值很容易啊,这个得到。

第二我要要求结果形变尽量小,那是不是啊,这个这个有一个形变量的数量,还有一个呢要保证它不不不会发生翻转,是不是要有一个不见不方便的一个条件,或者约束,把这两个想清楚以后,你就出来了,好。

那么防止反弹转策略啊,有什么,就是通过一个障碍函数,这函数的意思就是说当年出现零的时候,它变成无穷大啊,还有还有一个呢就是刚才我解释了,让让这个新网页放在分母里面,如果快接近退化时候,先把一趋向一啊。

这个呃就这个值趋向于正无穷,因为新冠一直趋向于零,这时候呢它也不可能去靠近这样一个解啊,这就是一个非常典型的这个这个啊啊,这个数学的处理手段,好最后就出来了好,我希望扭曲属于三角形,是三角形。

小区是三角形,这是三角形集合,每个每个三角形的这个值要尽量小尽量小,是不是尽量的形变小,还有一个呢这个值要大于零,这个实际上,这个值就是那个亚克比行列式的值,这两个值不能不能发生小于零或等于零,情况。

所以从这样一个刚才我分析,所有的保证无翻转的这个方法,都是从一个无反转的结果出发,不断去优化优化这样一个能量,然后保证这样一个条件,就可以得到你的解啊,所以只不过怎么去求解它后面不同的文章,不同的技术。

产生不同的这样一些这个方法和论文,而已啊,当然这个是一个高度的非线性飞出的问题,所以这个求解是呃比较困难啊,然后呢,这里面涉及到很多最优化的一些技巧,那大家如果啊这个陌生的话。

可以再回顾一下102课程的第12讲啊,当然我这边讲的也是比较啊泛的一方法,更多的是你们通过每个方法的这个,这个理解啊,然后我们去理解不同的优化,所以在学这个过程课的过程中,你只要愿意花时间去学。

每个用每篇文章记住背或者优化,你同样可以把优化学得很好啊,只要你们愿意花时间啊,就跟着老师一起啊,有什么问题可以跟老师交流好,所以最后就是怎么去求解啊,因为刚才通过分析这个和人品就出来了啊。

那么后面的呃,呃其他几位老师都是围绕这个啊,特别是傅老师的课,会围绕这个讲讲好的技术,那么那么对于优化来看,这是个非线性非图优化,有个目标函数,有个约束对吧,那我们我们把它抽象好,我去约束他啊。

那么事实上是重庆话讲,理财就是给一个初值,我怎么去求它的局部极小值,所以给个数值好,那么我要去找他的下降方向,还要去找他的这个下降的啊,去找他的那个叫不长阿尔法不长,整个优化来讲,抽象出来讲很简单。

给从初中开始不断去找题主下降方向,不断去啊去去去,像那些叫啊爬爬坡法啊,往往往下走,没走过程中严格保持这个约束不变,所以这个制度方向呢就跟这个啊,这个矩阵呢叫海城镇的一个h相关。

所以这些方法都在去怎么去啊,找一个很好计算的h啊,如果你在h是找的是这个这个,简单的这个啊单位证啊,就是梯度下降方法啊,如果你h是找的是hs证,是两间那个矩阵,那么就是一个牛顿法啊。

所以这个呃基础法跟你就想想,跟牛顿法大家都学过对吧,但是对于高位来讲,就是变成了一个梯度,跟到跟那个啊,这个海森症的这样一个区别好,那么你怎么去快速计算这个海城镇呢,因为海神针啊是两间方法,他说两块。

但是它不容易计算,所以它再加油又又很很高,你不能在这里花很多时间,这时候整个性能就下降了,所以这里就有个平衡,所以说诶我又啊,这个可以用到海神针的性质,但是呢又不是完全,海神针又可以计算很快。

所以中间就产生了好多叫quin new newton,叫拟牛顿法的一些策略彻底出来了,你像l o b m g s啊,这种这种方法可以看到,你一旦把这个问题啊,这个后面的出来以后。

后面就把这个问题变成这个问题以后,后面呢就变成一个纯优化的问题去解了,只不过优化过程中可以是啊,这个利用到一些几何先验知识,让你这个优化更加针对性的啊,去解我们刚才formulate的这样一优化问题好。

那我就不具体介绍好,那个那个可以看到有一些方法啊,你可以看到一阶就是就下架啊,这个这个是两节啊,就是牛顿方法啊,就2222节,但是他说两块,但是他很不容易计算。

中间产生那些中间的叫coin newton啊,就是拟牛顿法啊,我就不想介绍那个呃,把这个介绍留给啊傅老师后面去展开啊,像这个是16年的啊,a q p,他,他就他就对这个海神圣,做了一个简单的近视啊。

就是用拉普拉斯来禁止他啊,然后这个这个是呃,用用用用这个这个向量场的这个算子啊,来记住它好,那么这是刚才讲刚才几个工作是现行方法,就是说有点慢啊,但是这个呃呃呃比较好算,那么还有你啊,你就算法啊。

就是像15年这个文章,用l b l js的方法去搞啊,还有我我我就跳了啊,啊还有这个这也是你牛顿法啊,还有就是呃这个用啊,牛顿法用两节方法就收敛很快啊,像像在这篇就是用这个啊这样一个形式,cm的方法。

还有一个就是我们啊18年西瓜妇啊,就也有4年了啊,你晃时间过得很快,就是啊就叫progressive,这个protation,那时候是邮政法做得最快的一个啊,啊这个当时主要思想我就不展开啊。

主要是呃这个发现辅助方法里面,这个扭曲极大,那么大的那个扭曲呢,会导致这个优化很难搞,那么我们就啊,就把那个呃做这个参考的三角形,让它的这个扭曲啊有一个上限,这时候借一旦是有个有限值的优化。

就一下子降得很快啊,这是我们这篇文章的思想,所以呢啊这边是这文章思想,我个人觉得还是非常不错的,就是啊以前的呃去解优化呢,老是想好好的一些优化这个一些方法,我们呢是突破的这样一个常规思路。

什么我去改那个目标函数,那目标函数能够啊变成更好减,然后目标函数不断在,毕竟原来的目标函数,这时候呢我的求解速度,效率和同样会很快好好,那么当然还有一些其他的,像这个追三的话。

home prom节选就是怎么去啊,这个用更好的追点啊,这几年非常火的一个方法,还有呢对这种歌颂,我这个如果他的话,不考虑割缝两个边界的这个拼接,就会产生这样一个啊,我我一看诶。

这个这个是me这个呃西很不协调是吧,因为你你现在割缝啊,这个这条歌缝产生啊这个两个区域,一个区域,一个这个区的边界,所以你在做参考的过程中,还有带有约束,这两这两个要光滑的,要连续拼接的啊。

像这两个就是啊非常困难的两个问题啊,像一个封闭曲面,如果你不去做这个事情的话,你会发现这边和这边两个纹理啊,非常不会很不和谐啊,那么怎么样做到这个完整无缝的,这个叫semini啊。

这个插画啊也是很难问题啊,这个在应该课程在比较后面啊,方清老师他们啊,这个欢欣老师为了重重点讲这部分内容好,剩下还有点时间,那个我看看我我也停一下啊,看看,啊啊没有成为主流啊。

因为它毕竟是一个非常强约束的,几何背景的一个问题,但是是有潜力的啊,我后面会会谈一谈,然后呃当然这个学期也是优化啊,本质上是优化,就整个函函数空间,这个比较比较比较大一点哈。

基于参数化是否有较好的方法计算确立线,有啊,答案是有,这个也有人用参数化去做测力线,因为你你参数化呃,这个有一个度量就是保持距离嘛,保持距离上就是就是一种一种啊,这个这个车离线的度量。

只不过他可能不如精准计算车力线,这些方法好吧,因为它毕竟是全局考虑好,其他的暂时没问题,我就继续好继续,可能top终点时间,因为想第六部分啊,也是我的一个理解,所以也希望跟大家分享一下好。

那么除除了球面,刚才讲的平常的话呢是把它展开成平面,事实上我们还有好多应用啊,啊参的话呃,这个定义啊可以可以可以其他地域,比如说是个球面,比如说我这个曲面,左边这个曲面是一个封闭的啊,呃亏格为零。

把他吹膨胀成一个气球嘛,我们没必要把它割构成一条缝对吧,然后再把它的话还有考虑嗯,像像这么这么复杂的这个歌风问题啊,你这并并且并且有很多别的问题诶,我我就无缝地把它传统放到球面。

而球面是个很规则的区域啊,求面大家如果做过纹理贴图啊,用用个八面体一逼近,不就印象那几个,这个这个这个贴图出来了嘛是吧,所以哎还有人专门考虑怎么把一个曲面啊,亏格为零的封闭曲面参数化到球面啊。

这也这也是一个啊这个小众方向啊,我们这个课不会不会重点讲啊,我会讲一部分好,然后呢,这个局面上方就是怎么去度量这些扭曲,也有一样的这个新变量度量啊,不展开,那么还有一句,还有另外一个穿的话呢是什么。

我把这个这个网格呀,把它穿到另外一个网格上啊,当然这个你说的是穿的话,也可以把它变成呃,叫做构建两个曲面之间一一映射,他的话只不过这个是三维,这个是一个平面,1111对应对吧,这个呢是两个曲面接近对应。

也就是说我给你一个两个人,这两两个人是完全不一样的人对吧,你开始扫描时候,这个点密度啊,分布啊完全不一样啊,那我怎么样把它变成叫相容性网格,compatible mesh,就是点要一对应,边要一一对应。

上与线要一对应,因为这个这个在做动画的领域,是非常非常非常重要的,就是我可能少了100个人,这100个人都要有什么共同拓扑啊,就是点点对点边对边面对面,因为这样的话呢我才能定义啊。

同样的一些这个比如说friendship啊,这个这个混合机啊,普文形状啊,畸形状,这时候你才能去做那些动动画关系,就是这个这个这个手动了以后能够驱动,另外一个是呃人的手驱动啊。

并且保持语义性质要一样的啊,所以这个相对性网格啊,也是非常非常重要的啊,也是常态化这个领域啊,一个重要的重要的一个研究内容好,那么这是大概,大概我们2年前的一个csrah啊。

把这个问题做的做的做的很好好,当然当然还有体香的话,就说如果再做一些特殊应用,像工业c e e啊,像像实体这个仿真啊,那么如果你要把这个因为蚂蚁,蚂蚁抛除了表面以外,它里面空间还有实体。

这实体我也把它拆了,挖到另外一个空球球面,然后呢你里面的点也要有一对应,因为可能两个形状就是这是表面对应啊,这是体里面,是因为我们我们可视化一部分啊,就就可算到这儿是吧,那么这个呃从技术难点来。

从技术上来看,跟面瘫的话没什么本区别,只不过把三角形的度量变成了四面体,因为我这个啊这个蚂蚁这个实体啊,我可以用四面体对它进行剖分,所以呢里面的这个四面体到生命体,就变成了一个空间中的反变换。

所以看到三角形之间的反应变化啊,完全可以啊,平移过来变成四面体之间的反射变换,只不过是一个一个在二维,一个在三维而已,所以刚才的那个什么呃呃三呃,称称称称称这个叫什么奇异值,西格玛一。

西格玛二变成三维中,有有三个,就把一个实体的球变成了实体的椭球,那么这三个轴方向应该怎么变啊,质量是比较好,所以啊其他的话完全那这个平行于啊,面瘫的话的一些技术,你只要只要那个懂了。

看这些东西或做的东西就就不难了,只不过它的这个数据结构啊,编程量啊,优化空间啊,变量更多更难更复杂而已,当然还有一些性质啊,这个从数学上是什么突破不了的啊,这个后面陈振杰老师会出来,会讲这个事情对吧。

比如说在阿伟上成立一些性质定理,在三维空间中就不成立了,这时候你就挺难用了是吧,好,所以餐的话呢它那个可以,刚才我把这个餐的话,那这个啊形态变得更广泛以后,可以发现只要是构建影射。

只不过右上角这个参的话,是大家我们这个课主要介绍的,三维到二维的一个映射,事实上是以二维到二维,好像这个是到前面看到也介绍了,还有这个两个曲面之间,还有体之间都是属于一个映射构建。

而映射的是一个很广泛的概念啊,就是它可以是啊任何维修时间是吧,只不过这里从我们几何上来看,我们人类生活在三维空间,很容易想象出二维,三维的一些几何的这个曲面的一些性态,所以呢呃他有实际去利用背景。

所以这些研究型来说比较比较比较多一点,好,如果一旦你跨越到更高位,这时候呢,你看我们人类是想象不到四维空间的啊,因为我们是生活在三维,三维这个det坐标啊,这个这个面啊体啊很容易啊,很直观。

但1~4维思维的这个球迷是啥思维的,这个这个超平面超群名是什么啊,这很难想象好,所以我下面给大家引导一下啊,好那个是什么叫参数啊,我们可以回一下为什么这个叫参数,参数是因为我在三维空间。

这个点呢是有三个坐标xyz,但是这些点啊分布在一个曲面上面,它本质上是一个二维的一个结构,也叫二维流形,所以说你三维数据虽然在你观察空间,就observation space是高维数据。

但是它本质上可能是位于一个低位的一个,流行结合上面,这时候如果你这个低位流行结构,能够在它所在的维度上去做一个映射,一下子,就把这个数据点变成一个低微的一个表达,也就是说这个点看起来是xyz 3个分量。

但它本质上是个二维的,只不过是通过xyg 3函数,映射到了xyz这样一个点,但它的参数是只有uv uv在这好,我讲慢一点哈,就是你虽然在观察空间,举例这个点可能是一个呃人脸,这个点是个人脸。

这个点是个人脸,看起来好像是几万几百万的一个空间,但呢他具有一个低维结构,这db结构呢它如果你能找到它的地位,结构是为数,以及它的一个映射参参观映射,你完全记这些这些人脸啊,看起来是100万位。

它本质上只有什么,只有100位,只要用100个参数就可以把它表达出来,这就是什么一个高维数据,如果您能找到它的几何结构,并且计算出它的测量化,你就能找到它的一个低位表达,你如果在电表达方面。

你就做了很多事情,处理就非常本质了,而不是被这些高维坐标给他们迷惑了,好那么什么叫参数,参数就是本真维度,好,我这个这三个例子,都是在三维空间中看不同的不同的数据,像这些线,每个线上面是个点。

这些点呢是位于这样一个螺旋线上面,那么这里呢这些线呢啊,这些点呢是位于占这个曲面上面,那么在这里的话呢,这些呃这个这个采样点呢,在位于这样一个实体里面,看第一个图,虽然这些点是位于三维空间中。

x y z对于坐标,但是它的结构是一个线性结构,所以它本身维度是不是一维,因为一条线把它一拉直就变成一个t啊,所以看起来是x y z,但是它只有一个一个参数,所以它它一下就降维到了一维。

所以数据看起来是三维,就啊就假设不把你这个线给画出来,只搞只给你啊,这里1万 1万个点坐标给你,你看起来是1万个三维的点,但是它只有一维的结构,只有意味着这个位数,这个叫本真维度啊。

同样我这些点分布在这,给人给了你1万个采样点啊,我是我这个图不给你看,也不给你画出来,你只看到1万个点,坐标是x y z x i y j i i从1~1万,但是如果你能分析出来。

它本质上就是一个二维流行,你把它算成化以后呢,就变成ui vi就变成一个二维的,那么这里是三维,就变成一个规整体,我就可以在在这规整的这个体系里面,三维到三维来做引子啊。

如果大家不知道能不能get到这个点哈,就是说本真维度才是你研究你数据对象的,一个本质上的一个啊,这个处理手段好,同样我刚才讲了这个三维,那么同样你可你可现一维结构,你签到一维还签到二维,还签到三维。

你无论你怎么去劝你在三维三分钟看它,还在二维上看它还是在100位看这个线,你仍然是一维,因为什么它就是条线变来变去的,只不过它嵌入到不同空间,只不过不同在不同应用中去,在不同空间去看他而已。

但它还是一条线,还是一尾,同样二维一个曲面,无论他女人女人呃,弯来弯去,扭人扭曲,是你在二维上周看,还是在四维中,还是五位中,还是100位中看,它仍然是个二维啊,那么这个很好理解。

那么但是呢反问题就比较难啊,就是给定你一个高位数据,你怎么去发现它的本真维度,这个呢就叫做啊,这个马上就讲好,就说好,第一天录这个问题大家都清楚了,但是怎么去寻找数据的本真维度,人是人人是个难题啊。

你如果你学到的文本维度啊,这个不对啊,过高了你数据冗余啊,过低了你这个数据丢失啊,所以这个本身就啊整个领域,我这个点采样是在三维中啊,你能不能过去这些这这点分布,当然我现在画出来了,你看哦。

原来是个这个swiss roll,就是叫瑞士卷形状,但是如果我给你的这是只是一些典典籍,不让你画出来,你能不能通过啊手段分析手段,计算方法去分析它的维度啊,当然我们这里知道这个维度是二是吧。

因为什么这两个点的处理距离,不不应该是欧式距离,如果有欧式距离度量,这些点你怎么去分析不出它是个二维结构,你必须要通过一个彻底距离,就是这个点从这里走走走走走,走到这儿啊,那么保持这个距离。

这个才知道哦,原来它是二维结构,它并不是三维结构啊,因为虽然它是三维坐标啊,好,那么,那么那么这个这个,这个也怎么去寻找这个东西呢,就当然很难了是吧,很难的话,那就是啊你如果不考虑做那个几何特性。

你拿一个通用的网络函数,实际网络函数f就是我给一个n维中的点,输出一个mv的空间点,这就是一个啊,就这就输入x的输入y我们找这个映射,那通过一个网络函数也能去做一些拟合,只要你有一些这个ross定义啊。

有目有目标啊,那你就可以定义是吧,但是怎么去找m啊,就中间m这个这个位数是很难的问题,好那我m啊,这个如果这个小这个大,这就就是一个低位到高位的一次嵌入,如果是小的话,就降维降维的话。

往往这个m吃的不好的话,你这个就是就会很细啊,有很多举例,如果你一定要把把一个体数据,把它降到一维,那肯定就回不来了嘛对吧,因为你这个三位数本身是他们3月三,三维结构,你把你把你把把它压压压。

压到一个单变量线性结构,那么很多就回不去了是吧,所以你降维不能,还是要考虑它的本质维度的啊,这个这个领域叫这个,叫高维数据的传统化。

manifold learning或者叫dimension reduction啊,相位啊,同样一批减云你不采用不同的计算方法啊,这是历史上的一些方法啊,这就降维的这个嵌入都有不同的形式啊。

只不过有些好一点,有有有些不够好而已啊,但高配三三的话呢,这个如果从从这网络这个观点里来看的话,啊,我再我再拓展几分钟吧,好好那么呃这个在进群里面有个叫ae啊,auto encoder啊,叫自编码器。

事实上你看到他输入什么,输出什么就x到x是吧,事实上是这个这个中间的,那个像漏斗一样的,中间这个这个就是它的参数,这个参数一定不能低于这些点分布的,本真维度,如果低的话,你就表达就就是很多信息啊。

所以你在做实验的过程中,这个位数是你需要去调的对吧,那么这个过程就叫参数化,这个这个过程就是用参数去表达原来的点,这个就是拟合啊,如果你这里换换成变样条,这是点云,点云到这里变成二维。

这就是拟合拟合意思什么,我拟合出的曲面啊,我这些点要同样这个点逼近这个曲面,逼近这个点是吧,所以可以看到整个整个方法论上面,是数组同归啊,只不过是用不同的语言,不同的函数集合啊,不同的这个这个。

这个方法去去做类似的问题,好好,那么以前呢做餐的话呃,这个孤立地把它分成参数化和拟合,应该把参数化跟后面的任务,这个叫这个叫下游任务,你参的话的目标是为了干嘛,是为了任务任务有可能是拟合,有可能是贴图。

有可能是这个其他的一些这个应用啊,那么要把它端端端端端的串起来,一起点和优化才是合理的对吧,所以从这里又可以产生出很多想法出来啊,就是以前我们可能过多的关注了,前面这一部分,看长的话没考虑它的下游任务。

因为你这个做这个参数化的任务,或者叫映射的过程中,你也是为下游去做服务的,所以应该端端端串起来好行,那个时间那个很快就过了哈,这个啊,所以呃我作为301开头的第一节课,给大家宏观的介绍一下开通话啊。

概念啊,方法论,还有一些应用啊,以及这个它的本质啊,数据处理很多啊,又出了好多好多一些这种猫都不一样,所以前面我就不讲哈,就主要总结一下,这,是吧啊,从早年的这个深入一般的深入网络。

到后面各种各样的变种,到现在像是formal,还有这个叫diffusion model啊等等,模型不一样,那模型中带来一些参数,那么模型状态某某一层,那个啊叫latent code啊,就是你的参数化。

你中间拿这一层来,也可以是它的一个参数化,只要是它是比它低,为数较低,只不过呢就是呃,我们中间是作为一个函函数的表达,去表达这个参参数而已是吧,所以中间比如说那个危机g网络啊,有些方法啊。

就是拿什么q4 层来表达一个什么信息啊,倒数第二层来表达信息啊,注意中间的任何参数都可以是,作为它的一个三三的化啊,那么张南山镇化的目标是为下游任务,你任务不一样,可能穿的话有它的不好啊。

这个不一样的这个啊形式不一样的,这样的一些这个要求啊,也不像结果好好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这就是我这节课作为301啊,这个专题课程的第一课啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

给大家讲的一个宏观,那么后面呢啊在后面的过程中,就三位老师从离散的,从连续的,还有从那个conformal啊,三到角度去做更多更深入的一些讲解啊,这个后面的呃这个知识点就会深入一点啊。

嗯然后呢这个会有四个作业好吧,付老师会有两个成年人,杰老师会有一个啊,放心老师会有一个四个四个作业,希望大家如果有兴趣就可以去做啊,我们助教会帮助大家啊,我们这节课的内容就到我到这里哈。

我看助教已经返回了一些问题,我回答一下啊,按利用几何去理解流行嗯,对的嗯,我刚才最后一部分几分钟,就是在讲这个事儿啊,这个我没有,我没展开好没展开,实际上是呃啊,从我们呃重新学角度。

或者做几何的角度上去理解这个呃,这个数据的流行啊,至于还是有很多呃不同的洞察啊,这其中就是缺生铜啊,顾显风青铜龙啊,这个呃数学家大家都很清楚啊,那他的顾建峰博士教授啊,就是从这方面去解释了。

当然它是从自由传输理论去理解,这个高位数据的分布,我这里简称它就是一种啊在寻找定位,嵌入参数化的过程啊,啊能不能让神经网络自己去看的话啊,从这张图可以看到啊,可以,但是呢呃如果这样去做的话呢。

就可能属于第二大类方法优化方法,那你就没法保证啊,这个参数化结果的这个没有翻转啊,这种这种预约数啊,因为嗯刚才讲的三类方法,三大类方法现行啊,几何优化加上无反转嗯,就是可能无法转。

还是现在人们要求比较高的啊,啊课件在哪获得啊,课件我们都会呃,你们关注一下啊,我们的课程主页啊,如果快的话,今天晚上啊慢的话就等个一两天,可能我们啊视频要做一些编辑,课件都会分享出来啊。

所以这也是我们game是所有课的一个宗旨,无无无偿分享啊,帮助到所有人啊,那个只要不用于商业目的就可以好吧,这是我们的呃整个games的一个啊终止啊,请问参数化和物理模拟有什么联系。

呃参的话它是一种地位表达,所以物理模拟呢,如果你这个观察现象是高维,实际上同样可以在在低维空间中去做物理,模拟还是有关联的,你像比如说一些高维数据,你想去啊做模拟,像它上面有好多好多信息啊。

可能比如你做流体,它不仅有温度啊,这个立场压强等等,但它也可以在低位空间上去做一个表达,然后在上面去做仿真,当然这个物理e可能会失去一些,这个要看你这个应用需求,需要专门去学计算共形几何吗。

呃我个人认为暂时不需要共几何呢,是一个几何里面也是个专题中的专题啊,那个那个如果你以后专门去做宫颈几何啊,这个还是可以去学一学,学的稍微深入一点,我建议大家听完啊,最后啊呃第11~13吧啊方谦老师啊。

这课以后你再决定要不要去专门学啊,那那个嗯你也可以问问方老师,他是不是专门去学过,还是说边做研究过程中,就边掌握了一些这个呃供给结构的知识啊,当然那个顾晓光老师也出了好几本,计算空间几何的书啊。

也是非常值得去去去去去读的啊,为什么能使神经网络更好的过拟合啊,这个当然跟这个课没关系哈,那那你问到了,我就简单的回一下,就是神经网络,实际上是它中间那些像像这张图一样的,中间那些参数。

就是它的那个模型参数,从从拟合角度上来讲,如果你拟合的参数多于,就是就是未知数多于多余那个输入的时候,就就容易产生过拟合啊,特别是容易用一些不好的机形式,比如说多项式。

像我们大一学的那个呃拉格朗日呃拟合啊,你用的是多项式拟合就非常容易过拟合,这个跟g函数性态也有关系啊,跟数据分布有关系,但是神经网络它有个比较好的点呢,就是它的那个都是用呢啊。

