GAMES 图形学系列笔记(四十二)

GAMES203: 三维重建和理解 - P4:Lecture 4 Structure From Motion - GAMES-Webinar - BV1pw411d7aS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

hello,大家好啊,那个我们开始上课啊,那个啊今天我们讲那个motion啊,这是什么,是strong one motion呢,就是说呃就说呃前两节课我们讲了这个从这个rgb d。

就是在这个呃深度信息的这个cam的重建对吧,这节课呢我们和下节课呢我们讲从直接从image就是你开始,比如说啊这节课后面会讲,就说你从那个网上到下载了一些图片对吧。

然后我们想从这些图片里面重建一个sm这个sweet magi对吧,我们想做这个事情对吧,嗯今天我们当然这个东西呢,它一般现在情况下就是说一般分为两个步骤对吧,第一个步骤就是说我们先估计呢。

就是说这个caa的或者是image怎么pose,比如说你两个image之间,我能不能知道这个image从哪拍的对吧,你看这个图实际上就是说啊中间是有一个物体对吧。

然后之前我们要知道这个image大概在哪些地方对吧,同时呢我们也会得到一个比较writing,比较sport,就是说这个point cos会用的对吧。

就是说帮助我们去formula这个这个image caa costation这个problem啊啊,那这个问题怎么解决呢,我们今天会讲一点他的这个奥特曼pls好吧,就是从头到尾讲一下啊。

首先呢我们要了解就是说这个image是什么怎么生成的对吧,或者就是说这个image它跟这个就是这个image里面的这个物体的三维结构,它是什么关系,哎这一部分东西呢就是如果你学过计算机视觉。

这个这个或者就学过这种呃,这个声音好小,听不到现在呢可以了吗,啊就是这方面的东西啊,就是啊,这个怎么会听不到呢,这个应该是可以听到啊,就是我们要了解这个几何对吧,那个那第一呢就是说就是说首先要建模对吧。

就是我们这个image是怎么通过这个three d的这个这个这个three dimon ject对吧,就是三维的物体上,然后变成image哎这个东西很重要对吧,那现在一般情况下呢,我们现在做的什么。

一般情况演讲时间到婚后看嘛对吧,就是它是一种就是一种多面,才是image方面的inform声音,加个降级视觉啊,这个人很简单对吧,它就是一个相似变换对吧,简单的projective tearing对吧。

就是说呃你有一个你有一个three dimensional的这个三维的物体对吧,然后呢你有一个那个春后对吧,实际上就是当物体的每个点都投影到什么,你个play是吧。

三个物体中每个点都对应到image print上面的,没一个pixel对吧,这种对应关系对吧,对吧,啊他就是说实际上这就是一个创意,诶,这个投影呢很很显然就是说你把深度信信息信息给丢掉了对吧。

把深度信息丢掉了对吧啊ok嗯然后呢怎么去model这个东西呢,啊就是说实际上就是说呃这个地方就有一点及格嘛对吧,这个东西大学中学应该学过啊,就是说很简单的这种呃相似变换对吧啊,很简单的相似变换。

但是呢你如果引入dog image的话,我们会发现它有一些建议代做的东西在里面有些很影响的东西啊,就是说你比如说你有一个三维的这个corona project的原因,mage codn对吧。

然后这个image quality跟三这个三维的它是ation sx等于x对吧,乘以这个大x跟z对z就是那个def是吧,就是这个y x对,那这个rh的x等于f等于x1 y1 y z y等于f。

就是y z y y z是吧,f呢实际上就是一个fpx对吧,所以他就是一个for和n嗯,哎这个东西是可以控制的对吧,因为你cos了f这样就控制了这个什么,控制了这个x和y是一直codx d对吧。

就是说你通过控制f实际上就是控制了,比如说你这个image框住的这个obj大小,对不对,这个f是知道的对吧,f我们一般情况叫做intring啊。

我们会后面会讲dx和y z我们都不知道他们的ratio对吧,我们是知道的吧,就是如果recover z就是这个depth对吧,你看这个图,那实际上大x大y你就知道了对吧。

所以为为什么那个这个三维视觉里面好像很重要的一个问题,就是depth estimation对吧,因为你知道dex你就知道x y对吧,因为平时给了你另外cod啊,坐标啊好然后呢实际上很确定的一点呢。

就实际上就是说从一个角度来讲,实际上比如说一个gmage point,实际上对应的三维空间中呢,它实际上是一条线对吧,就是说你把这个image point跟这个原点相连对吧,跟那个看。

然后你就得到一条线是吧,这个线上面所有的点对吧,都有可能是什么,都有可能是那个object对吧,但是你不知道对不对,那这个时候呢因为这个原因呢。

大家就明确就是一种叫做how much genus cod,嗯,就是你对于另外一个x y对吧,你把一个image变成一个three dimension,是一个codm。