同样的sigma的这种函数,就是它的固定现象现象是有啊,但是呃没法从数学上去分析,它到底过你和方生在哪里是吧,所以嗯比较痛苦的是,在于我们数学工具还没法很好的描述,深度神经网络在你和现象中的一些现象啊。

也就一些些些些原因啊,就大家都是在背后诸葛亮去分析啊,所以还缺乏很多工具,所以这个我也没法回答,有个同学做低位到高位的这个拟合,要用到位置编码,嗯,这个对的啊,这个onal encoding啊。

这个如果大家对近近几年的乐福比较熟,嗯,你要去用一个函数去拟合一个信号好,你直接去你和这个信号本质啊,那个那个定义啊,这个时候会产生可能啊,这个母猴我我叫平均方法的现象,所以那个为什么啊。

就是如果你要保持这个信号的一个高频呢,你要把那个position啊,通过一个编码,编到一个高位的一个啊空间啊,这个比较常用的,这个叫未未整编码,这样的话呢你再去做拟合的时候呢,才会抓到他们的这个细节啊。

这就是啊最近在在乐府这个领域里面,就是大家经常用的啊,其实不是在乐佛在问乐府之前,大家就发现这样一些啊现象啊,所以你们在做,比如说你要去用一个函数,去拟合一个图像啊。

你千万不能在图像这个uv空间上去拟合,你要把uv把它映射到一个高位的啊,这个位置编码啊,再去做拟合,那么那么保持这个啊特征会更好,三策划在计算力学上有没有前景的应用啊,计算力学我不是专业哈。

这个嗯我没法回答,可能有用,因为力学上面也是很多一些有限元啊,这些这个几何表达跟那个分析是吧,所以它上面应该还是有啊,很多很多啊应用是吧,这就是呃,可能你有如果有这个很好的背景啊,计算力学。

然后这个课也好好的这个这个听一下呃,可能会对你会有很好的启发,好吧,我也非常希望啊,这个不同学科的同学能够听这个课之后呢,能产生一些啊西呃相应的交叉是吧,或者说诶这个我因为贪婪之石可以攻玉。

因为不同领域它的思维模式啊,角度会不一样啊,会给另外一个领域带来一个,全新的一个角度,就像啊我我用神经网络的观点来看他的话,来,我就产生了好多不同的,不同的这样一些思路和想法。

所以现在我们做的几个项目啊,这张图里面都都蕴含着好吧,你说的是你们在做别的领域,那个那个觉得他的话可以用上,也可以找我们来讨论和交流啊,我们可以给你们很多一些建议,商业软件中使用最新参数化方法吗。

啊哈这个呃我相信可能还没有啊,但某些大厂已经在做啊,因为从一篇学术论文到一个翻译软件啊,都要经历一个很长时间啊,因为研究论文呢,它的方法可能啊从某些性能上可能会很好,但是他一旦到了商业上。

他要追求啊这个极致的性能,比如说呃呃算力啊啊内存啊,还有显存的开销,人们并行等等一些约束,所以还要经过几代的迭代,才能成为商业上的一些有用的东西,但是呢不妨它成为那个为三个软件赋能的,一些工具啊。

比如我刚才提到的,我几个学生在一个大厂啊,这个这为游戏这个啊这个uv主展开啊,做了做了好多这样一些工具,一下子就提高了他们美工生产这些啊,这个uv贴图的效能,听说有百分之二三十一下子就就可以想。

可以这样打比方,反正以前十个人的活变成七个人了是吧,所以啊也是很大的,增强了工业界的一些应用,所以这里面还是有很多很多,很多东西可以去做的,做曲面加精,可以把曲面印成平面去做吗,嗯加金我没理解哈。

应该可以吧,好这个这个好像没没没有一get到你的问题,还有飞飞兔的参数化能做吗,啊,刚才是刚才讲,他的方法是说能保证有解的话,就这边减伤凹陷的是飞出,我们同样也要说,因为在工程中,在实际问题中呃。

大部分曲面都是非洲的边界,所以我们要去做作的过程中,就有各种各样的一些方法啊,把它分成快呀,或者是啊通过优化方法去去去解决,那些翻转现象啊等等啊,从同样后面啊,都会碰到这些具体的问题啊,如果有不清楚。

可以跟其他的老师再进行交流,好吧啊,助教也没什么问题了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那群里面没有问题,然后抱歉拖得太长啊,就因为我就会希望带给大家更多的信息啊,也希望我们这个三聊专题课程啊,从曲面上的化开始,能够开创啊,三字头专题课程的一个好的开端啊,因为明年啊会有更多的专题课程。

面向不同的子领域,不同的课题,把它讲深讲透啊,能够帮助到大家,同样也欢迎大家,那个如果对某些专题感兴趣啊,可以反馈到给到我们games技术秘书啊,这个啊我们会按照规划啊。

那个然后规划校门几年的一些这个课程,好吧好,那么我作为第一讲这个曲面测量化介绍啊,就到这里好,那么期待啊,后面的这个课程会更精彩啊,也希望大家能够从后面的课程中啊,能学到更多的呃啊这个知识和技术啊。

对你们未来啊,好好那么这节课到这里为止哈。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES301-曲面参数化 - P10:Lecture 10 共形参数化1-Spin变换、Circle填充&共轭调和函数 - GAMES-Webinar - BV18T411P7hT

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那欢迎大家来到今天games 301曲面参数化专题的第十讲啊,大家上午好,从今天开始,就是我们要开始这个曲面参数化专题中,共性参数化相关的这个内容的一个集中的一个三讲内容,今天是第十讲,后面还有两讲。

11讲和12讲,然后今天这一讲主要给大家介绍共形映射的这个微分性质,以及跟它有关的一些参数化的离散算法,像sp变化呀,sl填充以及共和调和函数等等,然后下周的第11讲。

我们会讲共性映射在曲面内运方面的度量,表示相关的这种性质和参数化算法,然后最后一讲我们会讲一个具体的应用,就是在共性参数化中,用来减少这个参共同参数化的面积,扭曲的这个追齐一点生成问题的这个系列。

这个相关的一些研究一个系列,然后我们知道这个共性映射是有非常丰富的理论知识,以及广泛的应用的,就是说我这里还是只是回顾一下图形学,以及跟我们现在这个曲面参数化专题这个密切相关的,这个十几年的研究工作。

然后有关共形映射,其他的这个应用啊,我会在介绍什么时候,什么是共形映射的时候,简单的提一下,大家有个粗略。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

的印象就行了,啊那我们开始今天这一讲的内容,然后首先我会介绍什么是共性形式,然后过形映射的这个最关键的性质就是保角性,它的意思就是保持映射前后的这个角度不变,就是说我们要用数学的语言科幻。

它在第二节中就是我们需要在连续的情况下是需要用到映射的微分的,然后通过微分我们可以推出曲面共形映射的这个克星里面方程,然后它最关键的这个今天的这个内容的一个核心的一句话。

就是共形映射在每一点处它都是一个相似变换,就是旋转变换,和伸缩变换的这个负荷,然后后面这三角形就是利用这个今天讲的这几句核心的话,共享映射的这个微分效率,然后去设计的这个共性形变啊。

以及参数化的这个相关的一个离散的算法,那我们来看一下什么是空气意识,我们首先回顾一下第一讲里面付老师讲过的,优化角度扭曲的两个参数化算法啊,第一个是a b c算法,就是它的出发点是三角形的角度。

决定了这个uv参数坐标,就是如果我们知道参数化网格,这个uv网格的所有三角形的内角角度是多少,那我们的这个参数化网格再相差一个整体的平移和伸缩,下面它就是一样的,那所以这个算法就是分成两步。

就是我们先确定平面三角形的所有角度,然后再通过角度去重建这个uv坐标,然后这个ibf的这个最关键的核心,前面的算法就是我们如何去确定这个三角形参数化到平面上面的,这个角度。

由于平面三角形就是平面三角网格,它的内部顶点这个一圈的这个三角形的角度和就是这个白塔i j k,然后这个顶点一圈求和,它必须是阿派,因为它在平面上,所以我们在最小化这个角度扭曲。

我们需要最小化这个角度扭曲,angle preservation,然后我们需要对输入的这个网格,它输入网格i顶点的这个r放i j k,它都和它不一定等于二派,因为它是在空间中的,它可以是大于二派。

也可以小于派,然后我们就是要保持这个我们的目标,贝塔i j k跟阿尔法i j k要尽可能的一样,然后要他求合适阿派,然后一个最简单的想法就是我们对阿发i j k进行一个同等比例的,这个放松。

就是让阿尔法a j k乘上一个缩放因子,使得它后面乘完之后,这个求和是等于派对于内部定义,然后对于边界顶点的话,就直接让这个,那么我们想要的这个贝塔i j k等于二fi j k就行。

但是这种简单的这个让设计这个表态i j k,他不一定能够在平面上组成,三角网格这个付老师也说过,就是说你这个这样设计的这个贝塔i j k,它只满足这个内部的这个顶点。

求和是一级圈的这个角度和求和是ipad形式,它要构成一个三角形,它首先它得是一个三角形,任意一个三角形,它的内角和首先就必须是求和,是180度,就是派对吧,这是第二个条件。

另一个条件就是第一讲里面讲的这个重建约束,就是说顶点i周围一圈的这个三角形,相邻边长的相邻边长这个长度之比,然后绕一圈乘起来等于一,比方说我们这里看这个绿色的这个点,如果看。

这个i k跟这个右边的这个三角形,这个我现在的这个笔指的这个地方,右边的这个三角形,它绿色的边比上红色的边,然后再乘上下一个绕逆时针走一圈,这个的三角形的绿色的边比上红色的边,反正如果这样一沉的话。

这两个绿色的边和红色的边就会消掉,你这样绕一圈过来,它正好所有的都抵消了,那这个乘积就是一那用正弦定理,我们就可以把这一个边长之比表示成这个绿色的这个角,比上红色的这个角的角度之比。

就表示成他们三in c它的这个角度比值之比,然后就是重,建约束就是说我要求这个角度之比,这个在每一个顶点,这个求和sin的这个sin值之比,sin值之比,这个球机它必须是等于一的,如果它不等于一。

就是说我们会存在一个三角形和它相邻的三角形上面,在这个边长不相等,比方说i j k它在左边的这一个这边画了个例子,就是它左边的这个黄色的三角形和它相邻的这个三角形。

i j k他们在i j上面的边长不一样,这就是违背了重建语数的一个情况,然后这次就是我们ibf的算法,就是计算跟这个贝塔最接近的这个c塔,然后c它要满,足这三个成这三个月数啊。

它是一个解一个非线性的一个最小二乘问题,然后另一个最小化角度扭曲的这个参数化算法就是mr quare conformal map,就是l s cm,他这个角度保持角的话。

它是通过一个平面的相似变换来达到控制角度里去的,就是说我们对输入网格,它在空间网格的这个任意一个三角形t i j k,我们可以把它固定到xy平面上,然后让这个jk的这条边跟x轴是重合的。

反正这个时候如果我们用相似的变换,把这个xy坐标转换成这个纹理坐标,那么它的这个每一个三角形的这个角就是严格保持的,此时这个因为平面上的这个相似变换,就可以写成一个旋转正cos c的-3 c的。

三in 7的cos c的这个二阶旋转阵乘上一个呃,伸缩变换s4 是大于零的,然后这个的形式,所以它的这个x就是uuv坐标,关于x y,它的梯度雅科比,因为这个线性变换,它就是它的梯度。

雅科比要等于这一个相似矩阵,所以我们就得到了这个偏u偏x等于偏v偏y,偏u偏y等于负的偏v偏x这一个的两个等式,然后我们这边也是只能用最小二乘以上面的优化,就是它是因为它是在空间到平面上。

它肯定是有角度变化,所以就用这个最小二乘乘上一个面积,加权这个面积选择ai j k就是三角形的权重,它相当于在三角形上进行一个积分,然后由于这个上面的这个能量对它进行最小而成的话。

它是可以出现退化的情况,就比方说u和v都是一个常函数,那这些梯度都是你那这个能量就直接退换,u和v a就是一个顶点,就是所有的网格所有顶点都映射到一个uv坐标,所以它为了解决这个退化。

就是还需要在网格上随意去选取两个点,把它固定到这个平面上不同的两点上面去啊,这样的问题就是说我们去选取这个点和它固定点的这个选择点,顶点不一样,以及固定点的这个位置不一样。

也会导致你最后参数化的这个形状他不一样,然后它也会就是扭曲,它也会不一样,然后从上面两个跟共形映射相关的这个参数化算法,我们可以看到,共形映射最关键的性质,就是保持映射前后的这个三角形的这个角度不变。

在离散的时候,就是如果是连续的情况,我们要求每一个地方它的角度都是普遍的话,那其实它会把这个映射先把一个质变网格变成一个曲面网格,有这个后面再讲连续映射的时候也会看。

就是说所以离散网格上面去定义共行参数化算法,一般都没办法做到完全的这个角度,严格不对,它都是通过优化最小二乘以下的角度扭曲来达到的,然后供给映射的保角性使它有着非常广泛的意义,右边这张图啊。

简单的介绍了几个共形映射在图形学和几何处理里面的一些场景音,然后以及几何处理中网格变形过程是可以保证这个网格带纹理的,网格上面的纹理的,它的轮廓是被保持住的,就是走向是保持。

然后共性映射也可以用来做重新网格化,重新网格化,我们知道在它的主要的出发点就是在有限元分析里面,如果你用的网格它质量很差,它有一些很小的锐角和很大的钝角的话,把有限元求解这个矩阵。

通常解的这个矩阵它的条件数就会很大,然后就影响数值求解的精度,然后这时候我们就需要对这个网格进行一个重新网格化,使得它的角度都比较,就是正常就不能有太小的锐角和太大的钝角。

然后这个问题就是可以用共形映射来做,因为共形映射是报警的,我们可以先通过共形映射把这个网格映射到平面参数与,因为在平面的参数域上面,我们有很好的这个比罗伊三角化工具,就是能够提升三角形网格的智能。

然后再通过逆映射把平面再运回到去,这样的话在曲面上生成的这个网格,它也是一个质量很好的网格,另外一个就是在形状分析里面也可以用到共性形式,比方说判断形状之间的相似信仰,然后描述形状的特征啊。

形状匹配和注册,都是有相关的研究,然后我们接下来就是因为要讲介绍一下共性映射它的应用嘛,还是他要发散一下,它有很多其他的音,就是说比方之后再设计制造你,然后在平面制图中,我们就是在地图绘制里面构建一。

这是可以保证方向的,就是可以提供很好的方向之一,然后过去映射它会有加一个无穷小的圆,映射到无穷远远的性质,然后比方说在建筑领域自由曲面上面去用圆在曲面上做这种装饰设计。

那就是可以用共形映射来使做这个算法的设计,然后共形映射也可以用来做曲面场,就是曲曲面上的这个向量场,而向量场在艺术设计里面可以用来模仿这个素描的这种笔触啊,还有在卡通设计。

卡通角色设计里面可以去模仿这个毛发的走向,对过去一直在这上面也适用于新应用啊,另外的工程预设还可以在这种3d制造方面,它可以在曲面上构造一些相互垂直的光滑的条纹叶状结构,然后这个叶状结构它是以编织。

就是编织的那种工艺是正好吻合的,所以你可以用过去映射来制造跟输入曲面的这个编织品,共性映射,它还可以在计算仿真领域有一些音,比方说在流体方面,关联性是可以模拟粘性液体在不稳定表面的这个流动。

比如水流在沙滩这种表面上面,就是一些水流在沙滩表面上面的流动线路,可以用过去一次,还有就是柔性材料的这种制作,就是我们可以对金属薄板进行一定的图案切割,它就类似于一种柔性材。

然后这种材料跟每一点处都可以,这种空隙处都可以进行各项统计的申诉,因此可以用共性映射模拟这一类材料的物理形变类,用我们常用的这个top优化是在平面或者空间中的规范的这种网络,平面就是四边形。

这个grade就空间就是立方体的这个贵了,如果你对一般的曲面想去做这个拓扑优化,那一个比较好的方法就是我们把曲面共性映射到这个体面,遇上那个正方形或者长方形遇上,然后我们对这个长方形域进行拓扑优化。

然后再把这个拓扑优化的这个结果反应是回这个曲面,就可以设计出在曲面上拓扑优化的这个图案,然后共享就是就是介绍了什么是共形映射,它的最关键的性质是保角性,然后和它的一些广泛应用后。

我们下面就要需要用映射的这种微分的这个数学语言来描述,这个严密的就是描述在数学上面来定义这个过程,因为你了解了这个映射的这个微分和已知相关的这个科学理念方程,能够加深我们对共性映射的理解。

然后最关键就是那个共形映射在每一点处都是一个相似变换,然后抓住这样的话,抓住这一点就是后面三个算法就是各种各样的离散的构形形式的,你算算法它背,后的原理其实都是从这一点来出发的。

然后之前提到的公离散的共形映射,是通过三角形的这个内角角度的最小二乘来计算的,然后三角网格结构,它是要求你把一个输入的三角形映射到文理参数域的这个uv坐标,对应的这个你看三角形上。

它本质还是用三角形上面的这个分片线性函数来计算这个意式,来逼近这个公式,是这就导致你的映射就是具有一定的刚性,就不可能做到完全的保持角度一致,用输入的角度一致。

就比方说这里如果我们给了这个所有三角形的这个类角,我们在确定三角形的一条边上画,我们就可以通过这个两个三角形的这个正弦定理,然后把其他那边确定出来,再依次的去编辑所有的三角形。

最后把整个网格的边长都确定,那这样的话这个网格其实它的形状也就确定了,所以你在离散的话情况下,他的这个共性映射就会显得有一定的钢琴reading,就是它会就是你不能严格做到保障。

如果你要求形形状有一定的变化的话,但是当对于连续的共性影视,它其实是可以做到这个光滑的每一点处都严格报价的,我们来看一下光滑的这个连续的这个共性映射,它的这个保角的角度是怎么来计算。

就是在你站的三角形上面,就是三角形的内角,那在连续的话,它其实就是以p点为起点,比方说在平面上就是以p点为起点的两个方向向量,然后他在映射前后,它只是个向量之间的夹角。

任意两个方向向量之间的这个夹角它都是保持不变的,它左边是垂直,右边也是垂直,而在流行上面就是p点这个切平面上面的两个切向量,然后这个切向量在映射前后。

映射到新的这个曲面上面的一个p点的支出的切平面的新的切片,那这个切向量之间的夹角在映射前后也是保持不变,因为连续映射它不再有网格的这个限制,它是可以做到严格点处都是这个向量之间的价格都是一样的。

然后我们来看一下怎么去定义这个向量之间的映射,现以平面为平面应力,如果有一个f它把这个r中的r方就是r空间平面印到r2 空间,然后他把p点印到fp点,那他把这个向量p点以p为起点的这个方向。

向量的这个v它需要映射到gf gf v的这个嗯,向量的计算就是通过这个方向导数来给出理,就是t加上t为减去f p,然后在t趋向于零的时候除以t在t趋向于零的这个方法等,那就是df v的这个音质。

然后这个方向导数由于f 12的话,这个方向导数它也是2r等,于相它可以用ta展开对f在p点进行它的展开,我们就可以看到这个df v它其实就是f的甲和比,乘上这个v的这个项目。

所以这个df v它是关于v是一个线性算,然后此时保角性其实就是任意两个向量在微分映射前后夹角不变,就是c tv w是等于c3 映射df v,然后映射df w这两个向量之间的这个价值。

然后这里面的theta一般是这个有向角,需要说一下,就是它表示从v逆式跟这个旋转到w上面这个角度,如果是这样顺势的话,w在这边你得绕到这一圈过来,如果你是五下角,那你就可以把这个w沿着v做一个对称。

那这样的话这边的这个w跟v的夹角跟他是一模一样的,但这种就是一般是会导致一个定向反转的问题,我们用三角形来类比,就是如果你保证一个三角形,它的这个三个内角,它的角度不变,你把它翻个转。

它的三个内角也是严格也是不变的,所以它就会有一个三角形定向会反转的问题,所以在这里面一般就是保持的是一个有相机或是无相角,那我们怎么样去构造,就是去表示这个平面中这个向量的旋转。

一个简洁的方法就是用复数去表示,然后我们知道复数有一个附加模长和附加表示,然后给了你一个复数v,然后对它乘上一个新的复数v,其实就是对这个v进行一个z这个俯角。

的一个旋转就是z v的辅加c塔加上一个z的这个附加,有新的思想,新的方啊,得到c大加y啊,在对v的这个长度进行一个按v的模长进行缩放,缩放z的模长被就达到了零。

所以用负数来表示这个旋转是一个非常方便的一个工艺,然后那这样的话角度保持向量在微分映射前后的这个角度保持,就可以写成v的逆,就是v的负数的幂,然后乘上w的这个负角等于gf等于gf v等于零。

然后乘上dnf w的这个负角,对于任意的v和w就是以p点的任意的v和w组织对,就是这一点不,对,然后由于这个背后w的任意性,其实这个我们可以推出,不光这个俯角线,它们的模型其实也是严。

最后就是这个他们两个v的逆乘w,这个负数要等于df v的这个力乘上df w就等于这个,然后这个的话画一下,就是下面的这个负向性,就是说我们df不仅对于向量v的线索。

你对它进行一个旋转和伸缩的这个复数作用,它也是线性的,可以给它提出来,这个就是普遍意义上面的这个复平面上的特性来方程,我们来说明一下,就如果我们对f把它拆开写成fx加ify的形式,那df关于i的。

方向导数就可以写成这个关于y的偏导数的形式,加上复数,然后tf一也是这个形式,这里面的bgi是实数,然后那颗星里面完成,我们可以用刚刚的这个负向性,就直接就表示成d f i等于i d f一负线性。

就是把这个虚数单位提出来带进去算一下,它其实就是这个科技的方程,就是我们在离散的时候用到的那个相似变换的那个大师,就是gf,它是一个相似表,另一种看法就是我们对这个gf v直接把它的这个v提出来。

就是df v就等于df一乘v,那对所有以p为起点的这个切向量v,都是给它共同作用一个df一的负数,所以就是df一的负数,就是对应的这个旋转和伸缩变换,所以对每一个点p处,它这个都是一个相似变换。

然后我们需要注意的是,这个它相似变换的一个出发点,就是每个点处局部它都是一个旋转和伸缩,所以它会把无穷小的这个圆映射到无穷项目,我们这里面用宏观的这个原因来表示,他就是sol parting算法。

就是从这一点来出发的,他的就是用离散的这个一个个小圆去把这个正方形去填充满,然后如果我们要求一个你和一个逼近一个共性,就是那这个映射一定会把这个就是在这个小圆的半径越来越小,越来越小的情况下。

这个是逼近于这个年续的风气的一个同时映射过来,这个保持这个每个圆它还是一个圆的那个映射,一定是一键连续的不行,那么在后面会提,然后但是这种就是它对于宏观的原因,它不仅保持,那我们肯定是一个简单例子。

就是我们存在一个共性,因是连续供给进这他把一个圆边界映射到椭圆边界啊,对这个例子它这个宏观的这个研究会应得到错误,但是有一类特殊的这个共性映射是可以做到对任意宏观的这个语言,它都成立的。

而不是指无穷小量,那就是复平面上的莫比乌斯变换,这类变换它的具体形式,我们会在下周的第11讲会讲到,然后这里就不清楚,那定义的这个平面上的这个规范映射,以及它对应的这个推出对应的这个可行量方程。

就每一点都是相似变换,那我们就需要去定义流行上面的这个映射,就是这个微分映射又如何去映射流行上面的切平面,切切向量,切平面中的切向量到一个新的那个f,就是映射到n上面的这个区域里面的切向量怎么定义。

这个问题就是说我们不能直接向平面上直接用p加tv的这个形式,因为你p加tv跟任意的t它是沿着这个切平面去移动,它就离开了这个流行的这个表面,你缺f的作用,它就就就你看到这个f调作用。

所以一个类比的方法就是我们在,就是这个曲面流形m上面去找一条曲线过p点的这个曲线参数曲线,使得这个参数曲线它的伽马零是等于p的,然后伽马一匹零它的切向量就是这个参数曲线的这个切向量。

它正好是等于这个v就是七里面中的一个的情况啊,那这样的话我们就可以把df vt成这个gmt,随着这个t去逼近,趋向于零,负达拉c减券负达运营的这个导数,它是一个1f复合成伽马之后的这个曲线的这个期限。

但这个这里面需要注意的一个点,就是我们需要说明的一个点,就是这个映射的定义,它与gm的这个选取是没有关系的,因为你过这个点,然后以这个切向量,以这个向量为切线的这个曲线,它可能有很多条。

然后我们要说明这个d uv跟它无关系,这里面就需要用到这个流行在这个性质就是流行的话在每个p点处,每个p就是每一点的p的小鱼类,它是存在一个一一对应的这个参数域的。

就是存在一个参数域到这个p的1p的小领域的这个同胚映射,一射fine是可逆的,然后利用这个去说明,可以说明这个键会飞,它是一个跟感冒的选取是有无关的,那如果说说明了这,一点之后我们就通过这样的定义。

我们就可以有一个那曲面曲面就是流行上面这个映射的微分,他把p点处的切平面中的切向量映射到sp点处,这个切平面的这个切向量,那我们也可以说明这个点分为它是一个关于这个切向量,它是一个线性。

跟刚刚平面上面是类似的,然后那平面上面的克星里面方程回顾一下,刚刚说的就是它主要用的就是d f i等于i d f1 ,就是我们对它的一个一的这个一一是这个实轴方向的这个向量。

乘上一个i其实就是它对它进行一个沿着x y方向这个平面,在x y平面上进行一个逆时针的旋转取出,然后呢,我们需要在空间中这个呃,你们可心里面发现它其实可以表示成这个类似的形式,就是说我们在p点处。

这个m上面的流行p点处的这个切屏当中的一个向量v,我们把它逆时针旋转90度,就是在切平面上,逆时针线就可以就是绕着这个p点,以那个右手定则,然后去逆时针旋转90度,它的微观的映射是等于它的这个映射过后。

去照着这个n点的这个法向去逆时针旋转,就处理这个就是复平面上面的这个个性装,我不是在流行,这个是流行上面的这个科技言方面,可以看出来在这个流行上面的这个表示,它没有复平面上面的剪辑。

因为父母面上它是有一个一致的,这个表示旋转的方向的,就,是一个虚数单位i,但在流行上它是跟这个f p跟p这个位置的这个法向是相关的,这个法向就是由f这个映射拒绝他就是一个耦合的这个关系啊。

那你这样去利用这个去计算,它虽然也是一个局部,每一点局部它都是一个相似变换,但是你很难去计算,那有没有一个更简单的方法去表示这个流行间的微分映射的,这个广角关系。

有就是我们后面要说的这个in response,就是我们知道这个为什么我们在这要特殊提一下4k大屏模式,这个主要讲的时间变化,它主要讲的是r3 中的嵌入,的曲面到r3 中的曲面的共性。

它主要描述的是共性形象,而我们这个课题它主要说的是参数化嘛,参数化是指二三中的这个曲面流行,我们把它参数到二维中,然而它是一个打3~53的,他还是一个利用到这个,还是还是嵌入在空间中的。

不是那个参数化的那种利润表示,因为他这种表示它是一个唯一的区分,就是研究工作中里面一个外运的去表示共性映射的一个方法,就是就是所以在这里面我们还是要单独去提一下,所有有必要去单独去讲一下。

然后在平面上面去表示旋转和缩放,我们使用的是这个复数结构,就是对于向量进行旋转和绳索,我们用的是复数解,那在空间中有没有很好的去表示这个空间向量的旋转和伸缩,有就是用一个四元数的。

类似于负数的那个四元数解,就我们会说一下什么叫什么是四元元素结构,先说一下什么是四元,四元素结构与复数结构是类似的,然后相比于负数结构,它只有一个虚数单位,二四点数结构有三个虚数单位。

应该是i j k这三个虚部单位之间的满足的运算关系,是下面紫色框给出的运算关系,然后这个运算关系跟负数就是有一个本质上区别,就是你把一个四元数做乘上一个四元数和它们两个之间右乘电脑顺序。

他们的只是不一样的一个看法,就是你对这个i j k你去看它的虚部单位i j k等于-1的话,你如果同时对它同时又成一个,你就,会得到i j等于k但是你如果先同时对它做成一个i。

然后再同时对这两边再同时组成一根线,就是你对它同时组成一个g2 g,在左边,然后这样的话你就会得到gi是等于负k的i j等于k加,i等于负x所以他们两个只是增加,所以四数你是不满足这个交换的。

你两个交换它的指示不能,而四元素跟空间中的旋转的关系就可以通过下面这个式子来解除,就比方说给出空间中的一个实数向量,就是给的空间中的三个空间中的一个向量x,然后它对应的四元数我们可以把它写成它的实部。

四元数的实部等于虚部,就是它的x的各个分量乘上了它的虚部单位加起来,然后如果他要绕空间中一个u的这个轴向量,你这个单位向量u因为u是一个单位向量为轴去逆时针去旋转c大角,那我们可以设计一个这样的四元数。

q是等于cos c塔,然后减去三in c大乘上u对应的这个向量,然后它对应的生产数的虚部单位,最后是新的q的四元素,那这个四元数它的模长是等于一的,可以单点直接就cos cos cos plc大。

加上38c加加v的,没法modem上之一,所以他的控就是它的力就是等于他的空了,那y就是我们要算出来的x关于u旋转其他角的这个旋转后,的这个向量y它就可以表示成这个四元数的这个对x这个四元素。

又乘上一个q的四元素,在左边上是有功二就算出来的这个四元数,它对应的这个虚构就是这个y相等,就可以用这个线路的方法来好好地表示这个空间中的这个旋转,可能你就可以把它直接传过来,交换一下的话,q。

q的根号就是一了,它就变成四五,那如果我们要把这个旋转在复合上一个伸缩的话,我们就可以对q乘上,一个伸缩因子,这样的话你这个新产生的这个万一品,它就是原先的c品装备,就是对表现的y伸缩的c p方面。

通过刚刚的那个四元数定义的空间中的旋转变换,我们就可以去定义这个sm formation in class formulation的概念就很简单,就是说我们在空间中有两个相互对应的这个曲面。

嵌入对应的曲面,它在f是它的输入的曲面,df u y是f u y是他另一个曲面,然后这两个曲面之间的这个切向量要满足一个,在m上面会有一个四元素分布。

正好对应于它气向量是乘上这个四元数六乘以一个四元数组成,它的工作就是对应的这个空间中的这个旋转和申诉,就每一点处的切向量,因为你拉姆达是在每一点处,它是唯一取一个值的一个四秒处的。

所以你对一个对任意的这个切向量,这个其实平面中的x绕一圈,它对应的都是同一个伸缩和旋转变换,所以这就导致这个df一个这个spin transformation,它一定是红的。

就是保持它的且向量之间的这个夹角也,但是现在问题就变成,我们如果要求这个空间中的spin transformation,就是去设计这个拉姆达分布,四元素在流行上面,曲面上面去给一个拉姆达分布。

但并不是所有的兰姆达它都可以在就是变换之后,这个d f e y都可以重新在r3 中之间存在一个曲面,给它画出来,这个就有点像我们对一个t就是一个梯度上进行一个变换,抵达变化成一个新的厂。

这个厂它不一定再是梯度场,就是他不一定还会有一个嗯,就是空间的这个函数分布,使得它的t6 等于变换后的这个程度都是不一定的,所以我们需要对这个就是内部。

就是我们需要对这个拉姆达就是平面上的这个四元数分布加一个限制,就是叫可靠性限制,它是狄拉克方程,它其实就是一个关于拉姆达的一个微分线性微分,然后他进作用减去一个食指函数乘上单m的都是等于。

这就是你如果一个单位的满足一个这个方程,那它就是在l3 空间中是有一个嵌入它的,它的微分是等于这个拉姆达表示在这个空间中的旋转作用和,表现在的性取向力,那满足这个方程去怎么去求解,这是一个问题。

因为如何拉姆达是相互关联的,这个问题就可以把它就是转化成一个特征特征值和特征向量的元素,就比方说我给了你一个肉,如果肉是严格满足这个迪拉克方程的,你去求他的一个特征向量,最小特征值的特征向量。

你就会得到这个伽马一定是零,然后nova就是对你roll的这个特征就是对应于递减轴的这个特征值,为你们通常讲的正好就满足这个方程,那如果你输入的这个肉是不满足这个第二个方程。

你这个gm就不是你它是一个最接近的,因为我们求的是一个最小特征值的特征向量,对这就是最小的这个特征值,这个感冒拉姆达是最小的碳酸值对应的特征向量,那我们就可以对书进行一个校正,加上一个答。

那这个新内容它就是满足这个跟这个我们求出来的特征向量,它就满足d减nm呢是等于的,你把它打码,就是你把这个小的打码给它移过来就行,那我们现在的这个去控制这个曲面在空间中的这个spin。

transport的变形的这个问题,就变成我们去只要去设计这个曲面上的这个热的这个实质分布就行,我们来给他一个肉,就去求他的这个d减肉,这个线性理想化的就是一个矩阵,一个矩阵的最小的特征值和特征向量。

然后对肉进行的矫正,他说不一定能叫正完之后就是一个对应的是空间中的一个啊,共形变形就是in x方面,那这个肉有没有几何意是有的,就是如果你可以把它理解为这个曲面上的这个平均曲率的变化,印度的变化。

它就是你对如果肉是满足这个迪拉克方程,然后你这个拉姆达对他作用,df对他的这个切屏切屏,空切平面中的这个切向量去做一个空间中的这个旋转,拉布达对应的旋转的话。

就会它是在变化后的这个流行上面的这个平均区域,跟原先的这个平均值乘上这个df的模长,这个这边的这个模式,其实d f的模长你就可以理解为这个嗯,一下网的上面的这个mac就是编程,它其实就是magic。

然后就是肉表示的就是这个平均体积的变化,黑板这个图也变,就是紫色,绿色的这个区域,它对应的就是我们输入的这个肉是大于零的点,紫色的区域就对应的都是小于零的地方,那我们作用过去之后。

求一个词transformation,我们可以发现这个紫色的区域就是它的平均区域变小,就是内凹凹下去,绿色的区域就是它的平均曲率增大,所以它会你要会往外凸,刚我们也提到这个嗯。

in transformation,它一定是考formal的,因为它是把这个切交量之间是在空间中进行了一个同一个区,里面的切向量在空间中进行了同样的旋转和伸缩,但是combo它不一定是tration。

就是对于一般的top,就是球面这样的同拓扑同归,于球面的这个必要的,它是这两个是等价的,但是对于gta的话,比方说对于tory这种他有combo,有combo映射,它是没办法用这种死变换来决定的。

曲面这个结构的,这几年就不细说了,大家知道一下就行,然后刚刚我们说的那个spring transformation spin变换,它是用来表示那个共性映射在空间中的那个形变。

那后面的两部分我们就专注于讲共性参数化的一些算法,首先我们就介绍sql party或者sl pan,我们说过这个共性映射在每一点处都是相似变换,它把每一点局部的这个无穷小的圆周映射到无穷小的圆周。

然后斯科肝病算法就是基于此难以上化工具,人生就是我们在区域的这个区域上去放置,比一个彼此相切切的这个很小的这个圆,然后如果有一个映射,它是把这些圆都映射到新的圆的话,然后把,边界映射到一个新的边界。

当我们这个圆就是不断去细分,就是说当我们对这个圆不停不停的去细分的时候,基本上它就是不停加密,就是圆的半径不停缩小,而且还是保持的话,那这个就去就会逼近到光滑的这个工信意识,这个是由你能保证的。

那这样我们就现在我们就看一下,怎么样去定义一个三角网格上面的这个sql p,结构就是给定一个三角网格k它的cpting是这样构造的,就我们在k的每个顶点去放一个圆。

圆的这个圆的圆心就是3500的这个顶点,然后以对于任意三角网格的这个边,如果这个边是连接两个顶点的话,那这两个顶点,以这两个点为中心的这个圆一定彼此相亲,然后对于三角网格的任意的面,如果有一个面。

它三个顶点,它是有三条边构成,那这三个边对应的这三个景点对应的这个圆,它一定是按照这边的这个方向是所彼此相切的,而且定向也是一致的,比如说是一直跟走向,那这么相切的框架也是一直能走向。

这下面就点了上面的这个确实这个sql看见一个,这个右图这个例子,然后那我们就可以看一下这个sql banking,它是呃存在的充分必要条件,它是可以保证的,就是说你给了一个三角网格k。

然后它是拓扑同胚与阳台的,如果我们去固定它的dg上面的每个点的这个圆心的这个半径,就是边界上面的这个景点,它都是圆形的半径,那我们是一定存在一个独特的sl方面,使得它是满足这个边界上的半径约束。

然后它的内部的这个角度求和是阿派,也就是说但内部一定是彼此按照这个三角网格的这个关系,是彼此严格相信这个角度计算,就是我们假设它202a1 r2 这个三角形我们放三个圆,就是分别是三个月。

他们彼此相切的话,如果你这个按照这个他们彼此相切的形式去算这个吉他t去绕一圈,那这个c端案例它求和,最后如果是二派,那就说明这些语言一定彼此并相切,那就彼此的真的,如果它不等于要把小圆盘的话。

那就是说他一定会有这个就是两个圆之间是没有贴上这种,那通过这样的话,我们就可以去设计这个算法,就是说我给了这个固定的这个边界顶点的原来是固定的,然后我们只要去需要去优化。

去迭代内部的这个里面的这两个半径,我们先去计算这个班长,我们先说一下怎么去计算这个班子,就是说我们每次就做一个循环,对每一个内部点,我们去算它的这个现有的这个邻居。

根据这个k根据他们现在我们初始给了一个半径,去算它的c他t的求和,就这些角度求和,它这边就是这样绕了一个角,是这样的一个c盘,如果这个c塔它是不等于ipad。

就是说我们就去算它的这个所有的这个就是去计算一个新的啊,就是使得它所有周围的这一领域相切的圆,在这个新的饵下,就它半径都一致,这个角度还是等于c的,然后我们去调整这个中间的这个圆的半径。

使得他这个角度最后变成了派,他这个做法就是说我们把这个去依次去迭代,对每个顶点都去去迭代,这个每次去更新它的半径,最后得到的这个就是能够生成边边界边界的这个圆的半径是固定的,内部的这个圆的半径。

按照这三个方法三个步骤去迭代,然后就能够得到这种满足他一一对应的这个sl产品,那如果我们把边界的这个,所以我们把所有的这个cil pen定的这个半径确定,其实圆的位置也确定,因为边界我们是知道的。

我们从边界的两个相切的圆,然后这边往内部去拍一次的去加个圆就行,只要要跟他们两个相切,然后半径也是一致的,但这个原来的固定,然后就依次往内部加进去就行,最后一把所有的这个内部点的分布也可以去算出来。

然后但是sl分析算法它有一个很明显的缺陷,就是说他没有考虑输入网格的几何,他只考虑了输入网格的连接关系,因为我们在这里面只针对连接关系,要求它的3号半径和向前,如果我们的算法是在一个各项异性的网络。

就是它有个网格,它会有一个很狭长的,有很多很狭长的三角形,然后去上面去算一个sql pg,然后把这个文理列车回去,我们就发一发现,当然还是会有相当大的角度的区别,原因就是我们这个四方判定这个算法。

他没有考虑到这个网格的这个编程,然后那针对这个问题,就是06年的话,slipa的提出,就是说我们就把这个用圆周逼近共行映射的,这个跟网格的这个几何结合在一起,然后不同于03年的sql观点的做法。

sl观点是在每一个顶点出去放一定的,我们的每个顶点的出去,当原型sl pits,它是在每个三角形,每个三角面片上,但是它的外接圆就当成那个我们去保持的运行,那每个三角面片的外接圆。

它们两个之间的这个交点处的这个切线之间的夹角,就是我们在共情面上下就要保持这个夹角,后面我们说明这个夹角啊,发了这个另一个意义,就是为什么我们要共进行设去保持这个夹角,就是说我们去优化cpa。

就保持这个假表进行的消息,就可以得到一个共性意识,我们来先看一下平面上面的这个zoe的三角化,就这个夹角它其实可以就是对于两个三角形,它的外接圆,他们交点的这个切线的这个夹角。

其实是可以表示成它跟它的圆心跟这个交点的连线的这个夹角,它们两个夹角是相当于我们这边只考虑眼高于三角化,就是可以很好的看出就是这个角落,因为你的这个这个角它是圆心角的,它是等于这个角。

然后这个角也是等于这个角度,然后这两个角色对应相等的,所以你在这r8 e把翻译的这个角,你去算它的这个这个垂线之间的这个连线的夹角,它就是等于这个角,然后这个角又等于派减去两个这个角。

所以你的r81 的计算就是派减去c a i n i n g和c塔和i g,然后这是对于内部的边,它是有相邻的两个三角形去三个,如果你对边这边的话,就是你没有右边的这个三角形,那你直接就让pi减去这个角。

就是让我们分配的表达,关于就是上面设置就行,内部的话它其实就是那个我们两个外接圆圆心跟这,个交点的这个交线的那种,然后呃我们去在需要满足一个什么样的性质呢,就是说对于delay 3角化的话。

我们如果这个啊,外接圆的圆心,它们之间的这个在这看这个黑色的线是这个外接圆的圆心,然后他们彼此的交线交出来的共同的点是这个公共的这个顶点,那我们算了一个它的夹角就正好发育对吧。

它在这个deley 3角化的话,它肯定是大于零和小于派的,因为他这个dele的这个空元性,那空间性就是说空转性就是指顶多对于顶多e3 角化而言,它的这一个啊。

它的这个这个三角形的这个外接圆内没有其他的顶点,没有其他三角形的这个顶点,就比方说这个顶点因为它在外接圆的外部,所以这个角加,上这个角一定是小于派的,所以派减去它们两个和一定是大于零的。

因为这两个角一定是大于零的,所以你算出来这个翻译是属于not pad之间的,然后用你这个内部的点,你就把发音绕一圈组合,如果在平面上,它求和起来一定也是等压怕,然后对于边界的顶点的话,你就把8g加起来。

其实是等于二派减去它的这个边界上面的取这个线的区域,那就可以通过计算算出来,但是就是delay 3角化的话,它有一个问题,就是它只能表示成突变,就就是它是一堆三角往三角形顶点的这个技能a3 角化。

它里面是边界是凸的,但是我们想过去限制的话,我们需要是允许这种o的原子,你如果是充电器的话,是虚线的,就没办法允许别,那我们去就需要去放缩这个条件,就是说我们去掉这个约束。

就是如果他的这个是顶到一三角化,那它的边界是凸的,那它的恋爱的这个区域里面是大于一的,那这样就会导致这个边界上面的求和啊,把里面是小明派,但如果我们把这个条件去去掉。

我们只要求这个r8 e和秋和阿尔法一等于f1 ,大于小于派秋和阿法一等于派二π这种的这个我们就是局局部的技能,就是每个边它是不能,但是它在边界上没有那个要求,然而对于这样的这种外接圆的圆心。

交出来的这个图案,我们就称为cpd,那我们用这个sl pace去做这个参数化的这个过程,其实就是说我们去保养,就是保这个发,因为你对空间中的这个给任给你一个输入局面,因为我们这里面讨论的是仅能用三角化。

所以我们对这个算法,它对任意的一个输入群呢,它需要先对它进行一个这样的三角化,提升一下它的网格盾,然后它在空间中的这个发e这个顶点的这个交流,它是不一定在哪看的,你可以把它沿着这个虚线剪开。

它这个球和绕一圈是大于二派,那你把它的圆心的顶点放在一块,那你按照这个如果是这个角,的话你求和加一起也是大家快,但是如果我们把它映射到优惠max的话,我们这个阿尔法一也是需要它求和一圈是等于二派。

然后r81 又是大于小于派,后面有个小鱼派啊,小于派比较,然后那一个方法就是跟之前想的一样,就是我们对这个啊发一对那个a b f跟a b f方法一样,我们对啊翻译进行一个同步的一个缩放。

使得它求和等量款,但就跟ibf那个在平面上无法构成三角形一样,就我们这样直接缩放,它也不一定是一个cil pendence,就是不一定存在一个外接圆类似的那种三角图案。

的这个三角形构成的这个外接圆的圆形,使得它们交起来的那个交线的夹角是等于发力,还要有一个这样的存在,相应条件就相当于右边的这个存在形成就是说我们得对,就存在每个三角形就是一个三角化。

它的每一个三角形的内角,它的求和是等于派的,就在每个三角形上面,这个c大的求和是等于180度,然后每个角度都是大于零的,然后把发e它是正好是等于我们刚刚之前那样推出来的这个式。

比如说只要我们存在这样的一个c塔,那我们一定存在这个这样的分的话,就是这三种证明的,那所以问题就变成了,我们就去优化这个啊发液去保角,就保持这个发力,但是我们发现一定要满足一个这样的一个约束约束条件。

那我们这个文章就变成了算法,就是直接去优化这个潜在的这个c它a键就行,我们优化潜在的c他a键,使得它满足这个右边的这个首先是一个三角网格的这个条件,其次就是它对应的发力求和要等于二派。

以及它在零到派之间啊,去优化这个c的i键,然后这样的话优化版的这个c它那一个我们之前说的,它保养保的是阿发一,的奖品,因为这里面r发e它就是派减去其他g02 g,然后减去c3 n。

那我们就不用直接就是它算法就直接对这个c tk i d去进行优化,优化完这个心态之后,我们就可以确定最后一个8g是多少,然后这就是这个算法的核心。

它保持的夹角是这个server pages这个每一个三角形外接哪里的,这个切线的这个讲解,那这就是我们要讲的这个socpting和socpence的这个算法的,主要的这个思想,然后后面再对讲的就是。

最后我们要看一下这个基于科技理论方程,直接推出的这个工作条条函数的这个表示,以及它相应的一些算法,我们来看一下克星里面方程在复平面上面,科学理念方程它是等于这个uv坐标u关于梯度和弯。

它其实就是vv的这个坐标的梯度是等于u的坐标的梯度,对它旋转90度,这就是共轭梯度的这个意思,就是说我们对这个u这个我们把一个max把它映射到uv网格,然后它的u的坐标的在mac上面的梯度。

然后是旋逆时针旋转90度,就是在v上面的梯度,由于有这个梯子的这个要求存在,我们可以直接求这个u的这个拉普拉斯,就是对这个t6 g散是等于他的v的这个逆时针去旋转90度,再去作用一个散度。

就是如果一个梯度长,你把它旋转90度,再去求他的伞,它一定是等于零的,这个你可以直接把这个v的这个函数带进去去验证一下就行,就是你学生有六之后,你再去求散兵。

他求和就是他的那个二阶导正好偏x偏y向正好抵消了,他就给你那v也是一样的,v的这个拉普拉斯它也是等于这个算出来也是等于,也就是说它这个共形映射的它的对应的这个uv坐标,底面上的uv坐标它是调和函数,就。

是拉普拉斯,一个等于拉普拉斯v等,那我们就可以利用这个共形映射的这个纹理坐标,它是一个共轭,互为共轭,梯度,互为肱二,然后他们又是调和函数的这个系列,可以在离散的三角网格上面去设计算法。

然后根据算法的这个理想形式的不同,主要有两种,第一种是用这种形式调和异性,通过调和异形式来去在边上面去做例子,另一种就是我直接在这个uv坐标上面去算一个公梯度,会为公共的这个强化函数就行。

然后首先我们来看一下这个条文形式,然后这个调和一显示应该是调和一显示应该是你们第三次的这个作业,嗯,第三次的作业,然后嗯我在这里面简单的说一下吧,就是说它调和一形式其实是在那个边上面去分配一个值。

然后这个值如果是跟有向边,是跟有线方案有关的,就是它这边的一个半边,从如果这个世界,如果是i,因为你们第三次作业应该是昨天才布置的,所以在这里面还是需要讲一下这个,然后如果这个是借这个是i。

那你从借到i的这个三角形的半径和,就是它的值应该是相反,你就可以理解为一个向量在这个半边上面的方向上面的积分,你沿着这个走向去积分和沿着这个方向去累积,然后再去积分,我们的符号正好是相反。

就是调和一显示,要就是一形式要满足一个这样的信息,就是在半边上面分配的指标,相反而调和性形式它是需要满足额外的两个性,第一个性质就是说我对任意的三角形而言,它绕这个三角形去走一圈,任意的一个三角形。

它这样逆时针的这个半边去走一圈,然后这一圈的这个对应的这个隐形式的求和它是等于零的,对所有的内部的所有的三角形,按这个u型的求稳定,然后另一个条件就是对所有的顶点。

所有的顶点它这一领域的这个比方说我对这个景点哦,哦我重新画一下,对顶点,它会有从这个点出色的这个半边,啊这些半边这些半边的他的一弦是求和内部的点啊,内部的点从这个一形式照着这一圈去求和。

它也是等于加强这个里面啊,把一般用的是口单位全都,那这个如果满足这两个条件一显示,我们就称之为调和的形式,在03年这个格德国combo消费pm上面有提到,这个在亏格为c的这个b曲面上面。

它这个调和一形式它是有一个它是组成一个线性的空间的,这个空间的,在规格为g的这个一曲面上面呢,它的这个限定空间的纬度是2g为,这个二级为就是我们如如何去求这个空间的这个g函数呢。

一个方法就是去我们给这个条纹显示,再去加一个额外的这个约束条件,就是我们在这r结尾的线性空间上面,我们就是对这个一形式在某些路径上面的积分就是求和p是先路径,我们选了一些2g条路径,这里没有啊。

过一会儿去讲究这条路径怎么去选,然后在2d条路径上面的积分求和是等于c k我们指定c k c k的话,一般是一或者零,这样就会确定,就比方说我们第一个我们选了二级条路径。

然后在第一条路径上面的这个求和的值是等于,在剩余的路径上面的求和是等于,那把这一个约束跟这上面的约束加在一起,我们就可以唯一的求出一个调和,一个形式,他就是这个空间中的一个g就是一个向量。

然后如果我们把第一个函数上面在这个上面积分是零,在第二个函数在第二个上面积分之一,在其他的ipad上面基本也是零,那我们把这个约束再给它上点求和,就要把上面因素加在一起去求一个调和就形式。