就number乘以x number one等number是吧,对一对一的这两个东西都都被吓死,就how much genifyou coding vior,point line。

line is there is a projection,对吧,这是一个很interesting pover,哎这些东西都很很很有意思啊,稍微抽象一点对吧。

实际上这个地方呢你可以说我们我们什么也没干对吧,我们只能确定是一个notation而已对吧,但是呢这四个location呢就是帮助你将来做计算的时候。

因为你就是他说不是就是就变成了一种intermediate这种东西,对帮助你去思考,也帮助你去推导,哎帮助你去方便这个lv的啊,它主要是这个这个东西,point at infinity对吧。

就就就比如说这个号码今年是高地的,跟这个传统的方面有什么不一样呢,那就是说你这个传统的方面,你是没法隐透着这个point at infinity对吧。

那个这个how much genius cospace呢,它比较就是说比如说你最后一个东西难不难,你看这里有个难的对吧,如果这个男的是零对吧,就x y0 ,实际上它就表示这个point and fin。

对吧,这个东西为什么重要呢,就比如说呃什么point as the infinity怎么来的,那必胜尼尔两个平行线对吧,你两个平行线,你如果两个线不平行,它肯定相交在一个人,就是一个有限的点对吧。

你两个两个线和平行对吧,那相交你没法表示了对吧,你这个他想要,那那如果用home gi就很好表示啊,就是对吧,这个x和y其实就是那个两个平行线的那个那个那个叫什么,这个有多多写对吧,这个的方向对吧。

诶他们就相交了这个沿这个方向的那个point finity是吧,这就比较好表示了是吧,诶这个这个因为为什么这个重要的,就是因为image里面这个nb的很很很重要对吧,不为了。

然后我们看看这就是考虑两条line对吧,l want a对吧,l q等于a two b c t对吧,这是两个line给我买这个东西吧,就是两个line对吧,那,就是这a1 b c是什么。

就a1 x加b1 y加上c等于零对吧,这实际上是那个true dimension的一个一个line对吧,就是比如说x加y加1=0对吧,或者x减x减y等于零对吧,诶那那那就表示成那个三个框架。

你所以就是说你把任何一个a c那个a2 b2 c2 乘以任何一个卡组,他表示第一个nn对吧,所以这就是对吧,他只是表示这个n,然后你这个如果要跟做inteaction,你怎么做呢,也很简单。

就是你把这两个veer吧做一个差距对吧,就是就是cost product啊,英英文名字叫啊,这样你就得到了另外一个三维的坐标是吧,那那这个三维坐标呢它刻画的就是那个相交的那个点的话,就是考研人对吧。

它包含了这个,那就包含point一下infinity对吧,就比如说你如果l y和l q如果两个东西它是平行的,哎你相交出来这个框架的肯定是零对吧对吧。

那你比如说我们举个举举个例子叫intersect your parawes吧,就是有,对吧就是说你l l一对a b c对吧,one price is就是a b对吧,因为他的这个方向是一样的,对对对。

c c和c8 不一样,就表示内容l拉不一样对吧,然后他intraction就是你把两个合在一起,对不对,就b c c b对吧,a c减a主要是最后两个东西,因为是a乘以b减去a乘以b它就是零嘛,对不对。

然后你把它变变化一下,就是b-0对吧,这就是他的那个什么他的intersection for the finish,哎就是这实际上是给大家一种重新思考问题的方式。

就是说然后呢因为你这个是com jp corner的这个point line,它有它有一个非常非常就是我们上次看到这个produo对吧。

这个marching cube和这个dual contro倒是有一个gr的比赛里面是这个地方,这个这个这个这个线段跟这个点啊,它也有一个九比赛对,就是说你要换他们的吧对吧。

两个点他们他们的cos code上就是那个下次来个m对吧,同时呢你给定两个点对吧,infinity对吧,然后他的这个nppoin根本把这个东西就是,就变成冰啊啊ok就是说我们说了两个line啊。

这里这里要记住的一点,就是说两个ln相,这样实际上它就是cosport就变成一个点,然后同时两个点是你这个ln cc是两个点,实际上就变成那个line对吧,他是这样一种关系。

ok它还有一种model就for pp in austring,实际上就是说这个先生和,就是这种东西呢我们就是我们就这样子,我们马上会看到,就是说实际上就是说它通过一种好吗。

今天内他把每一个pixel对吧,他就跟这个三维空间做了一个对应啊,做了一个对应好,然后呢这是一个很重要的thri,呃,我大概解释一下,实际上就是说实际上这个词也没干别的东西。

那就是formerly define对吧,就是说这个三维坐标跟这个image coda,它的这个这个relation,它的这个这个这个关系啊,就是说你单位有个坐标对吧,呃一个物体对不对。

然后呢你这个看比如说这个物体呢它有一个no或者cornb等着一栋房,一个object,还有还有那个up向上和那个前面这个方向对吧,还有一个框system。

然后你这个caa呢肯定是在有一个local的方面,基本就比如说我我我我换了一个往哪个方向看它的upright,这个caa它有一个方向对吧,那这个时候那个camera的方向呢,它就被这个r和t code。

对不对,就是你把那个物体框架下面那个和那个那个坐标系下面的框架,那个你用这个cover cos transform in码了。

就变成那个什么common这个corn是c c选下面这个three dimensional coron对吧,哎你就转过来了对吧,你再看看可能这个物体是斜的对吧,哎可能物体是斜的啊,好问题是闲着的。

然后你你就做projection production,说白了实际上就是呃对吧,我把自呃我把这个最后一个quality给扔掉对吧,然后我把这个地方呢我做一个就是xyz,我做一个什么。

实际就是我我把xyz它变成什么,变成这个它对应的那个pixel,对任何一个点对应那个pixel的homechor对吧,这个地方过了以后呢,你注意一下这个地方,你过了以后呢。

这就是说再比如说是以米计算的对吧,它的它的长度是什么东西呢,这是一个什么,这是一个就是也不说1米了,就是说这是一个跟这个english,这就比如说你的socnt无关的东西对吧。

这一块呢叫做我们一般叫做把它叫做image quality啊,就是在这个呃派two过了以后,然后ui框架呢你这个caa有focus,他有他有他有他有这个focal那样等等等等等各种东西,对不对。

这个时候呢我们就可以把可以对它做一个什么呢,可以对它做一个哈哈哈,我们可以来对对它做一个transformation对吧,就是a放的那种transformation或者f这些。

比如说它有时候它有些image,它不是完全对吧,比如说完全这个就是垂直的是吧,它会有一些,比如说ima是大小o x o y对吧,就是那个center在什么地方对吧。

以及那个for和nt决定这个英语有多大啊,这些东西称之为这种intrinsic frameters,然后呢这个地方它就是变了,这个以后呢就变成品色框下面的那个什么home jp。

就是这个equation是非常非常重要的啊,它它包含了很多很多东西,就是说它包含首先它有这个有coma的pose,有caa里面这些东西,对不对啊,这些东西呢一般情况下我们要去s m的,然后他就可以固定。

还有一个canonical projecti,alright,ok好,这就是我们简单的做了一些介绍啊,那么下面我们要讲的就是说这个qq genome对不对,就是说啊现在我们我们前面学了一点理论。

学了一点点理论,学了一个notation,那现在的问题是哪呢,就是说我假设有两个image对吧,然后呢我知道一些对应点,比如说这个点p和这个点它是对应的对吧,两个地方对应的对不对,诶。

然后呢我要mm这个camera depressions,就比如说这个image跟这个image对吧,他的这个relative translation of campos。

以及以及这些点这两个点的坐标对吧,当然这个问题能不能解,这是一个问题对吧,好那我们现在呢先假设什么呢,先假设就是说the training camera prima,他是知道的啊。

一般我们后面会讲怎么去估计他对吧,实际上也就是说如果我们知道这个k,实际上我们可以把x方呢用k的in worse去代替对吧,这个时候就是实际上就是非常简单的,我们就会得到一个这样的东西,比如说在低的。

因为啊这个地方稍微有点绕啊,就是说这个x方它不是peter框架,比如100 200的可以,这个东西反应是0。20。5啊,他就是说假设你知道cover intr,然后你把它求一个inverse对吧。

这个时候你就得到了这个x y是吧,然后这个大开的x y的,就大的那个x one的实际上是这个三维坐这个点的三维坐标对吧,呃在这个第一个energy下面的这个什么这个这个coda,当然你你你对吧。

你知道这x8 开不了x one,它是有一个我们不知道的def比number one是吧,乘以x2 x2 我们是知道的,但这个看着比如说这个是吧,如果这个点我们可以知道,比如说100 200对吧。

然后我们如果知道k的话,我们可以用emos k就得到这个one对吧,好number one是不知道的对吧,但是x one知道的caa x y我不知道对吧,这第一个image,然后我们用两个view对吧。

两个view不要第二个image,就说我把把第一个东西呢乘以一个location translation,这是这是r和t我们也是不知道的对吧,因为你造了两张图片,你当然不知道嘛对吧。

number two对吧,我们也是不知道的,对不对,就是然后这个是在那个第二空间下面给你对吧,就是number one x y y加对吧啊对吧,那么多tx two这两个东西我也是不知道的,对不对。

然后这两个之间呢啊我们有一个这个relation,对不对,relation对吧,就是这样子的,好这有两个哦,那现在就是问题,就是说呃我们首先要普及r和t对吧,如果你知道r和t啊,如果我们知道了r和t。

你看啊,equation,它有几个variable,它有两个variable,number one,number two对吧,它有几个constraint,还有三场券,就是如果你知道r和t对吧。

那也就是说你有三个cc,你有两个variable对吧,这个时候你可以写一个linux system对吧,就是去recover number two和number one对吧,那关键就是我们能不能对吧。