这也是可以求出一个唯一的调和运行,那这样我们就可以求出这个空间中的2g2 g的这个g函数,然后这个2g的基函数它都是调和的运行,那我们怎么样去选这个路径,路径的话就是对于高规格的这个曲面。

这个路径它其实是这种嗯要管理权和隧道权,就是说这个路径的选取是在这些高科格曲线上不可收缩的曲线组成的,它的维度组成怎么样可收缩,你可以想象在这个曲面上,它有一个啊橡皮筋。

明白这个橡皮筋他会无限的收缩下去,你如果在这种光滑的这种封闭的这个,曲线上去放一个小米群,然后可以收缩到一个点上去,但如果你在这个高配的上面,你在这种环境上面绑一个相机进,在这上面去绑一个橡皮筋。

他就没办法去收缩,在曲面上收缩到一个,他如果要收缩到一个点,必须都收到这个曲面的内部,就如果收到曲面的内部的这种群,我们就叫它环境去,如果收到这个曲面的外部,比方说对于这个全我们绑一个橡皮筋。

他如果收到一个点,这个点一定是在曲面的这个外部,就是在空间中,那这种圈我就承担了隧道隧道圈啊,对高科的那种模型,它一,定是有这个环境权,这个隧道,然后我们可以去用一些算法去求助这个管理权衡系统出来啊。

我们可以就是如果我们把这个环境墙和隧道全沿着线去连起来,然后沿着这些线去把这个网格给你剪开,减排之后的这个网格就是拓扑同胚于圆盘,就可以直接给他参数外道曲面的啊,对于一般的话它跟平参数外道平面啊。

对于一般的网格,它因为它的连接关系跟平面跟扣除不一样的,你没办法就可以算卦了,那就是这个环境其和隧道前的这个怎么去解释,就是说我们怎么去找这个路径,其实去找靠谱的那个环境中的新造型哦,在这解释一下。

然后那这样的话我们就找到了这个二七个调和一显示的这个奇奇函数,那我们知道这个共性应该是它其实是一组互相垂直的调和一个形式,比如说我们的这个x和y,它的这个对应的这个记录,而是互相垂直的。

对于这边它的梯度就是每个梯度在上面的积分就是一个调和异性,然后那这样的话我们就需要去对这个r这个g函数,去找它的功耗的这个调合一形式,这个通过一定算法可以转化,然后我们去把这个空位的调为一形式。

乘上一大概就是表示它在y分量上面的那个积分的分量就是极度增加,x就是它在反对的增加上面,然后我们去在这个曲面上固定一个点,然后我们刚刚沿着这个管理架和隧道圈,把它剪开成一个透露圆盘的形式。

我们在内部固定随意固定的,点,然后把它这个e显示的这个积分沿着这个点去积分,然后就可以得到所有的这种uv坐标,然后这个就是调和,就是用调和一形式来计算这个共性名字,就像一个高配版上面的构型。

这样一个这样的男的主要想法,当然还有就是我们不通过的微信,就是直接对uv坐标来做,就如果我们要去解一个,就是说固定就是解,因为uv坐标它是每一个它都是一个调和函数。

就是事实上就是几个拉普拉斯function,对于它的内部点是这,但这个矩阵是签订的,我们肯定要对边界加上一定的约束,才能保证这个矩阵是有为止,那加上什么样的约束呢,我们可以对它加常见的约束。

就是节约克与中介条件和这个纽曼间接条件,盈利克雷单列条件,就是指我们在这个把它的这个边界上面的顶点固定在一个曲线上,这个曲线它是嗯在华尔空间中的曲线,然后让他的u是在等这个曲线的对面的u。

然后它的v是两个,然后你外边界条件的话,就是它在我们去固定它边界方面的这个偏导数,就沿着边界方向的方向的这个方向的偏导数,它就等于我们点击一下这个季度的这个区域如何去为。

那如果我们固定了这个加上边界条件,再去求解这个拉普拉斯方程,就一定能获得一个唯一的条文环境,但是这个调和函,数不一定是confirm的,因为考官们我们需要这个共轭,就是他们的uv是坐标是互为共轭的。

因为坐标是互为公论,如果你我们把一个这个笔画中,我们把这个正方形的这个区域给它运化到这个梯形区,我们可以求出它的这个调和函数,但明显他的这个做这个优惠的这个梯度,它不是互相垂直的,就不慌了。

他就没办法做到保证,那这个问题的难点就是说我们怎么样去设计这样的边界条件,设计这样的边界条件,使得我们在这个边界条件下优化出来的uv的这个调和函数,它的驱动是互相公。

认的如果我们找到一个合理的这个边界条件,它满足这个功能的性质,那它就是恐同吗,这个就是17年这个bba first blin的主要想法,就是它的核心想法,就是我们去找一个满足这个工业区域的这个编辑条件。

这个会是我们第四次的作业,然后因为这里面的话啊,现在这个啊我们需要用到就是怎么样去寻找这个边界条件,需要用到这个共性映射的这个在度量方面的一个性质,就是它的具体内容,我们会在第11讲讲。

然后所以现在这一部分就没办法复制,作用等到第11讲解吗,等到下一周的时候,我们会详细讲一下这个算法,其实边界是怎么设置的,设置完之后我们就可以解这个方程,解这个方程之后去获得一个共性预设。

那在下一讲一讲完之后,我们会详细介绍这个下载。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那现在这部分就是我们的这个第十第十讲的这个关于控制检验,设微分性质的这一部分内容,然后这一部分内容基本上跟微分性质有关的,就讲到这儿,然后下一节课会讲那个度娘有关的。

就是通过对面的形式去表示那个曲面间的关系名字,然后下次课的时间也差不多是这么多时间,因为它的内容是分开的吗,所以啊我就大概就讲到这里。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那大家有没有什么问题哦,b曲面要沿着什么简单,这个是跟那个看要看曲面的这个拓扑,就是如果是一个曲面,你直接在上面剪掉下一条线,就行点开一条线,你就可以把它跟统配与透明圆盘,你就可以把它放到平面。

但是如果你是这种带柄的这种闭曲面,就是空格高的这种b曲面,你必须在这个地方给它剪开一下,然后在这个地方给它剪开一条啊,我举个例t是吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就比方说你画一个轮胎tori,然后你如果单纯的把这个地方剪开之后的话,你会得到一个圆柱,对不对,你沿着这个环境圈,你去检查呢,你会得到一个圆柱,然后你得到一个圆柱,你还是没办法把它摊平到平面。

你必须再去沿着这个圆柱的这条线去给大家展开一下,你就会给他逮到一张它,这就是一个长方形,沿着圆柱形,那这边就对应于你沿着环保圈以及这个隧道圈,剪开一下,你就能得到这个拓扑同胚与这个平面的这个图形。

你需要先这样走一下,先比方说这个是交点吧,你沿着这个交点先这样走到这,然后再以啊再沿着这个隧道群的量去走一圈,然后再沿着这一圈再走回来,然后再这样走一圈,就形成了这个边界。

那你这样走的这个边界和这样走的边界,这样走的路线,再剪开之后走路线其实是这个环境圈的这个周围的,左边的这条路线和右边的这条路线,你隧道圈的这个走的这样走的一圈。

和他另一边剪开之后的一圈是分别对应于上面的这个和上面,那这是对于配合为一的这个闭曲面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对于高规格的闭曲面,就是比方说这个地方它就没有四个钟,后面需要把这四个找到这四个的环境权和隧道去啊,还要把这个四个的曲线连一下,因为你只剪开它的话,它这个中间的还是一个b你需要点一下。

然后沿着这个去走一下,去剪开的话,它就是一个差不多从那里安排一个群,也有可能需要一定的空间想象力,就是可以大家可以先去想一下。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对于亏格为一的这个曲面的意思,就,是对于这个最简单的读,这个例子是比较容易想象的,然后再去想这个高配合的,比方说一个八字形状啊,其实是两个圈,然后在两个圈中间会有一条明线,这样的话简单之后你确可以做到。

那还有什么其他问题,然后这样解释,你听明白没有,是这样的,就是顾顾晓峰老师那边的计算共形几何,他的课程就是更理论一些,它是一个更系统的从数学方面去讲的这个东西。

然后我们这边就我比方说他在这个环境权和隧道权,它前面就会讲到很多的这个,很多的那个数学方面的知识会讲一两节课左右,让你去,就是需要你去理解这个错误方面的这个一些学术名词啊什么的。

然后我们这边就因为没有那么多时间去去讲这些系统的理论,所以我们就更浅显直观安全去跟大家解释一下这个剧怎么做的,如果大家想要去了解这背后的原理,大家可以去看一下那个课程。

就是去理解一下它更深的这个就是在拓扑学上面,用代数的语言去描述这个问题,不过那个就比较比较难懂一点,因为数学它要盈利化嘛,就是说比较难懂懂,对这两种全是叫同人曲线,它是通过同人曲线来定义的。

好我看了一下,那没有问题的话,那今天的直播就到这里结束,那么大家下一次我会讲一下。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES301-曲面参数化 - P11:Lecture 11 共形参数化2-离散共形等价类、Möbius变换&曲率流 - GAMES-Webinar - BV18T411P7hT

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊那现在时间到十点了,那我们开始今天的这个曲面参数化专题的这个第11讲,过程参数化,第二第二部分,然后我们在第十讲里面讲了惯性参数化,它在映射微分方面的一些性质和离散化的算法,然后再这一讲里面。

我们会介绍共性映射它在曲面的黎曼度量上面的一些性质和研究工作,这个曲面度量它其实是一个类运的一种表示,就是如果你在映射微分上面去看,你需要有一个旋转轴,你需要就它涉及到在空间中的那个切向量的旋转。

它需要有一个旋转轴,那这样他就必须涉及曲面的在空间中的嵌入,而度量的话它是不需要的,它其实是曲面本身的性质,这个我们后面还会详细介绍,然后这里面的算法主要是逆散共性等价类以及群内流的一些工作。

然后莫比乌斯变换,它其实是也涉及到前面微分的性质,但是他在这里面也涉及到度量方面的性质,所以我就放在这里介绍了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后首先我们来看一下今天要讲的内容,结果就我们在第一部分就是介绍光滑曲面上,用黎曼度量表示的这个共形变换,我们将强调这个表示是内运的,然后它主要在这里面,我们要揭示曲面的一个类运的高斯曲率。

和这个黎曼度量在共性变化下的一个关系,然后我们今天的核心内容其实就是这个关系,用这一个高斯曲率和你们度量的这个方程来做一些算法,然后在第二部分我们就会用这个把这个黎曼度量在三角网格上离散化。

它其实就是这可以表示成网格的边长变化,就是在共形映射下这个网格三角形,但每条边的边长应该怎么变化,然后在这里面涉及两个就是重要的一个共形等价类的就是定义,第一个是在每个顶点上面去定义一个对数过去因子。

第二个就是说你每一条边它还有一个相邻的两个三角形,相邻的两个三角形,它会有一个就是如果是内部点,它会有相邻的两个三角形面,然后在三角形面上面,它有另外的两条边,就是每个三角形又有另外的两条边。

不是这条边,然后用这另外的两条边,两个三角形就组成四条边,这四条边的一个长,度的交叉比去定义这个共性等价类,就是说它要满足一个什么样的关系,才能是之后的就是满足那个关系的三角形。

那个三角网格跟原先的三角网格是彼此共形等价的,就是相差一个共性变换,然后第三部分就是面源上的莫比乌斯变换,面源上的五比五斯变换,它就是如果在单个复平面上看他一个莫比乌斯变换,它就是一个整体的一个同步的。

但是你在面板上,你也可以定义每条每个三角面上面的各自有一个莫比乌斯变换,然后那这样的话他们彼此三角面片之间它是要满足一,个约束才能达到一个整体的共性变换,在后面我们会详细介绍。

第四部分就是曲率流的方法来依据曲率来求解你们的度量,就是我们要用到第一部分主要讲的那个高斯曲率,和你们多用点的那个方程去解那个方程,来求解我们想要的给定曲率的这个里面的度量,然后来做一个参数啊。

然后我们来看一下第一部分,啊第一部分在第十讲,我们已经讲过它的那个映射,微分上面的一个最关键的就是它每一个局部都是一个相似变换,就是共形映射,在每一个局部可以看成一个旋旋转和一个伸缩的一个负荷。

然后如果如何去表示旋转的话,在平面上我们就用负数去表示,就是你一个向量方向向量你可以用负数表示,然后它乘以一个负数,就是对它进行一个旋转和伸缩,然后在空间中我们是用四元数去表示,就是这个方向向量。

你把它变成一个四元数的一个虚部,然后它绕某一个轴,是某一个方向轴旋转c塔角就可以对它乘上一个四元数,组成一个四元数的和右乘一个四元数来表示它的一个空间中的旋转,那这些就是需要一个旋转轴。

它需要考虑到曲面在空间中具体是什么样子的,它的切平面和它的法向是什么样,它就跟曲面跟空间的一个关系是必必必须要借助的,然后那有没有其他的方法,就是不需要看曲面和这个空间的关系,有就是从黎曼度量。

就是指从曲面本身的一个性质,我们来解释一下什么叫从曲面本身的这个性质来看这个贡献印刷,首先我们需要解释一下什么是黎曼度量,然后你慢度量,你可以把它它是一个在定义在曲面上面的一个对称。

正定的一个双线性函数,他的那个定义是它的切平面上面的两个切向量,你可以把它看成这个切向量的内积,你就可以把这个黎曼度量看成切向量的内积,然后它满足它对一个任意的部位零的切向量。

然后任意就是切平面中任意部稳定的切向量,它的黎曼度量就是gp x x是大于零的,然后那这样的话我们这个长度其实就是对gp x x进行开更换吗,如果是累积的话,就是简单的这个gp x就是x和x的累积。

就是它的模长的平方,然后如果对于任意的切向量xy,这个gp xy是的平方,是小于等于这个g就是你慢度量的xx和成你慢度量y y就是gp x y,它除上x的模长和除上乘上y就是除上x和y的g的这个地方。

它是在-1~1之间的,这是由那个不等式来决定的,就是那这样的话我们就累积对应于内积,就是这个夹角,你对它求阿cos,你就是这个切向量之间的夹角,那为什么要就是以用这个里曼度量来表示这种类型。

就是你可以把它衍生成一,个双线性的一个你就理解成一个双线性的一个函数,那这样我们对x和y对切向量做一个线性变换,我们就可以把它看成我们来找一下比啊,我们对x和y做一个线性变换。

我们就可以看成它这个线性变换是反作用于在这个你慢度量上的,因为它你慢度量是双线期,你给它复合还是一个双线基函数,那这个新的里面度量就是在xy上面去定义的。

然后它还是是映射到那这个新的你慢度量和原先的那个双向行进的,原先的那个里面度量双线性函数它是满足在共性映射下,它是满足这个关系,它也是他理解成这个映射之后的这个向量之间的这个累积啊。

映射之后的向量内积在这个共性变换下,因为共性变化是一个相似变换,它是一个旋转加伸缩,再加一个旋转,df y也是对y这个向量进行了一个伸缩架旋转,而c它的这个d f x和df y这个夹角内基的这个夹角。

它在这个共性变化下,夹角是不变的,所以它这个变换后的度量跟原先的度量就差了一个s的平方,就是对这个每一个向量进行,每这个局部进行一个伸缩的这个s的这个平方的这个量级,然后那依据黎曼度量的这种表示。

我们就是说我们对xy做共性变换就可以表示成对,这个度量本身去做一个变换,那这个它的等价形式,就是这边我们是用这个共性变换去推这个里曼度量,就是如果你这个它是一个共性变换。

那这个里面度量就肯定满足一个新的灵敏度量,等于旧的这个灵敏度量乘上e的二拉姆达,这里面我们用e的阿拉姆达去表示s8 ,用这个指数的形式,因为s81 定是正的嘛,伸缩它基本上都伸缩,它这里都是大于零的。

我们不考虑退化的情况,那这里面我们用e的啊拉姆达,这个二就是对应的这个啊这边的平方,所以拉姆达其实就是log,然后,这里的拉姆达我们称为对数共性因子,这样的话拉姆达就是从负无穷到无穷的一个空间。

就是就是一个区间,你就可以从负无穷取到无穷,就没有那个大于零的那个限制,我们去取对数,这个如果是你满足共形映射它的这个你慢度量的变化是这样的形式,你满足这样的形式,它其实也可以推出它是固体形式。

这里我们就不去推它的反方向,所以就是在里曼度量表示下,你要表示一个共性因素,就是说它原先的这个你们班多长,他对每一个点乘上一个对数构成因子的e的r那么大次,幂,然后就乘乘上这个倍数。

然后就是新的灵敏度量,然后他们两个是彼此是共性的,然后那黎曼度量它主要衡量的是一个曲面内蕴的性质,它是在与曲面在空间中的嵌入式无关的,这个怎么解释呢。

我们就考虑我们在这边给了一些曲面在空间中的一些等距变换的机子,就你考虑一个足球,你把它它如果是别的就是气,你把他的气放掉,然后给它做一个压缩的话,它其实是在曲面的每一个点处。

它的相对在曲面上的距离还是保持逐渐的,但是它在空间中的这个嵌入就是空间中的具体的形状是发生改变,这个易拉罐也是一样的,你对它进行一个压扁的话,它你在上面选任意两个点去找它的这个距离。

跟它原先的这个上面的这个距离它是一样的,也就是说这样的距离一样,就意味着他们这两个曲面的这个每一点的距离一样,就意味着这么两个曲面的这个里面度量是一样的,但是它们在空间中的具体形状是可以变换的。

然后下面的这个环带也是这样,你可以对还贷进行一个翻转,在空间中进行一个翻转,它在空间中的具体关系它是变化的,但是在这些的变化下面,你慢度量都是一致的,也就是说你他的共情,如果你考虑的是共形变换。

你会对它乘上一个e的每个地方乘上一个e的阿拉姆达四方,它我们不需考虑它在空间中在具体的形状,我们只用考虑它点曲面上的任意两个点之间的这个距离,它是一个什么样的形状,我们在参数化里面,如果我们错参数化。

把它的这个去求到一个平直的平坦的那种度量,我们就可以继续这个度量,直接把它放到平面上,后面会解释怎么去做,我们只关心度娘,不关心它在空间中的位置,那我们现在就要解释,就介绍一下曲率,曲率的话。

曲率的这个概念就是我们先介绍一下法曲曲面上的曲线,它的曲率在曲面法向上的投影,那就是法曲它只跟曲面的这个切换相切,就是切平面,比方说这个点上有个切平面,然后你在上面去选一个切方向呀。

我们这个法曲率衡量的就是这个切方向的这个弯曲程度,这是在微分几何里面的概念,然后你在这个切平面上面,这个平面上面会有两个互相垂直的方向,其实它是表示它的主曲率方向就是互相垂直。

它们分别是法取你的最大和最小值,就是最大的这个法取名和最小的法区域表示两个主曲的方向,然后高斯曲率就可以表示成这两个主曲率的攻击,而平均曲率表示成这两个我取名的求和,然后高斯曲率跟黎曼度量也是一样的。

它是一个类运的量,它是只跟数量有关,只跟曲面上面任意一点点的距离有关,它跟曲面在空间中的形状没关系,比方说我们以这个圆柱为距离,那还有一个就是如果是平面,就是我们对这个圆柱进行一个剪开。

你可以很自然地无扭曲的给它直接摊成一个平面上的一个局,我们比完之后,它是一个开局面,我们在这剪开,我们就可以很自然地给它摊成平台上的句型,也就是说你做参数化,其实就是想让这个曲面上面的这个曲率。

让他在除了边界上内部都是你,除了边界上内部都是你,如果他边界的曲率它是可以不是零,内部都是零的话,那我们就可以很自然地把它放在平面上,没有任何扭曲,不关心它在空间中的前,所以大概含起奶皮,这就是参数化。

就是用圆柱和平面的矩形的这一个例子来解释参数化,那在关于用黎曼度量和那个黎曼度量下的这个共性变换,表示的共性变换,它有一个很重要的这个定理叫曲面归一化定,单指划定曲面单值化定理,讲的就是。

我任何一个曲面都可以共情的等价到,它拥有一个长指的高斯曲率的一个曲面上,怎么解释呢,就比方说我对于一个拓扑同胚于球面的一个模型,就亏格为零的一个兔子,然后我们就可以存在一个共性变化。

就可以找到一个共性变化,把它变成这个曲率,高斯曲率为常值长值,如果这个球它的半径是,那它的高斯曲率就是r方分,之一高斯曲率就是r方分之一,就是它在整个曲面上都是长指,这样你大方分之一乘上它的总面积。

在上面的积分就是斯派,就是这个群体和,那我们就可以它的这个单值化定理,就说明我们这个曲面它是存在一个共性变换,能够把它共享到球,对于拓扑同归于圆盘的例子也是一样的,就比方说对于这个人脸,它有一个边界。

然后内部是联通的,断联通的,那我们可以把它拓扑同归于平面上的半径为小二的一个圆盘,这是可以做到的,这不就是相当于做参数化吗,就是你找到一个新的这,个找到一个共性映射。

然后这个共性映射又诱导的这个新的里面重量,它的高斯群里就等于这个圆盘的这个高斯群里分布,然后对于这个torres的话是一样的,你可以把它沿着这个地方绕一圈给它剪开,沿着这边去绕一圈给它剪开。

然后你就可以给它平铺到平面上面的一个矩形区域,然后对于更高的话,它需要用到这个双曲双曲度,这个我这里面我就不解释了,感兴趣的可以去看看,但这个就比较复杂,也需要一定的想象力,就是赚取足量。

就是他跟体面的这种平直的动量不一样,它是用,这种双曲的进行来定义的,它的这个值在这上面的测地线直线就是最短的距离,它其实是一条曲线,这个我就不做详细的解释,然后曲面单值化定理。

它的作用就是它描述了共性映射空间的空间有多大,任意一个曲面我们都可以给它共行映射到一个点范域上,它的核心作用,第一个就是我们可以把它参数化到点环境,比方说给了一个平面上面。

给了一个空间中拓扑同归于圆盘的一个曲面,我们就可以存在一个过程里面映射,可以把它映射到这个啊单位圆盘上面,单位圆盘下面那个,那我们只要找到这个共性,一生我们就做了一个共同参数,比方说我给了你两个形状。

给了你两个形状,然后我们可以把它同时都各自找一个共性面试,去把它映射到曲面的这个半径为r的一个圆盘上,那这两个共性映射的复合,你就把它可以把它这个共性是复合成这个共性映射的逆。

就是从这个映射到这个映射这个右边这个形状的一个过去式,就做这个交叉的一个共性参数化和取名对应,这边给的是一个球面的例子,就是它是以它,的具体应用是一个以你去研究人脑功能区,就是人老他的大脑不同人的大佬。

他的沟壑深浅是不一样的,然后它的对应的形状也不一样,如果你要去研究整个群体的那个大脑的这个功能区的对应,那我们肯定要建立人脑之间的区域之间的一一对应,建立区域之间的一一对应的话。

我们就可以把它用共性映射,把它映射到一个球面上,下面的也映射到全面上,然后把这两个全面上上面去做匹配,然后让他们的扭曲尽可能小,也就是说看上去尽可能一致,也就是说我们会把这边的沟壑。

跟这边的沟壑尽可能的对应上去做一个功能区的对应,去做人脑的msn的研究,这是一个应用,那如果用这个就是用这个曲面单值化定理来求这个共形映射,它最关键的就是求一个到点范域的一个参数化的算法。

我们这里面拿拓扑同胚与圆盘的人脸来举例,它就是我们要求一个啊到半径为r的这个圆盘,它的一个共性参数化,这个的算法的核心观点就是说我们可以去,如果我们要把它供您参数化到半径为r的圆盘上。

它的这个半径维尔的这个圆盘的区域分布我们是迟到的,它的内部的高斯曲率应是零,它是二分之,一也就是说我们要求一个共形映射,就是共性变换e的二拉姆达方作用。

在这个原先的里面度量上形成一个新的里面指的在这个里面度量下,他的这个高斯曲面是满足这个原版的高斯曲面分布的,然后一旦我们求出来的这个对数公平因子的拉姆达,知道了这个新的黎曼度量记一品。

尽管我们可能不确定它在空间中的形状,它可能是这样的一个弯曲的,很弯曲的形状,我们不需要这种分的情况,我们也可以很无扭曲的把它摊平到圆盘上,这个在对于你三大广告上就是去做一个三。

角网格的那种广度优先的那种便利,把它摊到这个网络上,就每个三角形确定一个三角形,然后按照它的一领域去一个个去往外扩,然后把这个三角网格直接摊平到这个平面上就行了,那么后面会讲具体的算法。

也就是说我们要做这个工参数化到点搬运的算法的这个流程,就是我们去求一个这个核心的这个number,主要求得拉姆达,我们就知道了目标的这个动态,知道了目标的度量,我们就可以用平摊的算法给到他们到平台上。

那为了介绍这个从这个曲率去求这个拉姆达,我们就要介绍一下这个高斯曲率和这个在共情变化下面的这个关系,就是在这个随着这个拉姆达的变化或高斯群里会有一个什么样的变化,我们首先要介绍一下这个局部等于坐标。

局部等文坐标是一个什么样的概念,就是对于流行上面的,你就是黎曼流形,黎曼流形上面的任何一个点p我们都可以找到它的一个领域,然后去找到一个他的一个局部参数对标。

使得它的这个领域下面的这个你慢动点满足一个这样的形式,这这样的写字我们就称它是一个局部等分坐标,为什么要用一个这样的形式来介绍,就是为什么要特殊的这样的形式很特殊。

后面会说明就是这样的形式来计算高斯曲面的话会很方便,就是我们知道对于就是微分几何的话,你对于曲面上的一个点,它的这个你慢度量都可以写成e d x方加2f d x d y加g d y的。

这就是曲面的这个呃第一基本型吗,然后但是我们要把这个dx d y消掉,其实就是对这个xy去做一个参数变换,然后使得它等于dsp和dt是等于dx di的一个线性组合,然后把这个i f的这一项消掉。

然后使得e和g又是相等的,就会变成这样的一个形式,就是通过这个这个引领,我们就知道一定是存在一个这样的参数变化,就是我扔给你一个空间中的曲目,它的第一基本形式是这样的。

我们都可以选择一个跟e f g有关的一个xy到sp的一个参数变化,那它最后变成一个这样的一个形式,就第一基本性变成这样的一个形式,打回来了,这样的,一个形式的这个参数的st我们就叫做等文做标。

然后在这个短文坐标下,高斯曲率就可以有非常简洁的表达形式,就是他用到的是正交坐标下正交坐标网的这个高级群计算公式,然后这里面e就是e在r一塔次方,g也是一在二一塔次方,我们直接带进去就行。

有带进去就可以把这边要化简,就是负的e的r一塔分之一,然后乘上e它关于t的二阶导,它就是在平面率上面的这个一塔的拉普拉斯,乘上e的方案一就可以写成这样的形式,然后如果我们有一个共性变换。

就是在这个曲面上,我们定义了一个新的共性变换,它每个点处会对它进行一个对数过程因子,就是对数过程因子乘上一个一打二拉姆达方,就会把它变成一个新的问题,新的曲面,然后这个新的曲面的这个高斯曲率。

我们也可以把这个一达拉姆达乘到这个e的r一塔上面去,他在新的高斯曲率就是把你一塔等于一的一塔加拉姆达带进去就行,就是e的负的2e大加拉姆达,然后e打加拉姆达这个函数的拉普拉斯,相机作用。

然后呢这个新的高斯曲率跟原先的高斯曲率的关系,就可以对它进行一个拆开,提一个e的负阿拉姆达次方出来,因为这个阿达纳负e的阿拉姆达是我们作用的一个新的过程变换嘛,然后这里面的这个负的e的r一塔。

拉普拉斯一塔,它就是原始取名,沿这个曲面上面的取名叫k,然后这边的这个负的r一塔作用拉普拉斯拉姆达就是你的这个拉姆达,然后再乘上e的括号,一发四往上伸缩,然而它这个作用就是在这个原始曲面上。

就是在这个曲面上的哪款4g这个点还是曲面的,这个度量是一般重量是几,就是在这个曲面上的拉普拉斯作用在中,所以这一个关系就是我们就很容易的就计算出来,在就是你慢度量在这个共情变化下作用力的阿兰达四方。

然后他的新的高速群k一品和原始的高速群k满足一个这样的单词,这个就是养马比方程是一个非线性的评分方程,然后对于在边界上面的这个曲线,因为它带边界,它的测地曲率也是有一个类似的关系。

它的边界就是对于曲面上面的这个边界的这个曲线的测距距离,它的计算公式是由纽约公式给出的,然后我们这个e和g还是在这边的这个一塔,然后dc td啊,c它表示的是这个你把它映射到这个平面镜上。

在平面这个参数化上面,这个曲线这个边界曲线它随着这个s和t的这个变化的这个夹角,那其实就是这个平面曲线上面的取,你代入计算就是负的一一乘上这个平面曲线的这个区。

然后减去这个一塔在这个平面曲线上面的这个法向上面的导数,然后如果我们对这个曲面带边界的曲面作用一个共性变换,就是对他的权利,对他的啊黎曼度量作用一个新的那个特殊公平,因此e的兰姆达四方。

那它新算出来的这个边界上面的高,那个测定距离要满足这样的一个形式,就是把一塔换成一大家拉不拉就行,然后这样我们就可以跟之前的高斯取名一样,得到它的这个侧立群变化和变化前的这个关系,就是变化后的测地区。

每天一撇是等于e的负拉姆达乘上,括号里面是变化前的群减去这个拉姆达,在这个流行上编于这个关于这个n的这个法向,我们就可以得到这个描述这个曲面这个群率和这个他在共形变换下面,这个的对数共性因子。

拉姆达对应的这个共情变化下的这个新的曲子和原始群,以及它的这个对数因子的这个关系,它是一个,嗯偏微分方程就是拉姆达的拉普拉斯,然后这边会有一个一的阿拉姆达斯,它是一个非线性的一个微分方程。

然后那我们去求解一个参数化,去求解一个参数化,就是需要我们比方说把这边的一个拓扑同胚于一个圆盘的一个局面,我们想把它参数化到半径为二的圆上,那我们就是给了一个这个半径为r的这个群,给了这边的k一撇。

把策略群小开局就k一撇,他家内部就是你在半径为r的话,小k一撇就是1/2,给了这个,我们要去求他的这个共形变换,也就是去求这个单位的,也就是去求解一个这个评分方程。

这样的话我们怎么去求解这个非线性的平衡等等,后面会介绍局域名的方法,在这里面我们就是先理论部分就到这,就是他的这个主要先到这儿就讲一下它的这个非线性的这个微分方程。

描述高斯曲率和测力取决在公屏变化下的这个关系的方程,然后我们会介绍一下黎曼度量在三角网格上面以上化,因为曲逆流在后面也会用到这个,我们把这个放到前面来,对于光滑的曲面的。

它的黎曼度量就是它表示的是切平面上面的切向量,两个切向量之间的内积,所以你在你给了他的一个切向量,你去算它的一个长度,就可以用它在里面度量啊,x x然后给他开一个根号,就是它的长度。

那你的这个光滑映射下的这个你们就是共形映射,对这个曲面的这个黎曼度量乘上一个e的阿拉姆达次方作用的话,那它的新的这个切切向量的模长就是原始的这个模长乘上去的啊,那是直接把这个带到上面的式子就可以得到。

就是说我们对原始的这个向量的这个模式进行了缩放的1。2,兰姆达x方便就得到新的这个新能源,那在三角网格上离散,我们就可以把这个切向量的这个离散看成这个边的边长的一个关系。

就是我们对每一条边它都有一个编程在共形映射下,就是说我们对这个编程对它作用的一个e22 拉姆达i加,拉姆达g的平均就是二分之拉姆达尔,那就是我们把对数构成因子作用在定义在每个顶点上。

那这个边长的这个变换,它既与这个点这个点的这个放缩有关,也与这个点的放缩有关,所以我们就这个编程,我们就定义成它的平均,就可以这样的简单理解,但是通过这样的离散的度量之间的这个啊固定变换。

然后另一种通过那个刚刚的,我们可以在顶点上面定义这个对数模型因子,也可以通过这个叫边长的这个交叉比,来定义这个两个网格是不是满足共性映射,就是存在共性映射。

它和上面的这个在每个顶点去定义对数更新因子是等价的,就如果我们的这个新的网格,它跟原始的网格是满足存在一个网格顶点上定义的对数,共形因子的这个边长关系,我们可以去算它的交叉比,就是di键的这个交叉比。

我们就可以选取它的这个k i这条边,这是第一个边,然后乘上mg,这是第二个图,然后除上mi,这是第三条边,然后涂上这个jk,第四章,也就是说你第一条边的边长乘上第二条边的边长。

除上第三条边和第四条边的边长的这个嗯延长的机,然后这个交叉比在共形映射下是不变的,就是如果我们有任意的一个共性,就是离散的这个过程是那这个交叉比它在过年时前后也是不变的,和他和上面的这个等价。

其实很好证明,就是我们如果把上面的这个式子带进去,如果存在一个每个顶点有一个那么大那么大p,然后新的边长满足这个关系,那c i g新的交叉组带进去。

我们就可以把这个上面的这个旨意的这个指数幂就可以把它加起来,就是那么大,k加那么大,a加那么大,也m加那么大,c下面也是一样的,就正好消掉,然后就等于原先的就行了啊,从下面去推上面。

他们两个等着下面推上面,它也很简单,就是我们可以去定义对每个三角面片,我们去定义它的这个拉姆达i j k,比方说我们对于三角形i j k来说,我们对它的这个在a点的这个对数工艺的因子。

我们可以定义成这样的形式,就是我们可以定义它在几个新的编程i l l i j一品乘上l i k e p,然后除上,然后j k一撇就是这条边乘上这条边,除上这条边,然后新的边长的这个主张。

旧的边长的这个曲和logo就是这个三角形,这是上面的这个在这一点的这个对数名词,然后对于im g而言,也会有一个这样定义的这个对数因子,对数的共性名词。

就是这条这条边乘上这条边除以这条边口上这个顶点的对比,它的两个邻边除上它在这边,然后在这个新的编程,然后除上原原式的编程,取log就是它这个三角形就可如果他对于i界满足这个交叉比不变。

我们就可以证明这个三角形的这个这样定义的,这个对数共性因子和这个三角形在这个顶点这样定义的,最初混进一次,他们两个是相等的,就这两个值是相等的,也就是说如果我们这边还有一个三角形,通过这条边的交叉比。

是在这个映射价保持不变,我们也可以证明这个三角,形定义的对数共形因素,这一个点在这个点和这个三角形在这个点的这个过程,因子的计算是三等,比如说它一领域我们都这个对数更新因子是一致的。

也就是说自然而然就可以推出它的最后的这个是满足一个这样的形式,比如我们现在说的这个离散三角网格上面,它定义了两种共性等价,第一种就是通过对每个经验去定义一个对出工程进行解。

也就是说每个顶点它的一个放缩程度的那个对数,然后也可以定义这个对于边来说,他的这条边这里面我是用的是一第一条边,比方说i j是1x2除上单3x4,你也可以用3x4÷1x2都行,因为它的导数也是长指。

它的导数在变化,相应数不变,你只要是它的相对的点,然后除上另一边相对的点就行了,然后呢我们去优化一个共性映射,就可以去表示成优化,如果我们就是第一种方法,就是直接去优化这个罪行对数共性因素。

第二种方法就是去约束那个交叉比,在公映射前后之间,我们先看一下,第一种方法就是优优化这个对数问题,因此我们可以把对数公性因子下面作用的这个新的这个边长,看成这个对数工性因子的函数。

然后它的每一个角的话就是新的边长,用这个余弦定理就可以求出来这个新的三角形的内角,然后如果我们要把一个三角形网格,把它参数化到一个平面区域上,就是说对于内部的顶点,它的这个角度一圈的这个求和要等于二派。

然而对于边界的顶点,它的求和要是等于边界上面我们给定的一个角度,就是我们可以指定边界上面的一个形状,它的角度是多少,然后那我们就是把这个角度看成这个拉姆达的一个函数,我们优化一个如下的一个能量。

它这个能量是一个凸的能量,一,这个能量是一个凸的能量,这边的这个f t f是一个比较复杂的函数,我在这里面就没有写呃,大家感兴趣的话可以去看这篇文章,它里面的推导比较复杂。

我在这里面就缩料缩写的就是对于这样的一个定义的一个通常量,这个ti键就是这条边的边长的取对数,定义成t i j j i j也是关于这个对数攻击因子的函数,因为这边的边长是关于最初的因子。

这个就是整个伊拉姆达就是关于拉姆达的一个函数,对应的一个这个能量,然后这个能量是一个凸能量,它关于拉姆达的导数,就是下面的这个形式是可以用那个链式法则去验证,具在几何上面去求梯度。

有关于兰姆达去求梯度啊,等于这个形式,然后这个图能量的全局最优解,那就意味着这个导数这个梯度等于关于拉姆达的梯度,等于也就意味着这里面的这个求和的这个形式,要等于我们给定的这个r8 a参数。

这里面如果fa就是对于内部点,我们就肯定如果要求它映射到这个平面区域的话,它内部点的这个r8 我们就设成二派,对于边界点的话,就是我们给定的这个决定的这个,表态i。

那我们只要去优化这个能量的这个找它的全局最小值,那我们就找到了这个拉姆达i,使得它满足这个平面参数域的这个角度的限制,也就是说我们找到了这样的一个离散化的一个对数共形变换。

使得它我们产生的这个内部的每个点都是up拍边界的点,都是我们要求的角度,就把它参数化到一个平面的形状等级来,然而这里面有一个问题,就是它会有一个可行域的问题,就是你对于一个。

边长比方说我给了你三角形的边长,然后我们对它作用一个对数共形变换,但它的新的三角形的变成必须要满足这个三角不等式,如果他还不满足这个三角不等式,它就会这个三角形就会极端的退化。

比方说右边这个你的i如果你的l i k一撇加上l k j一撇,正好等于l l g一撇,那这样的话如果正好等于,那这个就是这个角i k j这个角就是派,然后他就接近破坏了嘛。

然后这个i这个点的这个角和借这个点的这个角就是零,那如果我们要避免这种,就是你在优化中这个区域它是一个这个约束,其实是一个推出的一个结构,它主要的一个形状是这样的一个形状,如果我们在这上面优化。

就很容易去碰到这个这个边界上,我们就可以把它这个区域给它进行一个延伸,就如果我们的这个边不满足三角不等式,我们就用这一个退化的这个情况的这个角度给它限定词。

我们接上c它这个它的这个k就是i角i kg这个地方就让他给你拍,然后让这两个角等于就对它做成一个延伸,对这个定义域进行一个整个平面上面,然后在这个上。

面去优化就可以考虑不考虑把这个三角不等式这个约束去掉,然后我们优化这个算法的话,我们就可以用这个梯度下降,第一种方法是用梯度变化去优化这个充能的,就是你选择一个下降方向,是得到爱是这个-7度管的。

然后你需要用细一个线性搜索去搜索一个步长啊,一个小的过程,然后沿着这个去改变这个难不难i,然后使得能量是单调下降的,这样的话用梯度下降法一定是能够找到这个同等量的乘积最小值,当然你也可以用二级方法。

就是用牛顿方法就是去求这个能量,的这个hension,然后对它进行一个对它负梯度这个方向进行一个校正,然后沿着这个方向加强,用r解方法用到了它的恒生信息,下降的话可以更快一些,当然之前也说了。

我们是在这个整个我们把这个区域进行了一个延拓,然后在这个区域上面去求解我们想要的这个拉姆达,然后我们求解的拉姆达可能是会跑到外面去的,就是它会违背这个三角不等式,每个人的三角不等式的话。

我们如果用这个拉姆达去算出来新的这个ok,它就会出现这样的很极端突发的情况,就组成不了一个三角形,那在这样的情况下,我们就要对它进行一个边翻转,就如果你原先的一个四边,原先的那个四边形是这样的。

这边是k这是ig,然后原先这边你会有一条边l i g,然后这个三角形是退化了,如果三角元要退化,然后我们要在退化后的那个三角网格上,如果要避免这种情形,一个符号的方法,我们就是把这条边给它进行一个翻转。

这样翻转后的这个三角形它就又不是退化的,人,就会把这个原先从这个它的可行域,它在这里,原先的这个点在这,你做一个翻转,它就又走到了可行运算的内容,然后我们就可以对最后求出来的这个嗯最优解的这个拉姆达。

然后他算出来的边长如果不满,我们就对它进行一个翻转,翻转后的边长,我们就要算这个新的l k m就是在原始的这个tm上面编程,我们在城上它两边的这个对数公平因素就是新的编程。

它是满足这个三角不等式的这种关系的,就是如果不满足,我们再去找他的那个转转,就是违背的那个反转,当然对于这边我画的是一个平面的情形,但要考虑到这个曲面它是嵌入在空间中的,比方说我这边给了个例子。

就是这个啊这个正方体网格上面分别有这样的一个三角形面片构成,右边的这个三角形的这样构成,如果我们要对它进行一个h f一吧,其实我们是要去找他的这个在空间中去做它的这个分析,我们对ab边。

比方说我它这边是已经旋转了很多,如果这边它原先是这样的一个形状,就是这个三角形是先是这样的三角形和这个三角形,我们要把ab边进行一个翻转的话,就是把它要翻转到在这个曲面上去找它的测定值。

就是你要把它摊平,然后去连接这个c的这个直线,才是我们求的这个l k m就是如果你把这个这边就是lc,就是它原始的这个曲面上的这个c到e的距离是在曲面,上的距离在这个三角形网格上面的距离。

而不是c点到b点的这个空间中的距离,那这个就是你要对这个所有的三角网格上面,对这个c点到一点去求一下它的测定定理,这不是可以用波形的,或者用其他的方法来求的,然后这样你把这个距离求出来之后。

你再对这个用这个拿不拿,然后作用上去,如果是出现退化的情况,你要对编剧行反转,翻转完做一些有限规的这个操作,你就可以得到一个不退化的一个三角,这个三角网格跟原先的三角网格。

它在数量上面是相差一个共形变换,的,但是它在拓扑上面的,我们是要对它进行一个翻,有一些翻转的一个操作,就是他们的连接关系,因为我们这个局部翻转导致的不一致,但是它的这个重量基本上还是满足。

这个在这个顶点上面去定义这个对数均值,对数关系因素,那诱导就是公平的,就是他们在动量上,每档中量上很难做一个公平的标,然后上面我们讲的就是去直接优化那个对数共性因子。

就离散网格顶点上面定义的对数性共性因子来做曲面参数化,参数化掉屏幕,当然我们也可以去直接约束这个边长的交叉比,去这里面我们举的例子是一个曲面变形的,这篇文章做的是曲面变形。

就如果我们这里面就是你如果一个网格它在离散的这个共性变化前后,它的这个交叉组是一个长值,我们在这里对这个交叉体取了一个对数,也就是说log ci键是等于这个tk i就是它的边长的取log啊。

去满足这个线性约束,然后在这,个长制约束,那么它的这个变换后的这个网格等变换前的网格就是一个关心变换,那我们就是对如果对网格做一个共性形变的话,我们就是去优化网格的顶点位置,然后使得它满足这个线性约束。

优化顶点位置,使得它们满足这个线性约束,取logo的这个对数,把它当成顶点位置的这个函数,我们就可以把这个t的这个增量可能写成这个甲壳,比一个全上v的这个增量的一个形式。

然后你minimize这个uv的这个最小值,你就是就是,minimize这个能量在这个映射家里买的话,就是去求一个他的这个点,然后这个就是最小值的这个点。

使得这个点的梯度是跟我们想要的这个v满足的这个约束的,这个梯度是垂直的,就是如果你满足这个梯度跟它是垂直的关系,那么你算出来的这个你在这个空间下你就找不到下降方向。

所以这里面我们就可以用这个投影的这个qq下降,然后去优化这个能量e,这是用直接约束交叉比的方式来求这个最小化怎么样,然后这篇文章给的这个例子就是他去优化一个最小化一个will mod。

然后使得这个形形状只能在贡献情况下变成一个球面,然后它的能量显示是这样,加了刚刚的那个嗯交交叉比的这个约束,它会产生一个跟这个原先的网格是一个共形映射,共形等。

价的一个网格如果不加约束去优化这个把它变成穷面,它的网格的这个角度扭曲就会很大非常大,然后讲了离散化的这个度娘,就是通过那个对数购物性因子和电源厂的这个交叉比去定义的。

这个对数就是网格的这个理想的过程映射,我们接下来就讲一下这个分片莫名次变化,里面的sql p就是保持夹角,然后以及我们刚刚讲的这个保持交叉比,它都可以做到,所以我们再把它放到正价。

然后什么样的是一个莫比乌斯变换呢,就是它是定义在一个扩充复平面到扩充复平面上的一个映射,它是一个分式映射,我们把它当成一个复数负数表示的话,就是a乘a加b除上c乘c加d。

然后这里的a d b c都是一个负场数,它首先要不等于零,为什么要求大,不等于就是如果我们的a乘b等于bc的话,那这个映射我们可以对它上下同乘一个c,然后做一下调换的话。

就可以得到它是把f对于任意的一个扩充复平面上的点,都会把它印到c分之a,所以我们不考虑这样的影响,因为它把整个平面映射到一个点上面去了,然后这样的一个变换我们就称之为莫比乌斯变换,它是一个线性游戏。

就是一阶线性的这个除就是分式变换,然后它可以分解成下面几个变换的复合,就是任意的莫名如斯变换都可以分成一成,下面这个变换的第一个变化是平移,第二个变换式伸缩就是对z进行一个旋转以及伸缩。

然后第三个变化是一个反应,前面两个变换都是把语言映射到圆的,它而言对它圆圆上面的点进行一个旋转和伸缩,它还是有点这个变化,也是可以证明它是把圆圆周编制到圆周的,它其实是把嗯,大家可以去查一下。

也可以查一下,这里面我就不讲,就是不细讲,他是把不过原点的这个圆,它映射到其他的圆,就是如果复平面上面这圆它不过原点,那它就映射到另一个圆上去,如果这个圆它是过原点的圆,那它会把它映射到一个直线。

就是映射到复平面上的过原点的一套图形,不是过敏,就是一条直线,然后直线当然我,们也可以看成它是一个无穷远的那个圆,就是你如果对一个圆的半径让它趋向于无穷,然后它是一个广义的盐就行。

所以莫比乌斯变换它是保持任意的圆的,就是如果我们把直线看成一个半径为无穷的一个元宝,然而对于一个三角形的话,我们就可以在每个三角片源上面去定义这个mobios变化,然后如果我们取一个三角网格。

我们取他的片源i j k,然后他的在这里面我们先用复平面上面的这个来表示,然后它的这个每个点的坐标,我们就用它的复数坐标就是对应的复数来表示,然后对它最后一个莫比乌斯变换。

就是把它从这个副本里面上映射到另一个另一个三角形,当然它这个莫比乌斯变换它不一定把这个边就是它不是把保持直线的,它把这边的边它会映射到一个弧,因为它这个边你,可以理解为半径为无穷的那个圆嘛。

你把这个圆映射到一个新的圆,它可能是一个圆周的一个圆弧,然后这边也是一样,应该知道一个月后这边也是一样一样,然后我们考虑这种分配的不明物质变化,我们都是在离散三角形网格上面做的啊。

那映射过去我们还是连接它的零点之间,在这个直接直线点去考虑这个直线点,那这样的话对于一个三角网格,他的所有的在每个三角面片上面去定义一个莫比乌斯变换,那样我们就是他一定要满足这个三角形。

它把cr v界定义的这个莫比乌斯变换,跟他在一领域的这个三角形定义的这个莫比乌斯变换,一定是要在这两个点上面是互相安,就是共和的,就是他们两个最好是能够拼上。

那在这里面我们就是直接用ai变换后的vi减v j1 p,它直接就可以带到这个莫名优斯变换里面,变换后的这个边的向量就可以带进去,就算算一下,就是变换前的这个变态向量乘上一个对应的这个负数分子。

如果我们把这个复数分子cz i加d分之一继承di j k,那在这个边上它就是di j k乘上dj ki,就是这个三角形上面的是d i j k就是i这个顶点c n z i加。

然后cc c加d就是借这个顶点在i j k上面的这个表示,然后它这个乘上的这个值就是这边的值,他一定要等于我考虑它的领域的这个三角形z3 角形i m j,然后这个点在这个领域上面的这个分片不比四变换下。

它会作用到这个三角形上,然后这个z接一撇,在这个三角形上面的这个z接一撇,减vi一撇,一定要等于这个三角形有它相邻,它是个三角形的直接p减i p,所以这个成绩一定要等于这边的这个成绩。

就是三角形i m j在i上面的这个顶点的这个,取得这个c加d的这个导数,乘上这个j在这个z键这个里面出的这个大,就是如果要满足这个分辨目比乌斯变换,你要满足这两个三角形,下面三角形能拼起来。

就这样满足一个这样的事,就是你这样才会把一个三角网格映射到另一个三角,我们能听清,离散的共性变换,那我们可以把这个定义一个负的交叉点,交叉比的之前的定义就是如果对于lg的话,就是它的第一条边。

这条边你是第二条边乘上第二条边,也是按第三条边乘积四条边对吧,就1x2÷3x4,那我们用负数负交叉比,就是zk减vi乘上gm减vz,然后除上z m减z i,然后这个z j减dk,就这个就是负数。

它的模长就是交叉比这样定义的,它的模长是交叉,也就是如果我们这个要保持交叉比,就是说它的这个负交叉比的模长作用后之后,它是等于原先的交叉比的方法,然后我们把它带进去。

用之前的那个线性约束定义的这个意d的这个因子带进去,我们就可以得到一个这样的方式,比如这个等式,这个复数的这个模长是等于一的,然后我们再结合刚刚的,如果一个三角形,它们相邻的这个三角形是可以拼接。

就是拼接性条件,然后和这个条件我们就可以得出它在每一个点,就是这个相邻三角形在a点的这个di j k,然后和这个三角形在第一个点的dmg,它们的模长是相等的,也就是说我们要满足这个它满足这个保持交叉比。

我们就要求这个每个分片莫比乌斯变换,他除了要满足这个能够拼接的约束,还要满足一个这个每个零点出的这个模长的这个约束是相等,如果是保持sql安全,就保持这个r8 e的这个角。