能不能从从,比如说一堆spondence是吧,很显然你这个地方有两个variable对吧,实际上那也就是说你三个考试线去掉两个variable的话,你还有一个考试线的r r和t对不对啊。

那这个时候比如说你至少比如说如果比如说你如果这个translation,我们不能cover这个up so number对吧,因为我们这个absolute这个size我们是不知道的对吧。

你可以同时scale number two number one,scale number two number one和t对吧,不会change这个equation,对不对,哎对吧。

那这个时候也就是说实际上我们有多少个东西需要去recover,我们需要recover那个三个rotation和两个全飞行,对不对啊,我们就最少你需要五个constraint对吧。

五个这个point wise correspondence,那么今天我会讲一个eight point max,相对来说比较比较比较simple formulation,好那我们想那我们的目的是什么呢。

我们的目的实际上就是说我们对于任何一个,就是我最开始看任何两个code correspondence这个东西,如果你知道一个区别啊,但是我觉得就是我估计有一部分同学都不知道啊,就是我稍微想一想是吧。

就说这个地方呢我们想做的事情是什么呢,就是首先不写r和t,那么这个时候我们需要把这个number one number two给消掉对吧,然后呢这有一个非常非常beautiful的名字。

就是说你可以可以把可以把那个x one x two和t和r的关系啊,用一个非常简单的这种nya的这种形式表示啊,这个t has实际上就是t transer这个cost product。

它是个330x3的,这个就是ska savage metri啊,这就是对角线都是零对吧,呃那个对应的那个东西呢是是是负号对吧,of dementry,然后是这样的话呢。

你就已经确定是一个essential matri,所以我们这个地方假设这个camera trance是知道的,所以我们已经把这个什么k给扔掉了啊,如果用t ht这个圈子cos的sr对吧。

你把把写成excession magic项,然后呢你就recovery excite magic,方x y x,因为x y x u都数嘛对吧,但是也是我们要recover runing对吧。

这个东西是怎么来的,我们我们简单看一下啊,非常有的,这是我们的equation对吧,我们目目标是什么,目标管他们的官号,那么就可以扔掉对吧,然后剩下就是一个考试的r t那我们首先是干什么的。

首先我就是说这两边呢都用t的cospot是一个什么,是three dimensional,一个veer是吧,cosport这两个东西对不对,你cos for lo以后呢,你会得到什么呢。

就是number two乘以t cos cos product x two,对不对,等于number one t cofdr c x对吧,然后对面t cofpx是零对吧,这个东西就消掉了对吧。

然后你就得到了对吧,t乘以cos x6 和t cos lt r i x这两个东西是什么,是同一个方向的对吧,number number two,number one不一样。

但是这两个东西这两个vex是同一个方向对吧,也就是t cos cox two对吧,他跟这个东西是也就是说这个后面这个mad是吧,它既垂直于t对吧,也垂直于x和x q对吧。

因为两个vex的cost扩大得到一个vx,实际上是跟这两个vc都垂直的对吧,所以后面这个t cos on alt x t这个vc它既垂直于t也垂直于x2 对吧,那你如果它垂直于x2 ,对不对。

那我们就都知道对吧,他从来就是x2 ,所以就得到了这个东西,这个t cost product这个东西它实际上就比我们写的king heat了,这三位是这三位数学里面比较经典的一个dation啊。

就是说你看他用到了这个用到了很多简单的几何的特性啊,用到了很多几个很简单的几何特性啊,然后呢我们就知道对吧,就是如果我们把这个定义成筛选,没选x就传播成一乘以x,二就等于零对吧,那就是一个这样的呃。

这样的操作对吧,然后ok,ok,all right,然后然后呢基于这个东西呢,它有很多几何的特性过来了啊,比较interesting的东西,我就给大家讲一下,就是说他就是一个摄影组合嘛。

就比如说你这个比如说你把这两个hama 3的连条线对吧,它有两个交点,1u1 e和eq,你注意啊,这些东西它相对来说有点绕你这个焦点。

实际上这些所有里面所有的bla大多是用好的ga corner表示的啊,就是说啊比如说这个点啊,你讲这个点对吧,x y对不对,比如说你你知道x y l two对吧。

比如说l two homogenius corate,对不对,他就跟vil one l two,它就跟什么它在dependulation可以x one有关系对吧。

也就是说比如这个东西implication是什么,将来computation最重要的是什么东西,就比如说你假设你你拍了一张图片,这个拍了一个three dimension object。

从两个部分位置对吧,然后对于任何的图片中,第一个p在一个图片中,你对应的那个correspond技术,在第二个图片中,它它在一个什么上面,他一定在一个线上面啊,就比如说你做做mc的时候。

做shaming的一个点都明白是到别的地方任何一个点对吧,对不对啊,你在大部分音mage reconstruction的时候,它居然是个first space,它非常小,就是如果我们知道r和t对吧。