它也可以表示成类似于这个负交叉里的一个形式,就是可以表示转折,把wi j的这个交叉打比的十部手上,按w i j的模特去取负号,再取一个就是他的这个发音的cos。

然后在cfg里面我们要保证这个f e是夹角是保持不变的,然后结合这个分p洛比优斯变换,它的拼接保持一致的条件,我们就可以得出不是这个三角形上面在i0 点定义的这个d i j k。

然后和这个三角形在这个顶点上定义的d i m j乘上它的功率,那是一个实数,就可以推出来,如果满足这个实数条件,它就是保持这个circle insecution unless,就保持这个翻译这个加点。

那通过这个分配不比四变换在这个嗯上面,就是在每个片面上面的movies变化上面去加这些限制,就是加一些模仿这个约束,以及加上一些成绩,这个承上公开的这个成绩是属于实部的这个约束。

他就可以导致我就是可以推出来,我们之前的就是定义的这个保持交叉比的这个离散的这个共性变换,以及从这个sol ping推出来的这个共性变化,保持这个交叉这个啊外接圆的这个切线的这个角角的这个工程量。

那我们就可以加上对这个分片进行变换,加上各种各样的约束,我们加上这个保持交叉比的约束,就是这个模式约束,我们就可以定义成这个负数的这个负数乘上它的功率等,于右边的这个负数乘上它的功能,它是一个二阶约束。

然后保持一个交叉比的结束,就是它的复数乘上另一个三角形上面的功能,它是一个食指,就是他们的负,就是腹部是等于零的,就是复数的虚部,这个乘积的虚部等于它也是一个相当于一个二阶的一个约数。

然后如果我们想要既保持这个嗯边长的交叉比,也要保持这个外接三角形,就是三角形外接圆这个切线的这个角角,就是它的模长等于它的模式长,然后它成长它的共轭是等于一个,而实数的话,那其。

实就是他们两个的这个在一处是相等的,就是d i j k等于d i m j,那对于的任意三角形正片莫比乌斯变换,在正面的这个三角形就是分片莫比乌斯变换和这边的三角形的分片,莫比乌斯变换。

在这个顶点定义的这个值,那个c cc加d我不太会去cd加d的导数是相等的,其实我们就可以推出来,它是一个整体的莫比斯表,就是说它整个在所有的三角网格上面。

它的a b cd对应的这个莫比乌斯变换的这个参数它都是一致的,它就是是一个整体的莫比乌斯变换,然后这边就是如果我们要保持整体的话,基本上因为整体的目的公司变化,大家刚性强度还是比较大的。

它会把它当成一个软别墅,就让它减去它的这个模长的平方,优化这个的最小这个软约束的能力,然后那这样的话这边就给了一下这篇文章,它就给了一下这三种约束产生的定义的,产生了这个共性映射的一个情况。

对于这个这边就是a mobile as possible,就是尽可能加软约束的这个整体是一个mobile表,这边就是metrical composer,meter,combo。

就是它的定义就是保持这个lscosprite就保持这个边长的交叉比,这个就是保持这个circle的这个intersection,uncle和intersection pre,它的形状是这样。

他这篇文章就是我在这里面介绍这个跟片或比如四变换的这个情况,就是因为他记它是一个相当于他把这个整个映射给它放缩了,就是把这个也不叫放缩给这个映射的空间给他增大了,把它增大到每个三角形上面去。

定义一个mod游戏变去定义一个映射,然后这些每个三角形上面的映射要满足一定的性质的组合,满足这个性质满足这个约束,它就是保持交叉比,我们现在定义的这个离散共情,就是第二部分定义的这个离散共情的这个屏。

如果保持这个就是满足这个约束,就是我们上一讲微分,就是微分里面的这个sql端点,保持这个外接圆的这个夹角的那个定义的那个共性,如果就是两个都保持的话,就是一个整体的莫比乌斯的,所以他要用一个最强二成。

就是这里面它是一个第二,就是这一这一讲的第二部分的内容和上一讲的sql,版本的内容的结果,所以我在这里讲一下,然后第四部分就是我们讲一下怎么去求解亚麻比方程的,他的曲面流的一个算法介绍。

然后曲率流就是说我们刚刚说了亚麻比方程是一个非线性方程,就是我们如果要把这边的这个模型给它参数化到圆盘上,我们给了这个圆盘的高速群,我们要求这个共性参数化的这个拉姆达的这个因子。

然后我们要求解这个非线性的微分方程,我们怎么做,就是去用群逆流,就是说它有一个曲面的,它有对应的一个能量,它的能量是对于米奇流,就是rrich flow的话,它这个能量很复杂。

这边就是我就不做太多详细的介绍,它其实是优化一个很复杂的能量,然后对于这个能量去求它的梯度,求它的梯度,就是对这个它是基于度量对对这个度量关于时间去求导,就是这个能量沿着这个梯度下降,负梯度方向去演变。

然后就变成这个,然后这个能量再把共形映射这个带进去的情况下,它是关于这个对数共形因子,它是一个充能的,它有个全局最小值,然后这个全局最小值,全局最小值,然后它关于这个拉姆达的导数。

正好就是他们的曲率是相当的,这里面我就把特定区域跟那个快速取名,我就在这就写在一块,就是他如果测定取名在边界上还要再写一个那个测定取名的小k a p,这就是如果你达到一个最小值的。

也就是说它的这个梯度是等于,也就是说他的这个群率是达到我们就是对应的这个对数共形因子,拉姆达出的这个区域是达到我们比例的这个区域,它你群逆流的方法就是思想就是这样,就是连续的话可能不够直观。

我们直接在每个顶点上面去对比对手稳定因素,还是跟之前的那个离散的那个嗯,三角网格等价类是一样的,定义就是在每个顶点上定义一个对数共同因子,难不难。

i然后我们就去演变这个number ni就是使得它的这个高斯群,每个顶点处的高斯群,这个ki是等于我们想要的这个目标的保税区去演变它就行了,这个高斯曲率的计算公式就是他二派减去这个内容。

就是如果对于一个平面上面的一个内部的顶点,它的内角和这个角度和是ipad,所以判断高度距离可能性别,然后我们更新方式就是更新这个,然后我们需要做的就是我们给,了你一个拉姆达。

我们就要去计算它现在的在这个拉姆达情况下的这个高斯取率是多少,然后高斯曲率多少,它是二派减去那个角度和,然后角度就可以写成那个边长的这个嗯,根据余弦定理给它写成这个边长的一个表示形式。

然后边长又可以用那个对数公式,因此那个变换l i j是等于倍数,共形因子一的二分之拉姆达i加拉姆达g然后乘上原先的那个边长,然后这样带进去,这个角度就是跟拉姆达有关。

然后群里就可以表示成跟拉姆达有关的一个形式,然后我们在这里面求,就是更新了一个拉姆达,然后去更新它的编程,然后根据三角网格去求一个c打,然后根据c塔去求出一个新的k新的考试题目。

然后让我们下一步更新的拉姆达,就是用这个方式它减它,然后求一个步长,然后使得这个是曲面流,就是这样使得它这个能量预期能量是下降的,当然这里面也是跟之前讲的那个依据角度的那种低语一样的,它也会出现。

我们给了一个拉姆达,他会违背这个三角不等式,就是它这个如果你用那么大,它沿着一个平均流下降的这个方向走,就是更新这个拉姆,达不长的话,它可能会出现一个三角形,会出现退化的情况。

这时候我们就需要用到边翻转,它这里面当然我们这里面会额外讲一个另外的一个变化,这是当它退化的时候,我们再进行变翻转,然后产生退退化的情况,就是他到达那个三角网格的这个定义域,组成三角形的这个定律的边界。

我们对它进行一个班长开始造内,另一种就是我只要违背了dlna 3角形,就是如果一个三角网格,它是dla的,就是空源性,就是这个三角形的外接圆的内部没有其他三小组件,就是如果你满足了一个dele网。

格三就是就是dele条件的话,那这个三角形的质量一般不会很差,然后在这个情况下,如果他违背了他进来了,我们就对它进行一个边翻转,这样它这个边长再进来的话,它还是一个dla的,然后这样的一个好处。

后面我会讲,就是他跟这个他们两个的这个情况就是违背电脑,也就进行翻转和退化,再进行翻转,他们在整个群里流中的表现,我在后面会有对比,然后整个算法就是右边我们给的这个算法,就是我给了你初始的这个三角网格。

它的上面定义的对数更新,意思就是你然后它的边长就是初始边长,然后根据这个用去l i j就是根据l i g去算它的每个三角形的夹角,然后和曲率,然后如果这个群里跟我们要求的目标区域,它两个误差足够小。

那我们就不算,如果他们误差没有足够小,那我们就要更新这个南普达,沿着这个负梯度方向,使得这个拟器能量是下降的,这个这个你骑牛的一个问题,就是它不太好计算,那个能量就是连续的时候还行。

你算的话连续的时候不好计算,你算的话这个能量也还行,也可以计算,就是我们要保证去选这个步长t的话是那这个你其实能量是下降的,去选一个不长,然后我们就更新这个新的这个边长,就选了拉姆达之后。

我们更新新的变量,如果新的边长违背了那个三角不等式,对于任意的三角形为被三角不等式的话,某一个三角形我们就要对它进行一个边翻转,这个边发展可以用这个退化情况,也可以用对方的情况。

然后就是这样去更新这个用梯度下降方法来求解的清楚,就重复2~5,这样直接就是你每次去下降这个女性能量,然后直到女性能量达到一个最小值,最小值的话就是这边的这个梯度等于就是kk一撇减k,它的误差小于等于。

我们可以想象另一个意思有接近你刚刚我们说的是梯度下降法,当然我们也可以用流动方法,就是二阶方法,梯度下降的方法直接解方法,然后我们获得梯度下降是它的梯度是这个,然后我们有理论方法。

就是要对这个梯度对它去求很认真,通认证的话就是对ki关于这个拉姆达去求婚的,其实就对应于这个网格的拉普拉斯矩阵,然后那这样的话用牛顿法就是我们要去算一个新的下载方法。

用这个梯度方法要和和合约认证去求一个新的方向,下降方向就是拉普拉斯矩阵的逆乘,上一个特别的这里拉普拉斯矩阵它不一定满足,就是特别是对于那种封闭网格,懂了他都是质是缺一的。

所以我们这时候去求解这个下降方向要固定一个,就是它对所有的拉姆达它是相差一个平移常数的,我们要固定一个向量,就是固定一个分量,对剩下的n减一个分量去求求求你去求出来这个下降方向之后。

我们也去去更新这个步长t用那个去搜线性搜索,使得这个能量是下降的,然后右边的这个区别就是我在每一步我要去更新一个这个网格,都拿不到算计,因为你的这个拉普拉斯算子它是跟你的l网格是网格边长是相关的。

他在拉普拉斯算机人,如果就是cos界的拉普拉斯,他,是cos界c ti,它是跟你的c大是相关的,所以你每次变换这个边长,你的这个c大改变你能拿多少计算机软件,然后更新拉普拉斯算子,然后在这里面的话。

用拉普拉斯算子和梯度,用黑饪方法化解方法去校正它的这个下降方向,然后用qq用那个线性搜索决定一个,这就是你还是在这边还定了动态的这个三角化,如果违背增加,不能说就是这个就是用扭蛋方法本期的方法来进。

然后他我们在这边也就出在这篇文章,也对比了一下他们两个的区别,就是说我在,如果他这里面我们用的是没办法嘛,因为一般二阶方法都是比一些方法要快很多的,他的那个下降方向是比梯度下降的那个方向。

在那个用到了二阶信息,它的下角方向选择更好,然后如果我们是知道到退化的时候才flip,就快退化的时候才分离和,只要一违背dlging就很离谱,他们两个区别就是你如果违背了你能力就普及了。

它的flip的这个次数就会比以下降级处理的次数会高很多,但是它的计算时间却比这个时间要快很多,这是不便宜的,原因就是你如果违背的底楼与三角化,就是你,有一个很差的三角网格。

你在上面去计算你想的这个拉普拉斯算子,就相当于你去要求一个那个下降方向,这个拉普拉斯算子的这个条件数就会很差,然后你去算它的下降方向,就是拉普拉斯的e乘上那个负的梯度,去找那个新的下降方向。

你算出来这个下降方向就不一定准,那你那个就是走的那个步数就会很多,你每次要解的这个方程就会很多,你解方程的次数越多,你时间就上去,因为你只对它进行一个局部的负离子的话,它的时间是很快,那你。

每次要解一个n乘n的一个稀疏矩阵的定义的解方程,它的这个次数就会它的时间就会消耗很多,所以对于一般种牛顿方法的话,就是在顶楼顶楼违背底捞y的时候,就对大家进行一个班长是一个比较好的选择。

这样的话你得用网格的条件,就是对应的拉普拉斯算子的这个场均数据会很好,你算出的下降方向就会比较准,对于年轻的成分的资金就会很准,那你就能达到一个快速的这个慢慢下降。

然后我们刚刚讲的就是我们根据我们想要的,比方说把这个拓扑等于圆盘的这个猫脸的这个模型给它变成一个圆盘,然后我们已经求出来了,我们根据群逆流,你清流算出来的话,在每个顶点的这个放缩因子你就知道了。

我们新的边长,反正根据现在边长,我们要把它参数化到圆盘上面,就是把它放置到这个平面上,他可能是在就是现在只知道边长,就不知道它的uv坐标吧,我们怎么去算,很简单,就是说我们去一个方法。

就是把它用管理优先变量,它具体怎么做呢,就是我们先去选取其中的一个三角形,把他的这个一个点放在零里,另一个点放在l0 ,零就是这个边长我们知道的是l0 ,然后我们要确定它的新的里面它是有两个,对不对。

就是因为这个新的顶点要满足到这两个点的距离分别是l2 和l1 ,因为我们知道这个三角怎么变的,它可能是上面这个点,也可能是下面这个点,当然我们按照定向,如果这个三角形网格要保持定向的话。

它是一个逆时针的顺序,那这样的话它只能在上面上面是按照这个嗯这个点到这个点,到这个点它是一个历史问题,下面的话它正好把他就不保持进行,那我们就确定了一个新的顶点,就是这个三角形顶点的位置我们就确定了。

然后对于它相邻的三角形,我们就可以接着放,因为我们知道的这个型号3。3角形的三个边长,我们知道了这两个顶点的位置,然后新的顶点也是到它的编程,就是到他的这个距离是一个半径为这个的语言。

然后到他的距离也是一个半径为这个表,求这个两个原来这个焦点是上面一个点和这边对称的一个点,然后保持三角形的定向,也可以不直接求出这个点,然后我们对这个三角网格上面。

直接去对这个固定的三角形进行一个广州有线电路,就是往往外扩散,就可以把这个所有的这个三角网格,在这个平面上的这个uv坐标给确定下来,这样的话我们就成功做到了,把这个算出来的这个编程摊平到平台上面去做呃。

上一节课不是有人问上一讲,就是有人问到了这个对于这种封闭网格我们怎么切开的问题吗,我们就可以其实不用切开,你算出来的这个编程,你直接对它进行一个广度遍历,你只要碰到没有便利过的面,你就接着往前走。

然后你肯定会碰到一个边界的,就是一个边界的情况,然后使得这边都是编辑过的,这边也是编辑过的,这两个刚好碰上,然后碰上的这个地方,它就是我们切开的那个线,你想着你,你你想一下,如果你是猫粮的话。

你从内部你沿着广度优先遍历,你最后肯定是都到边界上对吧,如果你在这边的话,你在这边去滚流便秘,你就相当于去找一个类似于拓扑圆盘,然后慢慢扩张扩张这个圆盘,机会碰上的这个线。

碰上的这个边组成的这个pass,它其实就是我们切开的这个陆地,所以这就是你对这个tories或者高规格的拓扑,你就不用去切开,你算出这个度量之后,你直接用这个便利,直接在网格上面直接算那个啊。

直接走找未走过的面管路优先的话,然后你最后算出来的这个top圆盘的这个形状,它就是把它切开之后弹到平台上面那行,最后就自然而然的形成一个参数了,大概就是平面上面的这个怎么样,我们给了这个度量。

然后给它嵌到平面上去,算他的一个素来证明一下,然后刚刚讲的那个米其林跟他还有一个类似的,就是卡拉比,他们两个都是根据这个等你去算这个题目啊,这边是卡拉比啊,你没忘改,就是可联网改,就是卡拉比亚打哪里。

卡拉比牛,它跟你骑牛一样,它也是一个能量的这个负梯度,这边就是卡拉比的卡拉比能量相对于李清流的那个李青,那样的话,它的显示就很好听,它就是我们的这个当前网格的这个曲面。

跟我就是我们当前网格的区域跟我们的目标区域部分之间的这个距离,在整个面积上面去做积分,这就是它的这个能量,它比以前有的能量更好定义一点,然后对于这个能量,我们去找它的负梯度方向去下降,然后呢就是这样。

然后我们代入conformal的话,你看就是连续情况下,就是对手选上就是共同因素,这个能量也是一个充能量,然后他关于这个梯度下降的话,它就是这样的一个形式,也就是说相比于你停留。

我们在这里面对它产生一个拉普拉斯算,然后我们这边算出来的这个更新,这个也是一样的,梯度下降法的话跟大家也去留的算法一模一样,就是我们在离散的时候,就路径每个顶点上面分配一个对数户型因子。

然后这个对数更新因子的这个图下降,这个方向就是那算一下他的拉普拉斯,然后乘上他们的曲面的差距,然后沿着这个方向上去走,那进行一个线的搜索,然后这是梯度下降方法,然后二阶方法就是有点不一样。

就是如果我们求这个能量的黑色,我们就要求这个梯度的这个这是负梯度,这个它的负号是梯度梯度关联那么大的导数,你会发现这里面你还要对这个拉普拉斯算子,它跟那个拉姆达也是相关的。

你要算这个拉普拉斯算子关于拉姆达的这个矩阵张量,它是一个三阶的矩阵张量,然后这篇文章的一个想法就是当我这个k和k1 p比较接近,就是我们直接把这个它就直接把这一项给忽略掉了,就这一项直接忽略。

我们直接用拉普拉斯的平方来近似代替他,这篇文章叫近似,有的就是我们毕竟你把他的好像是,然而如果用这个的话,你会发现他就是那个米禽,流的那个很深的那个化解方法,因为它的近似就是拉普拉斯的平方。

然后乘上一个下调方向等于它的-7度,然后你把拉普拉斯一消的话,其实就是拉普拉斯和米奇米的那个是一样的,只不过这里面运用的是它的是近,就是对于卡拉比,有的话,它是一个近似流程方法,然后也是要每次这样叠加。

然后过来干扰,只是能量和t6 这个冰冰有点不一样,然后根据卡拉比流也可以做那个平面域的产品化,也可以做个曲面积,在这里面讲一下曲面域的参数,因为我们刚刚讲的怎么去把它参数,化到平面的这个圆盘上。

然后算出来一个度量之后把它算uv坐标,就是用广度优先遍历,然后top然后给他嗯算出uv坐标平面,然后你金牛也可以做全面的,我在这里面讲一下全面的问题,因为他这个文章提出来的全面的前面怎么做,就是很简单。

你还是一样跟平面类似,我们去选择一个网格上面的一个三角形,然后他知道三条边0l0 l1 l2 ,我们把这条边现在曲面上放到他的或者随便换就行,你放到一个边长上面,那个是回归,然后他的新的这个零点。

他首先是在半径为r的球面,上因为我们对他参数化的话,他告诉请你这个实验来划分之一吧,然后他在半径为二的曲面的,然而它同时也要到这个x轴到x这个点上面的这个距离是l。

二到y点的这个距离是l也就是说它是这三个角,这三个球的这个交它也是交出来两个点,然后根据这个定向,然后保值当的反向跟这个我们要对全面的法向这一致的,然后这个球面的交你就可以把它转换成。

因为你的x和y也是在球面上,他x的二模的平方是等于二的平方,关爱达摩平方也是二的平方,你把它就变成这个,最上面进行一个拆开的话,你就可以把它变成那个z和y的位置,是等于那和耳机的魅力,这就是一个平面。

这也是一个平面,也就是说这两个平面会交出来一条直线,然后这个直线跟z到90,z在这个球面上面的这个叫做直线,问题是那曲面会交两个点,然后选择其中保持定向的名,其实就是求解的,然后给了一个三角形。

固定两个点和边长,我们就可以求出另一个点的坐标,保持定向,然后再用广度优先遍历,然后就是在去删除命名的,当然这种广东优先便秘都会有一个问题,就是它,可能会有误差的累积,就是你根据这边去算出来的这个坐标。

它有一定的误差,然后你根据这两个坐标,再根据这个边塔再去算这个坐标,它还会有一个误差啊,你这样上完之后,他这样绕一圈回来,就是对于球面上更明显,他这样绕了一圈过来,然后到达他交界的那个地方。

就是这边是从这个三角形这边算过去的,这边是从这边绕过去算是出去的,在这个交界的地方,它的误差累积会导致这边的这个三角网格会出现,这有可能就对于如果对于面数比较高,它就不可避免就出现这边的三。

角形的这个纹理啊,这都对不上,这不是对不上,因为没了这个坐标,它就对不了这种依据这种便利,然后去计算它都会出现,当然这文章它也提供一个那个应用对象。

就是每次去选择一个看上去就是选择一个去处理的三角形式的,它这个误差的积最小的一个三角形,但这样还是会导致对于网格面特别多的吧,反正也是会导致那个最后交界的地方会有那个模拟的力气不行。

那么后面如果你们去实验的话,会发现发现这个好像也不会不是很专业,就是当然那种就是我们也可以依据以,前的方法就是给了它的编程,直接去对整个uv纹理去做一个作为一个就是相当于能量优化。

直接优化全局的uv问题,然后使得他每一个跟他的那个我们想要的这个点塔是保持一致的,就最后再对它进行一个优化校正,就不会在这个边界上产生很大的性感形,当然这是就是全局的一个优化的方法,嗯。

就是我们现在来讲一下那个作业,就是上讲我我以为你们的那个第三讲的那个作业布置过的应该还没有,就是反正这两天应该会布置,就是,就这几天还会布置第三次的作用,第三次作业是陈老师那边的那个内容。

然后我这边其实已经是第四次的作业了,但是他现在我会讲一下这个算法,就是现在宣布实现,等第三讲作业时,看完了这个第四组作业,然后实践完了,那再过两三周就是第40岁,但我在这里面介绍一下这个错。

就是我们在第十讲里面讲的那个呃共性映射在那个平面域上面,它是一个共轭的一个调和调和函数,就是它的气度互相攻二的调换,他的问题就是我们怎么样去选择一个边界,它的这个边界是满足这。

个共轭的这个几率的这个条件就是你愿意给的这个边界,你去算它的这个调和函数,它可能不是共情,那你选一个我们铁定共同编辑的话,就像一个巧克函数,它的记录就是功耗,然后呢它就是一个共同意识。

它的关键点就是怎么去选择这个编辑,那就是根据我们这一讲里面的这个氧化铝方程可以去攻击它的边界,就亚马b方程,它不是描述了这个我们目标网格的这个高速曲率与策略群体,以及对和它的对数共性因子的这个关系嘛。

我们把这个方程在离散网格上面,就是对它的每,个顶点去进行一个积分,它就是可以表示成离散网格的这个拉普拉斯,然后等于它的这个cos曲率的这个哈,然后就可以,如果我们给定了我们想要的一个边界。

就是什么样的标记,是满足这个共性约束,就是它给边界上面的这个区域和它的这个拉姆达分布,但是这里面有一个问题,就是我们在这里面你算化的时候,它是用分片线性,就是三角网格上面的分片线性函数来给三个。

他这个兰姆达其实并不是真正的兰姆达,就跟你在群绿流里面去计算的时候,你每次,你这个拉普拉斯算子还在变呢,这里面如果我们在三角网格上面,直接你在画这个拉普拉斯算子,就是原始的那个拉普拉斯算。

那这样的话你这个拉姆达也不是真正的拉姆达,就会导致你用这个拉姆达直接算出来的那个编程,你按照这个编程,按照这个区域每个夹角去积分,它不不能形成一个b的边界,就如果你算出来的是正的正的那个切向呢。

就是正确的感冒的话,你这样积分一圈,他如果是个b曲线,他关于弧长参数的一般都是一个单位的切向量,你这样一圈接过来,它是这个点,减去这个点还是零嘛,但是你在每一步你就用这个理散化的时候,你去算。

就是你把它这个亚麻比方程用分量现金去弥散的,你算出来的这个这个拉姆达对应的这个边长,你会算出来那个系列向量,这个切向量它会有一个误差,然后这个误差累积就会导致你这样积分过来,它就不是一个b的边界。

那我们就要去求解一个就是去把这个问题避免掉,我们就是保证这个区域是一样的,我们要优化一个新的变化,使得这个边框下面,然后他按照这个取名,就是按照这个夹角走一圈,这个切向,量走一圈,它正好是一个b的边界。

就是解一个这样的一个建模问题,就是说我们定义它每个地方,我们因为你给了曲率边界的形状啊,和它的曲名与边界是可以进行一个旋转和平移的,他这个不感觉它的曲面,或许我们就可以让它的最后一条边。