假设我们be cover出来了,我们就知道以分成marex对吧,然后在那边的对应点实际上就在一条线上,这个设计space叫什么呀,就小很多了,我们后面做multi stereo的时候。

首先就会利用这个东西,后面讲啊,这个是你让我记住了,但我们后面会提到的,然后包括现在做deep learning的这些这些方法啊,就是说实际上就是呃呃这方面的这方面的那个它用的很多啊。

这是一个反mc的公司,非常反对mc的东西,ok然后我跟大家讲一下,你需要知道single videcoration啊,你需要知道single be,需要知道这个东西啊,啊实际上就是给任何一个矩阵。

它都一个single vide,ok呃如果你single videcomposition呢,呃我们下面讲讲什么,比如说你怎么通过这个image correspondence对吧。

就是x y x一个image respondence to recover essential matrix,哎这个东西就很interesting啊,就是说实际上就是说第一它的思维是指什么,对不对啊。

这一三就make it满足什么boecmmit,满足一些非常非常interesting for poverty对吧,比如说a nono matrix e的意思,essential matrix 3。

if i had a singularity position对吧,它这三个对吧,他这个三个东西叫特征值,对特征值啊,它都是不同的啊,但它同时都非零啊,essential major。

如果你是存在一个e,它存在一个随ation cost放到一个rotation,rr是一个rotation啊,那这个时候以三项mah是single value,它就是它前两个必须一样,最后一个必须是吧。

也就是说这个以三项mac它不是满次的,这个证明我们就不不正啊,那我们怎么来通过image correspon呢,你可以可以对这个证明,你可以看那个网页的书啊。

那我们怎么通过这个这个image correspondence的recovery,这个是mach啊啊这分为两步,第一步呢我们首先就是说如果你有一个excel ming他他的他的s b d对吧。

就using my v对吧,他正好满足这个sigma sigma,sigma,sigma sigma 0对吧,正好满足这种特性,那么对吧,你就可以通过这个变化对吧,这个注意这个rd这个东西。

这都是一个concert阵,所以所以说这个这个rt啊,它只跟比如说他呃,比如说你把sigma提出来的话啊,他只跟比如说这个trition的跟新闻有关系。

但是这个意思这个这个这个notation component,它就跟什么啊,他就只跟这个u和v相关的,就是如果你有以上就没去做,这个东西呢你也你你呃,你也去看那本书啊,呃这个这个推导我就不推了啊。

对吧就是说你那就是说呃,我就不退了啊,好那就是现在我们就是s mate essentimec是吧,那就首先第一我们怎么通过这个,image called a correspondency对吧。

得到这个e对吧,而这个地方你要注意一下,就是b x one是一个啊,就比如我前面看的那个show的那个example,一个correspondence对吧,就是这边一个那边一个就是你把它写成一个啊。

你比如说你这个x我one它造成e的tx就等于零对吧,你把它稍微比shift一下,就会变成一个这样的linux,st就是a就是这个跟这个piece quality相关的这些codm对吧。

spe就是那个什么就是这个ecentimetribe shift出来的对吧,你把这两个cosplat在一起等于零啊,这就是什么,这a是一个常数对吧,这个e是一个我们要5g的东西对吧。

有多少constrain的呀,有一个constraint对吧,每个image respondence是吧,有多少variable呢,呃有九个,但是我们不开发的那个unico给你实际上有八个是吧。

实际上我们需要多少个image for respondents,我们需要aa对吧,就是说这个我们叫formula nation a对吧,呃每一行对应的是一个image correspondence啊。

每一行对吧,然后呢我就是有一个这样的东西,就是a乘以e等于零对吧,我们就是我们,然后我们要通过这个东西呢,recover这个e对不对,recover这个e对吧,就是a那怎么做呢,我们就做一个这样的东西。

a乘以e他的这个平方对吧,除以这个e的平方吧,我们做一个这样的东西对吧,对吧,就是说这是一个trick啊,实际上这种东西啊啊这个chat the,比如说你如果做其他检方式,你做做一些参数化啊。

写一些优化啊,我们写的后面都会经常看到对吧,就是说因为如果你不这么做的话对吧,你直接解这个东西e的一个零,那就是一个区域的东西,你不想让e等于等于零对吧,那怎么办呢,你就把e对吧。

把这个mo变成一个就出一个racial a乘以e的平方对吧,所以这个e的平方啊就是a乘e这个这个符号就是一个norm的形式,实际上就是所有的element的平方和平方等于a诶,为什么这么做呢。

第一就是说第一你就能避免e他的一个零对吗,你这个tribution,第二这也有一个close to solution啊,就这a的s啊,这个东西的话,那我嗯希望大家都知道这个东西。

你就是把a乘以a a转置是吧,a转置乘以a转置乘以a对吧,这个矩阵的最小的特征根提出来,他就是那个一好,你得到那得到了这个e以后对吧,一个问题就是说你然后你回来以后,你不能保证对吧。

他正好能满足这个形式对吧,你因为它会有误差嘛对吧,你的那个image cod correspondence都可能有误差嘛对吧,那这个时候怎么办呢,哎这个时候呢你就可以对吧,你实际上说白了很简单对吧。

你就是对那个e做的那个没水座椅三上面的s v d对吧,然后你就直接用u和v好了对吧,你剩下的就sigma sigming对吧,你就可以对吧,你就可以把钱把最后一个这个东西呢变成零。

number three变成零对吧,你把前两个做一个average对吧,实际上就是说呃呃对,然后呢你就得到一三成为你得到这个东西以后,你可以用这个对吧,我们前面讲到这个东西去recover这个r和t。

好那我们总结一下这个eight point method啊,总结一下啊,呃其实非常简单啊,当然我会讲一点这里面的inside啊,主要就是说你有你比如说give me a settle in sin。

对吧,你首先当这些东西我们都假设它是你不知道time a ching,你都用这个东西,这对吗,对吧,然后呃然后呢你就你就说,然后你就想提这个东西对吧。

你是第一步就是看computer first ftation,depenciation,就是aj对吧对吧,就是这都是constant,这都是cospl,对吧,a这是一个concept。

然后呢你就放一个max a,对不对,然后呢你就得到这个mrc对吧,他的那个必定的这种i跟mea对不对啊,icon mac对吧,然后呢你做projection对吧。

就是说让让让这个snaps closest对吧,这个essentiation是吧,pointing the essentiation space就是你recover这个东西recall了以后呢。

呃还有一点我我这个实在是没讲,就是说其实呢你有四个solution对吧,就是说你的emaker可以是真的也是负的对吧,如果意思意思的mac复议bo max是吧,实际上就有四个可能的,他非跟小r和t对吧。

最后呢你就你就回到这个地方对吧,回到这个地方,对回到这个地方对吧,然后你就去解这个number one number two对吧,然后就是你可以证明如果你是image fdx的话,只有一组解对吧。

他所有的number number two,对于所有的image cof,他都是正常,如果如果你relax constraint的话,就是说你这个number one number two可以负的话。

从几何的角度来说的话,嗯他是fable的,physical率不行对吧,你照一张图片,怎么可能是deft或者呢对吧,我们今天的任务很多啊,我看看我们能讲多少啊。

下面我们就讲这个camera calibration啊,就是我首先比如说我买了一个cam,我怎么知道那个那个cam对吧,我怎么知道这个k matrix对吧,哎这个东西很重要对吧,这个东西怎么弄呢。

就是说你有一个x y对x y y y y y y对吧,这个肯定三等于k x对不对,然后你就变成一种这样的形式对吧,就是说对吧,就是说这个x是这个image quality对吧。

然后它是有个k mage是对吧,这个k我们比如说最开始我们是不知道的对吧,那我怎么去估计他呢,这个时候呢你就需要想办法用一些别的辅助的工具是吧,辅助工具嗯,辅助的工具对吧,就是说怎么说呢。

这个时候我们就用一个这种叫做v就是对,就是这个v的好处是什么呢,就是说你比如说你你如果固定了一个这个这个image上面一个点,这个跳的有点快,实际上就是说我们想做的东西是什么呢。

就是说我们现在不知道那个开trc,我不知道那个焦距对吧,也不知道那个动人的东西是吧,但是我想用这个看法,那前面我们讲的以30为水,实际上是什么,前面讲这个essentimesx。

实际上就是把这个呃把这个,把这个k给固定了对吧,那怎么得到k呢,那就用一个这样的v啊,这样的mix是它有什么好,当然还有别的方法,就是说,就是这个wink上每一个corner对吧。

我都可以detect照对吧,它都有corona image corner,这些corner position呢,他满足什么条件,connect physician吗,这是什么条件。

他满足就是说如果你明白,你固定了一个这个pk的一个一个一个corner对吧,定义一个这个vega的一个note corner等局部坐标系对吧,然后你定义了每个green size。

那实际上每个点的remon哪个方面都知道对吧,对吧,他就是一个这样的东西对吧,那怎么办呢,实际上我就是对我有实际上我们一般的做法,但是我不知道那个up scale是吧,但是那个东西不重要对吧。

就是找一个那个cording system对吧,就比如说这对你任意定义对吧,比如说这个点这是什么,这是对吧,然后三个x后面的x y z对吧,然后对吧,然后我们还知道什么。

知道每一个那个那个是一个一个的问题,它的长度加成这个是一对吧,那实际上任何一个这个黑白相间的这个这个corner的那个three minufo,我们都是知道的对吧,然后你要问对不对啊。

那我不取这个地方是只有0009,换一个地方,000没关系对吧,就是说你解出来以后,就是说你这个局部坐标系的这个rotation translation会变,但你解说那个k不会变对吧。