这水平那边是x轴重合,那么他这个点的这个测定距离,它就是这边跟这个x轴的一个夹角,这个c塔就是新的一个夹角,那我们就定义它的人这时发这边用的范,然后这个夹角就是对于这条边的这个夹角,它就是k1 。

然后对于这条边的夹,角它跟水平左右的夹角其实就是k一加k2 ,应该是k一嘛,然后再往上走,它的累积,这个夹角每一次算出来的都是这个向量,这边和这个水平轴之间的这个大点,就是这般美极求和。

然后呢这样的话我们对这个边边的这个每条边的这个单位向量,我们是可以算出来,它就是这个夹角的这个口单位存在或单位向量,然后我们再约束就是让这个要求一个新的编程,然后这个新的编程乘上这个单位向量。

就是这个这个编的这个向量,这个边的向量求和一圈,它正好是封闭的,就是求和一,圈可以,然后这个新的编程我们是希望它尽可能与原始的这个编程,尽可能理智的就是我们离散化的那个增加信息量逼近。

就可以去优化一个这个问题,这个就是tj是给定的,就是一个线性约束,这是一个二次能直接解一个图形化就出来了,其实是有显示点,然后算出来新的i g就满足我们这样的一个,那么取名这个边界积分是在里面里面列出。

然后呢我们就根据这个边长和这个切线方向,我们就可以算出它的这个坐标,你比方说我们让第一个点的坐标是迷你,然后每次下一个点,的坐标就是这个名字加上一个这个边长,产上单位向量就是这个向量。

然后就是下一个点的uv,然后再下一个点就是这个球和每集过去,然后边界的这个uv就算出来了,边界的uv算出来,然后内部的uv就是通过直接解这个供货调好的这个嗯调和方程,首先解拉普拉斯。

然后就可以算出来它的部分内部的,所以这个就要找巴菲尼克斯的beng这个算法的一个流程,就是我先去给定这个我们边界曲线上的,要么是放缩因子,要不是边界曲线上的区域,就是它每一个的那个夹角,就是你这两个。

夹子,然后我们去解亚麻米方程,以下化的亚麻米方程就解一个线性方程,我们就算它的价格给您讲讲,我们就算它的变化,然后我们就优化这个连接,使得它形成一个闭曲线,这样去解的,它是一个线性的一个逼近。

它不一定是个b区啊,优化它是一个闭区间,然后把它的边界的uv坐标算出来,然后就直接算一个解一个调和函数就行啊,就获得一个那个整个曲面的这个坐标,但这个就是它这边算出来的就是一个共性映射。

它其实也是一个弥散一下的,供给就是我们在这里面它算这个优化这个边界的时候是尽可能离的嘛,他可能还是有一些角度扭曲的,因为我们也知道用分片线性去别进那个,那你去的共情他肯定是有角度扭曲的。

他不可能做到每一个地方都可以,所以它还是会有一些叫什么,然后问题就就在这一步,这一步会有一些交通,然后这就是第四次作业的算法,其实就是要解一个两个拉普拉斯矩阵,这一步是解一个方程,这一步是解一个方程。

然后这边是解一个图,优化图优化,获得一个b取值,然后就可以获得我们想要,的一个连接的要求,比方说我们想要把一个人脸的一个模型,我们想把它映射到一个正方形上,一个矩形的。

我们就可以去在人脸的边界上去选四个角点,然后大家设了四个点的这个取名也是好策略,并列取名是阿派,然后其他的点的取名是一个,其他点的这个曲面都是零,就是链接上的曲面都是你。

然后内部区域都是大量高速群里的人,然后解这个亚麻比方面解完之后,然后获得这个互补的条件,然后去求解一个边界优化,就把它变成一个封闭的一个句子,然后再去捡一个球啊,我们就把这个嗯这个人脸这个模型。

并按照这个图形记,然后这就是第四次作业的这个判断呢,那大概应该是在你们这做完第三次作为大概三周之后再布置,然后我在这讲一下啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这就是今天这一讲的内容,大家有没有什么问题吗,我今年这一讲主要讲的就是基于度量,你慢动两下来一点就能过去,然后它主要是一个内部的表示,然后介绍了在度娘上面共性映射的这个曲面和度量的这个关系。

然后根据两把比方程的话,然后后面用介绍曲率旅游的方法来解这个2万的分子啊,我看直播间有人说分片那个什么意思。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

分片原来那个地方哦,我看一下,那边主要是因为我们是介绍你要介绍完离散度量才能去讲这个,所以我就把这个分片的莫比乌斯变换放在这,它其实既跟那个前面的那个sofpx有关。

也跟那个也跟这边的这个保持nex和skt的那个,它其实是把共享音是放到一个更大的一个空间里,然后给他加一些约束,是的它可以产生一些各种隔音意义上面的那个你酸的那种共性,所以我就把它放在这里。

因为得讲的这个弥散的这个网文的等压力才能讲,对它是分别要满足两个约束吗,你如果满足这个约束,满足这个保持边长比的约束,才就等价于刚刚的那个前面这一讲讲的这个约束,边长比和约束那个对数共性因子的对。

在一定约束,在一定约束下,是等价于前面的两个算法的,如果你只加下面的这个约束,它其实跟那个sql pk的那个效果是一样的,只加下面的这个约束,它是跟前面的这个cpa保持这个交叉比是一样的。

当然你也可以两个都加,两个都加,就是它是一个软的,你只能把它制成软的一个能量,因为是硬约束的话,它就是一个曲面上的一个整体的mobil 4面环,那他可他可能就是前面两个它的一个结合吧。

他可以把他们两个统一起来,就这个意思,当然这种就是你会解的分变量就会很多,你有的时候你去优化一个映射,你当然可以把这个映射放缩到空间放缩的很大,然后给他加各种各样的约束,然后满足一定的性能。

但这样不一定是好的,就是你这样你就会解一个很多变量的这个优化问题,如果你我们只想描述一个确切的问题,只要求它有一些性质的话,那可能你直接去优化那些性质下空间的一个映射,可能效果更好,它的速度更快。

然后达到的这个解答是解的那个你精度也会更高,因为你在这里面你加约束,你解你还会有一些其他约束的误差吗,哦非线性约束的优化,它一般是用那个嗯等式的话,它这里面它是掉的那个他等式的话。

你一般可以用一些不等式,我知道是用力点发,这个等式的话,我还没看,他可能是加一些惩罚项,就是用我我的猜测啊,我我我不记得他这个不记得具体他是怎么做的,你可以把它平时变成一个能量。

用那个增广拉格朗日给它加上一个那个一他的惩罚项,使得它那个因此在一直增大,当你那个能量的那个因子一直增大的话,你这个能量软能量就使得它尽可能接近你,就变成了一个应用应用,就这个意思,当然你也可以调用。

我估计还是用针管那个老师的那些文字法的那些方法来做,就把它这个约束转化成氧能量,然后拿那个因子在优化的过程中增大,就是,啊那没有别的问题,我们今天的这个直播就到这里了,今天这一讲的内容就到这。

明天还有最后一个,明天就没有这么复杂的这种东西了,你那天就是一个主要是一个写那个优化共性映射面积扭曲的,一个小的一个那个报告吧,就是没有什么太理论的东西,没这么理论的东西。

明天可能会轻松很多好那今天的内容就到这里啊,明天还有最后一项关于共新的经济制度。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES301-曲面参数化 - P12:Lecture 12 锥奇异点参数化应用 - GAMES-Webinar - BV18T411P7hT

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

嗯大家上午好,然后今天我们是game,三零游戏曲面参数化专题,共行参数化的第12讲,然后今天我们主要讲的是共性,参数化的一个应用叫追齐一点参数化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后是我们今天要讲的主要内容,分为四部分,首先就是我要介绍一下什么是追起点,参数化,为什么要在参数化中去引入追求一点,然后接着我会讲回顾一下这十几年,追求一点相关的一些研究工作。

那第二部分就是研究工作中,一些启发式的算法,然后第三部分是研究工作,中期优化的一些算法,然后最后我们会讲一下,这个跟这一期一点算法相关的,一些其他应用,那我们来看一下什么是追起点参数。

就是如果我们考虑将流行m映射到平面率,的一个共性映射,g n等于e的二大次方减m,然后由于拉姆达描述的是,多数量在变化前后的缩放程度,就是度量会比在平面上的会大,度量会比在平面上小。

然后我们就可以用这个拉姆达来衡量,共性阴性社的这个面积扭曲,如果你拉姆达小于零的很小,就有很负的值,或者有很大的政治,那么平面上面的这个纹理贴到模型上,就会产生很严重的这个面积扭曲,在纹理贴图中。

最直接的问题就是,然后给相应的这个纹理绘制,就会增加很多的工作量,然后为了解决这个问题,也就产生了一类堆起一点参数万方法,就通过在模型表面的合理的一个位置,放置锥齐一点。

能够显著地降低共性映射的这个面积扭曲,一个最简单直接的例子,就是我们考虑一个圆锥,他除了在这个追点处高斯曲率,不是你在其他的地区曲面的其他地方,它高斯曲率都是零,然后如果直接将圆锥摊平到平面上。

我们就要把这个节点处的高速群域也变成,然后再在追点这个地方,它的那个嗯就是度娘就会缩到一起,就是有一个很很富的那个对数共性因子,然后,在这个点就会产生一个比较大的面积扭曲,但如果我们把这个圆锥。

沿着边界和锥点的这个,连线的母线给它剪开,那么剪开之后它就是一个扇形,我们就可以完全把它无扭曲的产品,到平面上,然后曲面上的锥点就是追齐一点,指的就是这样的一个个处点。

就我们不把这个曲面直接映射到平面上,就是它的边界就是平面上的边界,然后所有的内部的点都是高速,曲率为零的点,这样会产生一些比较大的面积扭曲,那我们就允许他在一些曲面上的一些点上,它的高斯曲率不为零。

就把它,聚集在一些孤立的追点上,然后除了边界和这些弱点,其他地方高斯曲率都是零,然后你选择和合适的这个节点的位置,就能够有效的降低这个面积上去,我们从一种极端的情况来看看。

这个面积里有去和追起一点的这个关系,如果我们把曲面上取率都不为零的点,当成追求一点,那么此时这个共性映射它就是恒等映射,我们直接就是把这个曲率不为零,就是的点所有顶点连成一个那个曲线。

然后把这个曲线全剪开,是的它变成一个拓扑同胚于圆盘的面,然后这样的话就可以无理取在放在平面上,对总体上这个追齐一点的这个数目,和共性映射的这个面积扭曲,中间它是一个互相是一个平衡的关系,就互相制约的。

当你使用越少的追齐一点,你的共性映射,就不可避免地产生一个比较大的面积扭曲,然而当你希望你的面积扭曲低的话,你在这个模型上,你觉得放置更多的一个热气一点,然后在实际应用中。

我们就需要在低扭区和追求一点手,之间做出取舍,因为纹理绘制肯定是需要金牛区的,文理绘制和编辑,希望金牛区,然后但是你追求一点多的话,你就第一个就是,你需要沿着这个追起点的连线剪开,把曲面剪开。

你才能摊平到平面,因为这些注点在群里不为零,你给它剪开,让它成为边界方面的焦点,它才能弹到平面上,这样就会导致你这个剪开的地方,它左右两边这个纹理它在贴过来,它就会导致它不一致。

你在文理编辑或者绘制的时候,就要注意这些地方的线,所以你希望这些线越少越好,然后另一个就是你的这个这边是那个,以这个压这个压这个为例,就是他画了一下,这个追齐一点点开的这个线,你沿着这些线。

你就能很明显地看出来这些地方呢,它的这个纹理走向它是不一致的,然后当你这个追起点越多的话,你的这个,展开的这个线也就越长,然后剪开的这个线越长的话,剪开的这个炫乐场的话。

你就能会导致一个这个参数化的这个区域,就比较狭长,然后它的边界也会绕来绕去,然后你在这上面去进行纹理,绘制和编辑的时候就会增大难度,然后第二个就是追齐一点,它除了应用在纹理贴图上。

它也可以用来建立曲面之间映射的一个,对应的一个特征点,就如果有一组追起点,它使得曲面可以产生很小的面积扭曲,印到平面上,那我们就可以视作该追齐一点的,这个所对应的过性变换,产生的这个离散度量。

和原始曲面的这个度量之间,基本上是近似一致的,然后过年变换后的这个离散度量上的,这个追齐一点,就是曲面上唯唯一的那些特高斯,曲率不为零的那些点,它就可以作为这个曲面上的一些特征点,用来建立这个形。

状之间的这个映射,如果追齐一点越少,我们去人工选择这个应对应的话,就会工作量,人工选择的这个工作量就会少,所以也希望这个背景点更少,然后第三个应用就是,当你这个追起点,取率限制为二分之派的整数倍的时候。

然后你就是参数化,就对应于一种特殊的参数,叫旋转分参数化,就你如果去追起点的这个曲率,它不是按分之派的整数倍,它就会导致这个割缝地方的这个纹理,走向是不一致的,之前的那个图,然后这边。

如果限制成二分之派的整数倍的时候,你就会发现这个棋盘,格的这个纹理,在这个割缝的地方,上下的这个走向是正好对齐的,就是走向是对齐的,那这种这类参数化学就叫旋转无缝,参数化走向。

对其它也提供了一个很好的一个模拟,那种一致的保持的那种特殊状况,然后那这些曲率为二分之派的整数倍的,追齐一点,还可以用在其他的方面的运用,比方说用在曲面上的这个向量,场交叉的方向。

厂商以及用在四边形网格的这个生成一个,这时候追齐一点的数量,就决定了场和四边形网格的这个,起一点的数量,然后你对于带分之派的整数,除非,约束的这个追起点,我们也希望它产生更少的起点。

然后我们在上一讲讲的这个共性映射下,描述高斯曲率和对数,并讲了运用群聚流的方法,来做点范域上面的一个参数化,事实上这个亚麻比方程就用可以用来建模,这个对齐一点分布问题分析一点,就是高斯曲率不为零的点。

然后我们用一些data ti表示,流行在某个点vi上面的一个事情,就是在该点它不为零,在其他地方都是你,然后在整个曲面上面的积分是你,你就可以把它这个德尔塔v,就试成这个这个的大ip区域。

领取极限的一个情况,因为这样的话,你这样选取在一个距离v曲面上,距离v的这个距离的这个excel的这个圆盘中,它的这个值是派方分之一,然后其他外面是零的话,你沿着整个曲面上面去积分。

就是这个圆盘的面积乘上它上面的值,它的这个积分就是一,然后当你这个excel趋于零,就是它这个点这个圆盘会去一个小点,然后这个点上面的这个值,会去一个无穷大的那种,然后其他地方都是零。

但是这个这个积分都是你的啊,高斯曲率在这种追起点下的分布,就可以写成这些函数的一个线性组合,然后在2008年的一个论文里面,他证明了,当高斯群玉为这种目标告诉群众,为这种追齐一点的。

这种功率点的分布的情形下,直接线,就是说我们直接把e的发拉姆达次方给省,省区就行,这个等式还是成立的,然后他现在就是一个线性的微分方程,然后08年奔驰等人就利用这个结论。

并利用三角网格上的分片线性有限元,来对这个线性微分方程进行理财,使得其变成一个稀疏线性方程组,然后这里面这个拉姆达,就是顶点上面的那个离散的那个对数,共形因子上1+1加,然后k一撇啊。

这里应该是大的k一撇,大的k一撇和k就是三角网格上面的,顶点的高度群,开始也是变化后的,k是这个变化,前面就是原始的高速群,这个拉普拉斯矩阵,但是他就是这个拉普拉斯矩阵,然后一般常用的是这个口单。

极权的拉普拉斯矩阵,用有限元离散,就变成这个线性方程组的这个形式,它是一种逼近,然后因此这个作为起点的主要问题就变成,我们在满足这样的一个线性方程条件下,那尽可能达到这个追齐一点分布的数量。

和这个面积扭曲之间的平衡,我们分为这个普通的这个追起点的参数化,以及在整数约束,就是要求目标的这个对齐点,12分之派的整数倍的这个约束,的两个方面会介绍,然后因为这个整数约束,它是一个很难去求解的。

他在求解dmp版的,所以它里面会有一些技巧,那我们先看一下这个求解,这个的启发式算法对齐一点生成问题,启发性七八个算法的一个出发点,就是基于一个经验,就是参数化里面,经验就是你光点参数化原始曲面内部。

高斯曲率的极值点啊,在参数化后具有很高的流曲,因此一个就是它的启发式的策略,就是我直接在原始曲面,高斯曲面的这个极大值和极小值,这些区域去放置对齐一点啊,这边的这个color map。

显示的就是这个网格原始的高斯群,黑色的点,就是说我放置其一点的这种位置,这是一种根据曲面去发这个这个对齐点,位置的方法及发射的第二种,就是我们可以直接就是先练这个曲面,它没有起点,这是手的话没有起点。

然后这样的话它的目标的这个k一撇,就除了这个边界上的曲率不为零,内部的曲率都是零,然后解这个线性的这个方程,得到一个那个对数共性因子的分布,然后你就会发现这些拉姆达的一些有,会有一些极小值点。

他会把这些手指的这些尖的地方引到这边,聚集在一块的地方,这个地方就是面积就会很大了点,因此就是我们可以在这个那么大,对数过性因子的这些极小值,极值或,者,其他值就是对于其他女性模型的其他。

起始点去放置一些追求一点,然后这是另一种策略,然后当我们这种,确定了这个追齐一点的装置在这个位置后,我们还需要确定追齐一点的这个曲率值,就是我们知道的位置,但还不知道这个k p的值是多少。

然后由于除了追求一点曲面上面的,其他的群里都变成了你值,就是剩下的群里都在这个给企业点上,而且这些曲面的这个高斯曲率总和,是必须要满足高斯bleeding的,就是求和是等于二派乘上,体面的莫娜式情书。

因此就可以看成k一撇中曲率为零的点,它的曲率都转移到这个起点上面去,然后我们就可以把这个群里的转移模拟,成这种在群里这这个三角网格上面去,边上面去随机行走,如果第一个点是这个飞机,就是不是追求一点。

那么这个曲率在一领域上面,我们就按这个pi j概率去随机行动,这个w i z是那个行走的这个概率,你可以是直接使用这种3d网格的,这个口袋选也行,然后他们的这个从这个点往周围去行走的。

这个概率求和就是零,一加起来是一,然后如果这个区域是起一点,那这个曲率只会走进来,不会走出去,所以我们就让这个i到j,到其他的这个地方的这个概率都是零,然后它本身就,是i都是走向它自身的。

然后利用这种随机随机行走,然后随着时间变化,它就会逐渐的把所有的这个群体,从这些阴影的,这,从这些其他地方聚集,到这些奇一点的这个地方,然后最后就求解一下那个平衡状态,达到平衡状态的这些起点处的。

这个曲面的指令,就获得了最后的这个k1 p的值是多少,然后还有一其他的那个选择策略,另一篇文章选择的这个追求一点,启发式的策略,就是它也是一个相应的另一个角度,就是我们把它曲面上曲率低的区域。

它的曲率逐渐变成,就是初始的时候,然后我们去给定一个excel小的一个阈值,我们去算这个k一撇,小于excel的这些顶点的集合是哪些,就比方说是这么一些白色的这个区域,然后我们让这些白色的区域。

直接让这些区域把它变成零,然后把剩下的这些区域都集中到这些,黄色和蓝色的这些区,域上,然后随着你这个excel再去提增加ex,然后你这个区域就会逐渐增加,然后你变成你的这些区域就会逐渐增大。

增大到之后的话,你这些分就是最后产生的那些非拧的那种,群面的区域就会逐渐收缩到一些人攻击点,当你这些所有的非零的这个取一点,它都变成孤立点的时候,我们就停止这个ex的增加,然后就这个算法就停止了。

这是和这些孤立的这种群体分离的点,它就是当成那个追起点等分布,它的值这边这个右边就是这个图,就是显示了这个随着excel增加,然后这些点逐渐的聚,集到一起,然后这个算法里面需要确定的就是。

当你这个曲率绝对值小于excel的这个区域,它这个曲率变成零的时候,剩下的顶点上面,就是剩下的那些点上面的群应该怎么更新,因为你满足曲率在这个f excel k一撇,这个上面等于零的这个向量有很多。

就是对应的这个追齐一点的,这个取值是对,对应的这个目标曲面的,这个分布的取值是不唯一的,因此我们需要选取某种意义,下面的这个最优的这个共同名称,对应的这个k p国标区域,这种最优性。

我们就可以用这个映射的这个面积,扭曲损面积扭曲来表示它就是可以,我们可以用这个对数共性因子,拉姆达的加权啊,面积按摩这个加权面积按摩等于零的话,就说明你的这个lama都是你所有的这个,这如果一一直都是。

你就是这个网格,它本身共性映射它没有面积的去,然后如果它这个值很大的话,就是那么大,i会有很大的正值以及很小的负值,它这个面积有区别会很大,然后此时我们去更新这个k一撇的话。

就是求解一个关于拉姆达的一个,线性约束的最小程序,最小化它的这个面积加权面积第二模,使得它满足这个在这些摊平的这个集合,零点上面,他的拉玛塔的拉普拉斯,是要等于原始的这个群,因为他名在顶点上面的。

他的目标的这个群是你减去目标群,目标群体就省掉,就解这个线性约束的一个嗯最小二乘问题,然后就可以解除最优的这个拉姆达,把这个拉姆达带入这个亚麻比方程里面,就可以求出这个新的那个目标的这个群,kp。

然后就这样又按照这个右边的这个算法,不对应的解答,你更新了,开一品之后,你去检查他有没有这个,就是还有没有联通的点,就是如果他所有的点都是攻击点的话,那他就终止阶段,否则你就是增加这个一次嘛。

再去算这个它的这个小于伊森的这个集合,的这个群里的这个集合顶点的集合,这个顶点的结合就会在不停的增大,直至它这个结果的收敛,就只剩下一些孤立的这期一两分钟,然后对于呃,当我们如果要约束这个追起点。

为二分之派的时候,这个文章也提供了一些一个,后面的一个策略,怎么让我们生成的最后的这个追起点分布,它为二分之派的整数倍,这边是,此时就是我们刚刚是算出来一些固定的,最起一点。

他的群体值不一定是二分之派的整数倍,然后我们要选要使得它对它进行一个取整,就是每次让它最靠近二分之派的整,数倍的点,把它变成二分之派的整数的,比方说他这个是0。48派,我们就把它变成二分之派。

那我们就选取这个最靠近程度的,顶点的这个坐标,然后为什么不能一次性把所有的都变成,二分之派的整数边呢,因为他这个高斯曲率值,它要满足求和是等于二派乘欧拉式进数嘛,你每个都去靠近对进的。

他这个求和它可能就不会等优拉式进数,所以你每次只去取整,就就选最最近的一个靠近8/2整,除非最近的一个,然后这样的话我们让这个rk一撇,就是表示追齐一点,是二分之派的这个整数倍的顶点级。

它是最近的那个顶点面积,然后tk一点,就是说我们表示了对应的格式,取名为整数倍的这个值,然后对于,剩下的这个追齐一点,我们就要更新它的新的群,使得这个一样,我们使得对应的这个对数共性因子。

加权面积模最小,然后优化出来的拉姆达,他们满足在那些非追求一点的位置,就在那些非追起点的位置,他是曲率是零,就是满足这个未知数,然后在我们选的这个取整的这个位置,它是二分之派的整数倍。

就是我们选择了t t1 p,然后求解这个最小的mama,然后更新其他的那个对齐一点值,然后这个时候,我们在剩下的那些追求一点钟,再去选取最靠近二分之pai的整数倍的点,然后再进,行,这个阶段。

只要更新这些非起点的次数的这些个迭代,就可以把所有的顶点都run到,二分之pad的帧数字,最后形成一个旋转,我们分的一个参数化,然后我们讲一下这个启发式的策略,它有个很明显的问题。

就是它是根据那个过程参数化里面的经验,就是原始曲面内部高斯曲面的极值点,往往在参数化后,又有比较高的这个面积内区域,但是这样根据这个经验去生成的,追求一点分布,它并不能保证一定是最优的。

比方说对于这个图里面给的模型,我们去选取它,这题就是高级曲面最大的这个点,放一个点去优化优化它的面积扭曲,它会产生一个比较大的,以及它在这个你直接去解那个,线性的亚麻比方程。

让它的这个所有的这个除了边界上面,内部的这个高斯曲率都是零,然后解出来一个拉姆达,然后你在这个拉姆达的极值点,去放一个对齐点,他最后再去算它的面积扭曲也是比较大的,但是你如果在这个平台的位置上放一个点。

你产生的面积扭曲,反而会比上面的这个两个都会小,下面是对于放四个点和六个点,这几个反正就是放放这些点的时候,会产生的一个公布,你在平坦的地方,有时候加点,反而会改变整个地方的这个扭曲,所以一个问题就是。

我们能不能直接从优化的角度来,计算出一个更好的这个周期一点分布,然后考虑到亚麻比方程线性化,让它提供了这个对数共情因子,和这个高斯曲率的这个约束关系,然后追起点的参数化中问题,这个地面进入手机。