好那这个东西怎么说呢,就是说你比如说那实际上我们有了这个东西以后呢,就是说实际上它会有一个这样的东西,就是x y这是那个什么,这是那个piece of coordin。

就是那个那个corner point,而大x呢是你人为定义的对吧,那个three dimensional coordinate,中间呢它就是一个这样的矩阵,就是一个派局阵是吧。

第他第一列是d前面三列是k这个intrinsic可以这个rotation对吧,后面一列呢是330x3的矩阵,乘一个translation对吧,那就是说我们把这个max好像那个派对吧,如果我们知道派的话。

你想做什么,因为k它是一个上三角矩阵,所以你可以做一个叫做q r级ation对吧,线性代数里面很重要的一个东西对吧,你可以知道派实际上你就能比power cake啊对吧,然后同时你知道知道配的话。

你就能比pop t对不对,所以就是说比如说呃这个x方x等于sm的cos是大x是一个,你说每一个这样的,比如说你前面这个每一个这样的这个框框给了你多少个cos,给你三个cospring对吧。

然后你有一个男的,你是不知道的对吧,你需要把这个东西消掉,哎这个东西大家都知道怎么消对吧,你比如说你把它写成这种形式对吧,就是说它写成一个呃三个wp这种形式对吧,然后呢你把这个东西展开对吧。

展开是这样对吧,这个这个x方x i y z i你造的对吧,你是你自定的x y呢,小x y l y那也是你自定的对吧,然后你可以通过一个什么通过高斯消元法这种说法对吧,你可以把难的给去掉,对不对。

就是除以第二个对吧,你就能得到所有信息对吧,高速相应法是类似的东西,对吧啊,注意这个地方,你能你你想recovered variable什么的,拍一拍二,拍三个variable对吧。

大x和小x y这些东西都是cos的,都是知道的,好好有了这个东西,你就得到两concert是吧,from这个方向可以起来求解这个concern of musation form对吧,你用同样的手法对吧。

同样的说法对吧,m就是每一列对吧,你注意这个地方我稍微跳了一下,就是说这样的constring,对不对不对,你都可以把它写成一个呃,一个就是一个常数,是一个常数乘以这个什么pvc对吧。

这个x x y y10000 对吧,这样显示对吧,然后呢这有多少个variable,那有12个variable,所以你需要多少个阵容,the corner point。

那为什么k一下或者去pk需要六个对吧,需要六个同样的方法,你可以解除派对不对,减速怕以后呢,然后你可以做这个qr decomposition,对就是你有看,因为因为什么,因为这个地方k它这个大三角形的。

还有六个二狗r呢,三个加起来是九个对吧,你正好一个33的矩阵也是九个,玩九个那个element,他给九个constraint嘛,所以你有一个unix solution对吧。

有了这个你可以recover to ok嗯,all right,然后我想想我们休息五分钟好吧,行五分钟以后我回来讲一个insight,然后我们就简单的向前走啊,这个slide应该是课程主页上有啊。

休息五分钟好吧,他,好我们接着来啊,就是不管是我们做这个motion还是camelibration,你们发现没有,就是说都没有一步到头的对吧,一步到头的啊,我没有说一步对吧,就是得到k合啊对吧。

我们都是把它分解成很多步对吧,cnm celebration,我首先估计一个中间的那个pmc,然后我做kr d com类型的三维视觉里面啊,他就是为什么要这么做呢,就是因为如果我们直接一步去搞的话。

会出现什么会出现,就是说你没有显示解对吧,没有显示器没有显示解的话,那就出问题了,你做一个系统没有显示解的话,你怎么有一个有初始,怎么另外一个初始节对吧,然后你再怎么基于这个初字写去refine。

对不对,这方面的工作是很重要对吧,你分成很多步以后呢,每一步都我都有个显示器对吧,从系统讲来的话就比较放嘛对吧,同时他们现在讲这种比较有有可解释性嘛对吧,当然你会说那我能从投资做这个intense。

这个看法可能会选择这个这个这个这个这个虽然说模型也可以吧对吧,比如说诶你可以把k扔进去,对不对,这个时候呢你就会有出现一个叫做fmental matrix对吧,他这是什么。

实际上就是说他是这个k inverse transpose对吧,乘以这个essentiation可以k inverse对吧,如果你直接有pieces of correspondence呢。

你就可以估计什么,估计fmentone minal match,fundamental match,同样有这些设计,对不对,同样有这些特性对吧,你这个估计反正mal magic可以有这个。

他他首先他还是一个不满射的东西对吧,但是因为开的原因,他前两个特征更值啊,这个新的这个啊不一样了对吧,哎你还是可以去估计他对吧,就是用同样的方法去估计他,这个我就不讲了。

这个东西其实跟那个跟那个那个以三球美女4k是很相像的啊,对你可以有tv对吧,你说你写这个东西对吧,然后然后你做这个suv的分析,对不对,project projection对吧。