就可以表示成这个对数共性因子,那么a的加权面积的我表示,那我们只需要为这个更少的这个追起点,设计一个目标的一个能拿下,这样我们就可以直接优化这种这起点能量,和这个面积扭曲能量。

然后使得他们之间达到一个更好的平衡,在这个约束下达到一个更好的平衡,由于我们希望产生一个吸,就是更少的一个对齐点,因为就是这就是对应于稀疏能力,惩罚它其实是一个阴谋,就是用这个群里的这个一模来算。

但是针对这个追起点问题,你用一模优化,它并不能产生稀疏的点,并不一定会产生稀疏的结,比方说你对于一个球面而言,它的高斯曲率它每一点处它都是大于零的,那你对它取一模,就是它本身的cos去。

他求和就是等于二派x,也就是说你对这个模型,曲面这个模型去优化它的一模,它始终都是长直,他都是李某的,这个求和都是按排乘上欧拉实体书,那你最后产生的时候追起点分布,就是所有的景点都是这样。

不可能把它聚到一些固定的追起点,因此这个基于优化的方法,就是对于这些追起点能量会用哪些,就是表示它更稀疏的这种能量形式,采用的形式,然后我们先讲一下,18年的这个区域化的算法的这个文章。

他就是把索尼买这个等人,就把这个追稀疏的,追起点的高斯群里的这个分布函数,把它看成一些迪拉克侧面的一个线性组合,这里我们就做一些粗略的介绍,但这个思想就是用到办法更新里面的,这个队伍空间。

就是函数和测度是关于积分,是互为现金对比,然后我们把曲面函数的能量像,就他在这里面就变成,变成这个测度的这个测度模,然后建模就把它变成优化,这个共形映射的面积,扭曲和这个侧镀膜的加权,满足它的。

这个线性化的这个亚麻比方程,然后求解这一个就是用一个队形,队形式给它转化一下,就转换成了一个具体的函数,空间的一个优化问题,在三角面片上用分片线性有限元,毕竟这个最终的这个求解问题,是一个图问题。

就可以用脚气下降法,a d m m这种那个方法,第二次ftt是i d m的一种变种,也可以来求解这个优化问题,它本身是一个退化,就能找到一个最优解,然而他们实验测试发现,这种测度模。

能够比一模带来一些更强的切除性,在相同的这个阿尔法的这个权重就是阿八,是,那个测度模你如果是一模对比的话,哪怕就是也是阴谋的权能,加上那个面积扭曲,总能量在相同的这个r8 ,将能够将曲率从一片去积累到。

一些少数的功利点的存储区域,这就是18年的就不能了,然后相比于108年的这个短的,这个文章的建模,我们实验室在21年的这个建模,就把它做了两个改变,首先我们就是直接用更直接的。

就是直接用临摹来当这起点的能量,我们发现这个比侧镀膜的这个吸收,惩罚性要更强,因为你在离散情况下临摹,就直接就等价于高斯曲率不为零,的这个点的个数,点的个数就细数追起点的数码,我们直接优化临摹。

就是直接优化数码,其次我们将这个追齐一点和面积扭曲的,这个加权能量给它,转变为在给定的面积扭曲下,优化总共的这个吸追起点,这个数量也就是它的名,我为什么要把这个加群,改成这个有界的这种约束。

反法改成这个有界的这个表达,因为这么做的原因有两个,第一个原因就是扭曲,在参数化应用里面是更强调控制的量,然后通过我们把这个把它这个加权的,这种形式,把它变成这种有界的形式,我们就更容。

易调节这个白塔来控制我们想要达到的,这种扭曲的结,然后另一种就是我们可以在更换这种面积,扭曲的这个表达形式,因为你除了用对数共性因子的这个arm,来表示,如果我们要控制这个共性。

映射在这个曲面上的这个最大的面积扭曲,它其实就有点,相当于这个对数波形因子的无穷,但这里面我们不能直接用无穷,我们需要用一个p p趋向于无穷,就是p比较高来逼近,这个原因。

是因为在追袭一点这种丰富的情况下,这种连续上这个对数共形因子的这个分布,它其实在追起点处,的取值是趋于无穷的,你直接取无穷模,他这个能量无穷魔合的这个能量,它就是无穷,你去优化就没法优化。

然后你如果用pm,它是nn的这个乘的趋向于无穷的,这个量级是这个nn的这个次方的量级,那你对它求p某p大于一的话,你对任意的p,它这个能量都是是一个正正实数,它是一个有限制。

所以我们用这个pm来逼近这个无穷,然后你如果用这种加权来形式,你去优化这个p模,它就不太好优化,但如果你把这个p m这个能量,把它表示成一个有界约束,我们在这里面就可以用一个,近似投影的方法。

每次去去很好的,就可以把它当成这个有界元素,就很有很好的迭代去求,就简化这个优化的这个难度,所以我们把这个放到这个界面,是第二个,然后针对我们这个建立的这个临摹的,这个优化模型。

我们测试了现有的这个对临摹逼近的,一些常见的方法,对年末逼近的常见方,就是我们之前也说了,l e b g它不能产生一个固定的点设计,它会产生一些横向的,很大的一种区域的分布。

然后第二个就是用smooth导引,就是光滑的模拟函数,它其实是一种by的那个分布,通过调节一个参数,调节这个分布的这个开口,当然这个开口越小的时候,他就可以接近一个这种事件函数,就是在复位点上。

都是已经在到你那种地方体,现在变成你用这个连续函数来逼近这个模,然后它产生一个比较稀疏的一个追求一点,但是我们发现这样的稀疏追求一点,它还不是嗯他他还可以改进,就是我们可以用一些叫重新加群的。

这个l e d g来进行求解,就是它跟原先的l e d g不一样,就是我们对它的每个分量,乘上了一个新的权重,通过调节这个权重的分布,我们可以使得那些其他的一些对起点,使得它就是其他一些很多的那个。

曲面值的点,都变成你只剩下少部分的这,个堆起点上面取名值不为,那我们来看一下重新加选的这个l e,毕竟他的也带着这个框架,它其实就是说我们把这个黏膜,把它用于系列的加权,然后一模来逼近。

然后每一个一模子问题,它是这样的一个迭代形式,然后它的这个加权的这个权重,是跟他上一步的这个子问题求出来的,这个最优值是由他决定的,我们用上一步迭代里面求出来的是最优的,这个k p m。

然后根据这个加上一个ex m的,这个无穷小量,就是它这是一个小的小量,分之5000的就是小量,然后分之一就是你的这个w i m加一,是跟这个k,上一次迭代的这个km乘以一个负相关关系。

这样的话你就可以这样设计的这个权重,意图,就是增大对这个高斯曲面,靠近你的这个分量的乘法,使得这些分量最终是不断的区域,然后就变成,然后剩下的这个群局部为零的分量,就他就我们就不管它。

然后它的这个权重就会比较大,然后它就会慢慢的形成一个个孤立的点,也就是追齐一点,我们初始的这个分布,就是让他的所有的这个w全部都是一,就是我们初始对所有的这种分量,乘法都是一样的。

也就是初始它就是一个阴谋优化,然,后随着这个m的迭代的增加,然后时代慢慢的去惩罚更多的那个靠近,你,取决于靠近于零的那些零件,使得它们最终变成零,然后就会收敛到一个个工具,判断生产的条件。

就是我们上一次上一次迭代的,这个算出来的最优点,和这一次迭代的最优点的这个误差,在一个比较小的范围内,我这里面写的是等号,其实是判断一下误差,他们的误差的模型一个一层。

然后它就判断是跟你一他随着这个迭代,它是一个逐渐减少的趋势,意思就是他是跟他乘一个负相关,逐渐减少是能增加他的权,重然后这个问题它对每一个子问题的话,它也是一个加权余某的问题。

然后它也是一个to you化,我们也可以用一个交替交替下降,就来点m内方法来求解这个每一个子问题,然后实验中我们就发现,我们的算法可以很好的这个控制这个面积,扭曲的这个界,就我们对我们同样的这个模型。

手的模型去设置它不同的键,然后追求点数目就会随着这个界的嗯,减小而增加,但是我们最后产生的这个起点,也是很稀疏的,一个对齐一点,虽然这个算法我们是对李某的逼近,然后李某是一个np的问题没有。

就是目前还是没有办法,有效地找到一个全局最优质的,但我们那个结果还是产生了一个很好的,一个技术性,自己一点的数目也是比较少,然后我们刚刚说的,我们可以用这个p抹去p增加,去替代这个无穷嘛。

去优化那个最大的这个面积扭曲,我们也做了一个实验,就是对于相同的这个扭曲界的话,我们如果是把某p某p从二增加到五,我们会发现它的这个最大的这个面积扭曲,是被逐渐减小的,对于二的话,这个点,这个两只耳朵。

这个地方的这个面积扭曲是很大的,当你达到一个当你p逐渐增加,增大五的时候,这种面积扭矩很大的那种区域,就会就会消失,它就会更倾向于一个一致的一个扭曲,然后右边的这个呃图,这个分布图也显示了。

当你的这个模增加的时候,你把它的极值,极大值和极小值的极值分布,会压缩到一个比较小和区域分区间里,能够有效的这个增加p,能够有效地整个惩罚这个面积扭曲的,这个机制点,然后刚刚也说了。

这个柠檬优化它是一个非凸优化问题,我们的算法就只能用一系列的这个出问题,去逼近球,就你系列加成的i l e问题去逼近球体,不能百分之百成,获得一个最优的这个联系点分,因此我们就把我们的这个优化。

跟18年的那个文章的那个测度模式优化,在这个整个找了一个非常大的一个,数据集上面去跑,测试自己的一个对,就可以看出,我们这个算法在69%的模型上,都能产生比他们的结果产生很稀,更稀疏的一些点。

他们也会产生在相同的扭曲下,我们因为他们是一个加权的形式,他们的结果会算出来一个面积扭曲,而我们的这个结果它的面积扭曲是一个g,我们直接把他们的这个面积扭曲,当成我们的算法输入的,任何g给它输入进去。

然后产生一个新的对齐点,我们的数目会在69%,70%的左右的模型上都会比他们少,而且还少的比较多,然后会在剩下百分之将近30的总额上面,跟他的追求一点数目是一样的,只有1%的不到1%的模型上面。

我们会比他多,但其实多的也不多,就基本上只会比他们多一个点或者两个点,就是在面积扭曲移植的情况,可能会多一个点或能量原因,也是刚刚的那个临摹,我们去在优化的时候,它并不一定能保证。

它一定是就是最优的那个级别,他是一个近似,它可能会比最优也会多一两个点,是有可能的,所以占1%不到1%的模型上,还是有可能会出现一些啊,就是增加了一点最起点的情况,然后如果我们考虑这种待整数约束的。

这个追求一点生成问题,我们实验室就在22年的这个文章,就在21年这个建模的基础上,给它加了一个整数因数,就是优化这个目标取名的临摹,使得它面积扭曲小于一个给定的键,然后咱们满足这个线性的这个亚马给方程。

且它的这个目标的高斯取名,要是二分之派的整数倍,增加了一个这个整数一数,但这样的话,这个求解的这个问题就变成一个混合整数,1万问题,混合整数优化问题,它相比于单纯的这个,临摹优化它就更加难求解。

整数问题,也是一个非常难n就是np难的问题,然后我们怎么去求解这个问题,我们就提出,将这个整数约束转成这个二进制约束,就是零一的这个约束,我们可以假设这种生成的锥洗脸,他在除以二分之派。

他是落在这个-2的tos方,动二的tx方减一的这个区间里,这个是合理的,因为对于所有的基本的输入模型而言,它每个点的高斯曲率不可能就有无,就无限大,就是我们选择的一个合适的图。

怎么都把它在我们想要的这个高斯取名的,就是,那这样的话我们就通过引入一个辅助变量,x它是一个零一变量,使得它乘上一个c一个向量常量,这个产量从第一个分量的第n个分量,一套加一个分量,它分别是r的影子。

曼德阿德托斯曼的这个密啊,c乘上它减去一个r的操作方,乘以e是这个对应维度的一个嗯,长指向量就是都是单位都是一,就是每一个分量其实都是一,然后这个乘上一个二分之派,他在高四取值指的是二分之派的整数倍。

就得属于这个里面,这个x就是你就决定了这个tk一平的这,个取值是在哪,然后我们优化这个问题,就把它变成了优化了一个零一的一个分布,就是我们要求优化一个x很难不难,是的,x是属于你,要不是你要不是d。

然后他们之间的这个优化,这个c t乘上x减去r的cos,方乘e的这个名模,它表示这个群体的名模,然后以及他们的一个亚巴,里含的线性化的一些就优化这个优化问题,然后我们再将这个影一的这个约束。

把它转成一个嗯区间约束,一个正方形区间约束和一个球面的约束,这个交的形式,这里我们给了一个例子,比方说是当to是一的情况下,它就是一个零一的,就是说我在这个空间中有,它是一个二维的一个象征。

它这个每个向量值分别可能取名,也有可能取值,所以它就是一个交点,这个正方形区间的这个四个角点,要不是零零,不是100,要不是一不是零零,它就可以表示这个正方形区间,这个约束零一的这个正方形区间约束。

和这个以这个正方形中心,以它的这个对角线为直径的这个区,这个圆周交这个交易,这个圆周的交集,他交的这种情况,就是这个色调对一套等于更套大于一,就是更高位的这个情况,这个情况也是成立的。

只不过这里不太好画,就只画了这个二维的信息,它就可以表示为更高维的一个空间,中的一个立方体,0~1这个区间的一个,就这个区间的一个b区间的这个体上面,然后和他这个从这个你大一这个区间的,这个1/2。

所有的1/2的这个充电为圆心,然后这个直径这就体,的这个嗯对角线为直径,然后去设立一个曲面,去求教,就教出来这些角,这些焦点就是这些年约数量,然后我们就通过这样的变化,就把这个它变成了引力约束。

就变成一个集合的两个集合的一个交,集的约束,我们就引入新的辅助变量y和z,然后上面是x等于y,x等于一定,就是他们之间的一个这个辅助变量之间的,一个线性的,下一个就是y是属于零一区间的。

这个b区间的一个约数,z就是属于零一的这个球面的一个因数,然后这个约束问题就变成了一个非凸的,一个集合的一个优化问题,这样我们就可以用idm这种交替简单算法,来求解这个非to的这个优,化问题也可以用。

第二次影响都一样,当然值得注意的是,对于这种带整数约束的这种建模,有两个它是可以冲突的这个因素,第一个约束是它的这个曲率,是二分之派的这个整数倍,它这个约束它可能跟第二个约束面积扭曲。

小于给定的这个阈值,它之间是互相冲突的,就是说我们要从这两,就是你的这个曲率和你的这个扭曲之间,同时还得满足这个线性的这个亚麻比方程,如果我们把这个阈值把它设得非常小,那你这边的插的拉普拉斯。

拉姆达对数共性因子,它的拉普拉斯的这个值就会非常小,这个值非常小,你就不可能把招人前模型上面的曲面给他,找到,在这个小的这个区间的这个值里面,去找到二分之派的整数倍的个数。

这边这个图下面这个图是也给了这个例子,就是说我们当时把这个约束条件,把它设为0。2,然后我们算出来的面积扭曲,就是零点算出来的,满足二分之派整数倍的,这个追忆起点的个数是15个。

然后当我们桥小零点小小白差的时候,我们算出来的这个面积有区,它会变成小于这个白塔的面积有区域,然后这个它的顶点个数是88个,让我们把这个白塔更小,他如果想到0。001,这个时候,其实我们是找不到一个。

那个等于二分之派扭曲的,这个对齐一点的,那二分之派整数倍的这个追齐一点,然后我们只能还是只能找到他原先的那个,上一个在0。05的这个这些年个数,然后男的扭曲还是这么的。

因此就是当我们这个你去给的太低的时候,我们就是把这个扭曲约束给它松弛掉,我们就选择一个保持这个区域的这个,整数约束的,因为在做那个旋转,无缝参数化和厂的生成问题中,这个整数的这个约束明显是更重要的。

我们就松弛掉,这个扭曲约束,然后在所有的整数据里面去选择,面积扭曲最小的那个输出,他可能会比这个界会大,但是他一定满足这个转数,也去当成这个最后的输出,然后拿我们的这个算法的这个结果。

和120的这种12年的那个取整,就是你把它慢慢地聚到一些功利点,然后最后对功利点进行一个取整,的一个算法,然后去在数据上面去做了一个对比,然后我们的模型结果是,在80%的模型上都要就是他们。

然后在17%左右的模型上面,是跟他们的结果差不多,因为整数混合整数优化嘛,我们现在把它变成一个非凸的,一个优化问题,它还是一个非凸的,就是我们只能找到一个局部最优解,找不到一个全局最优解。

然后我们会在百,分之22。7的模型上,是弱于12年的那个上班的结果,第2。7的模型后面就是下一张p p t,会说明它到底是一个什么情况,我这边就给了一些他们数据集里面比较密,集,在大多数的情况下。

我们的结果都是能够跟他有一个比,他们就是表现的好或者相当的,在2。7%的情况下,为什么我们的结果会比他们多了,就是对于一些cad的模型,他们那种取整的方法,就是直接把它的面积扭曲。

就是从高斯曲率很小的区域,直接把它变成零,它其实就是把这一块平面,它本身就是,杀就很容易就去找到这些啊,cad模型的这个角点,它就是我们实际的那种近似最优的那些词,但我们优化的话。

我们是从一个嗯所to非凸约束,这种非凸集和约束的这种非凸优化开始,我们去直接去找那些可能的解,他可能会陷入一些局部极值,就不一定就是全是他的角,可能会在其他地方会多一些点,多几个点会产生一些。

这个对于大部分都是对于cad的情况,会比你cad模型的情况,会比那个12年的这种,直接把这种平坦的地方,变成你们这种区域的,这个结果会要多一多几个点,就这,种情况,然后最后我们讲一下,跟对其1。

38的算法相关的,一些其他应用,没结婚,然后首先对于空格为零的曲面,我们限制了这个对齐一点,然后等对pd的配备,能够得到一个旋转五分参数化,它其实这个旋转五分参数化,因为我们在这个各缝两边。

它的对数公式,因此它是已知的,所以它的深度程度也是相当的,这个时候这个旋转泵参数化,它有个特殊命中,除了就是说在这个上面它不仅走向一致,它这个格子的这种放缩的这个大小,它也是一致的。

它之间只差了一个错位平移,这个我们可以通过在这个,参数平面上对这个uv做一个平移,使得它这边的这个这个线,跟这边的这个线是对齐的,那在这个时候这样的话,它左边的这个贴的纹理。

它就是严格的这个走向都是对齐的,只要对他uv纹理作为一个平,我这边换,我没有对它做评价,那就是它虽然格子的大小是一致的,然后走向也是一致的,但其实他差了一个平移相,那这就是上面的这个文件。

跟下面的文件差了一个左右的一个拼音响,其实是可以通过平移使得它严格对齐的,但是对于高规格的曲面,我们的这个共性映射是没办法做,到一个全局就是全局部分的只能做到选项,因为高科技的曲面,我们之前也说过。

我们需要这样曲面,沿着一些环境圈和隧道群给大家剪开,才能延伸到屏幕,此时共性映射的这个自由度,就是每个顶点上面设置一个最初共性因子,它不能再保证在这个环境圈和隧道圈两边,只能保证它的走向一致。

这边就给了一个很好的例子,映射的这个拉姆达对应的这个量级,它不是一个量级,上面会更密一点,下面会更稀,疏一点,这样你就是不可能通过一个平移,使得它的这个纹理完全对齐,这样产生的参数化结果。

你需要进行一个后处理,就是它不一定就是保缴了,你需要对它允许一定的后处理,它每个地方它有一些扭曲,然后使得它上面的这个,跟下面的割缝处是对齐,这就需要一个会出隐藏的,使得它变成一个全局无缝的一个情况。

但一种可能性就是,我们能不能就是直接对我们的这个优化,就对这个共形映射进行一个松弛,我们可以给它改成,一个允许一定的角度扭曲的,这种利益共性映射,就是他每个角度扭曲在一定范围内。

给它角度去进去加一个限制,然后进而在这个优化里面,直接继续优化这个追起点的,这个等于二分之派的这个追起点的个数量,和这个扭曲,这是为6g,面积扭曲和角度扭曲,然后去优化。

直接生成一个全局无缝的这个参数化,而不需要这个后续处理工程,因为后续处理过程这个算法,它是一个根据这个case去做处理的算法,它没办法嵌入到这个优化里面,就是我们没办法通。

过控制这个优化这个最起点的位置,能够控制最后的这个新的,你们这个后处理我们没法预料,所以就是能不能通过直接调整这个共性映,射给它松弛一下,直接去优化这个整个追起点的分布,使得最后的这个扭曲最小。

和他的数目达到一个平衡,也不是分享,就是跟他的数目达到运行,这是一个就是一个可能性,但是目前还没有什么人来做,而且这个问题也比较难,因为你需要把这个过去热搜吃掉,它的那个亚麻比方程,它就不满足。

还需要有一个亚马背方程,最大解密要有一个修改,反,正这个问题目前还没有一个解决方法,然后第二个相关的应用就是这分片共性,参数化,就是我们在追求一点参数化里面,他把一个群体对聚集到少数的追齐一点。

但除了追求一点外,我们对它做参数化,我们需要把这个追起一点,沿着这个歌缝就是眼眼线去剪开,你把它剪开之后,参数化之后,播放处它还是有这个纹理不对齐的情况,除非你是英雄,这个人最起点是二分之派的整数倍。

那才能可能是走向一致,然后对于qq为零的话,那我们就不要求这个他仅在这些追求演出,曲名不文明,我们也可以让他的在这些歌放上面,群众不明,我们只要沿着这些个混剪开之后,它在这个z部它取名是零。

那边这些剪开的地方边界上去,你都可以不用,那这个时候我们去优化的这个模型,就变成了分片的这个共性参数了,就我们优化一个这个共享,它是化的面积扭曲,以及它每个片上面的这个边界的这个长度,的一个加权平衡。

然后使得它对于每个现在这个内部,它的高速目标加高斯曲率都是零,它的边界上面的高斯曲率,其实是可以随时取的,所以我们这个约束,只对于每一片的这个内部点,然后它的这个满足这个线性的这个。

研发力方程的这个月束,然后关于这个方面就有一个研究工作,它使用的就是类似于拓扑优化里面,never said水平极端的方法来演变这个分曲线,就是我们在这个局面上可以设置一个啊啊,函数值的一个厂。

然后它大于零的区域和小于零的区域,会形成一个线曲线,水平线就是这个就是lec的线,然后这个线它就表示,我们这个分片参数化的这个那个缝,这个剪开的这个歌缝的这个轨,迹,然后我们就要优化这个线的这个边长。

然后同时也要优化这个共同参数化的,这个面积的区域,然后这里面就是根据那个,你对这个轨迹进行演变的话,你就可以设成对于这个在曲面上,是这个分布的这个函数值进行改变,函数值改变。

就会导致它等于零的这个水平集,会发生变化,然后这个优化,它是一个高度飞出的一个优化,它非常容易陷入局部,就这样子这篇文章的重,因此关于这种分片共性的这种才是坏的,没有更高效的一个求解优化模型。

就是说不用这种never say表示有没有一,些其他表示,使得它优化,不会很容易地陷入一个局部极值,然后能够达到一个比较理想的一个结果,这是一个也是一个值得研究的一个公司。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后这一部分今天要讲的这一部分,就是对于共享参数化里面去优化这个面积,扭曲,引用堆起一点的这个专辑,他在最近十几年的这个工作里面的,这些一个工作的一个回顾吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总结,啊后面连讲应该就是更更直接的一些。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其他参数化的其他应用,我这里面把这个共性参数化的,这个特别针对这个面积扭曲的这个问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

内容概要:本文由《未来产业新赛道研究报告》整理而成,涵盖了未来产业在全球范围内的发展态势和竞争形势。报告指出,引领型国家通过全方位体制机制创新,在先进制造、人工智能、量子科技、新一代通信等领域建立了全面领先优势。文中引用了麦肯锡和GVR的数据,预测了人工智能和人形机器人等未来产业的巨大经济潜力。报告还详细介绍了国外和国内对未来产业赛道的重点布局,如量子科技、人工智能、先进网络和通信技术、氢能与储能、生物技术等。此外,报告列举了中国重点省市如北京、上海等的具体发展方向,以及知名研究机构对未来产业热点的分析。最后,报告提出了构建我国未来产业重点赛道目录的建议,包括通用人工智能、高级别自动驾驶、商业航天、人形机器人、新型储能、低空经济、清洁氢、算力芯片、细胞与基因治疗和元宇宙等十大重点赛道。 适用人群:对科技趋势和未来产业发展感兴趣的政策制定者、投资者、企业家和研究人员。 使用场景及目标:①帮助政策制定者了解全球未来产业发展动态,为政策制定提供参考;②为企业提供未来产业布局的方向和重点领域;③为投资者提供投资决策依据,识别未来的投资机会;④为研究人员提供未来科技发展趋势的全景图。 其他说明:报告强调了未来产业在全球经济中的重要性,指出了中国在未来产业布局中的战略定位和发展路径。同时,报告呼吁加强国家顶层设计和行业系统谋划,探索建立未来产业技术预见机制,深化央地联动,推动未来产业高质量发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值