然后你最后就可以得到一个pf fm magic,简单啊,这一部分你如果了解了前面的这个东西,那就没有什么问题啊,没有什么问题,那问题在哪呢,问题就是你你有了这个fundamental magic对吧。

你怎么去,比如说我们想得到r和t同时都可以,哎这个东西就难了对吧对吧,但是同时呢如果你但同时呢因为你是想f只有八个variable是吧,你k有六个点和七对吧,有两个吧,至少还有三个。

你加起来肯定concert比vable要少嘛,你肯定不能与你去国企的extract嘛对吧,哎这个时候呢就是说要加一些什么,需要加一些加一些别的东西。

比如说两个两个两个一个additional constrain,这两个东西垂直啊,这些东西啊,这个东西相对来说它就比较复杂了啊啊啊。

现在一般的python就是说我们首先估计这个开发celebration,怎么把intrinsic去掉,这样的话问题就变简单,今天的课可能稍微短一点,可能稍微短一点啊,啊这个东西我就不讲了啊。

那下面呢我们现在讲的是两个月,等我下面讲讲少于八个点来求解,有个five point method的那个东西非常非常复杂啊,就是数学上非常难区别啊,脸相对来说它是比较鲁棒的啊。

相对来说他比较鲁邦的一种方法也比较简单对吧,你看那个实际用用八个点的要远远比用五个点的光点,preciable,你要你当然你只需要五个correspondence,这个就很很,那有时候你比如说。

从学术的角度来说,你当然觉得五个点好吗,因为他只需要五个点,我为什么要八个点对吧,对吧,从应用的角度来说,它往往是这些简单的算法是最后项目最后知道吧,反推线也高一些,做东西啊,简单好吧。

一个s v d对吧,就是不要就是做一个东西往上面搭一个非常复杂的系统啊,不提倡的啊,知道了对吧,特别像的地图,你有了以后,你没有必要这样啊,那多个东西怎么做多个dogo dogo mage。

实际上呃没有什么难的东西在这啊,就是说它分为两步嘛,就比如说我比如说你如果有了这个corresponse的话,然后你会得到一个什么,得到一个一些concern的那个projection p对吧。

就是那个与那个pose有关的project mission对吧,这这这东西当然他也是他也是我们也是不知道的啊,呃不知道的哦,f i j次我们知道的对吧,z这个词也是不知道的啊,它实际上就是说,对吧。

slide是在那个网上,你可以下载,在课程主页上,在我主页上,就是说你需要你需要有一个这样的,就是让他有些cc什么这东西呢,实际上就是说就是你要写个优化问题对吧。

就是说比如说你写个lisvp formulation,对不对,解一个list square formulation,然后呃但问题是在这个时候to view的时候显示解嘛对吧。

你分类包括multiview了,它没有显示器对吧,或者就是说你还是需要做一些relaxation对吧,relaxation,这时候呢一般情况下丢了一个bo c神,怎么build呢,呃你就。

得到一个初始键对吧,你首先得到一个初始键,然后再再再再refine对吧,是吧,那是我们我们这个叫什么叫sequential emotion,对吧。

就itional motion for two images,using fundamental matrix,然后然后呢initial structure by transition对吧。

不断的把那个新的image加进去,对不对,然后这个东西就比较粗了对吧,就比如说你有一些point的,你要看嘛,然后你你给新的view对吧,你把这个你把这个你就得到,就是说你固定前面的。

你已经估计好的这个three dimension point,three point从哪来的,就是number one,number two对吧,这些东西对吧,咳给了一个新的view com来以后呢。

你就把新的那个把把前面这些东西呢,把新的那个那个那个那个那个那个image跟前面的image售卖,这个时候呢你还是可以用这个trivial的这种solution对吧啊,去去去做这些东西啊。

缺点就是说你这个普通决定了你怎么去选这些个order对吧,好处就是说你还是可以用那个已有的算法,已有的算法去做这些事情啊,做完了以后呢,你做一个我这个这个东西非常非常重要,这个这个叫做bt加什么。

some minimize for refinance and emotion of minimize,minimizing projection,error对吧。

就是给定一个这个p是一个projection对吧,然后projection可以这个x j对吧,然后你跟这个x i j去做这个zation对吧,就是说你优化的是这个project,这是x对吧,b没了。

也就是说project以后对吧,你去evin mage这个东西对吧,这个就piece of difference对吧,但是但是这个东西呢需要你有一个good lization。

p i p i和x j对吧,这个东西拿来从新手到motion了对吧,对,就是multiview呢,你注意这个我们专门会有一节课来讲怎么做multiview这个问题,我们把它叫做inization。

把它叫做synclization,我们专门会有一节课,只是去讲那个东西,这个地方你就发现就是说啊包括后面讲的这个photo tourism对吧。

这个这个这个东西它实际上也是一个这种这种sequential,然后再做binder shman这种这种东西,vision的东西,就是说你这个系统work的好很重要啊,非常重要的啊。

就是说理论上漂亮重要啊,the division还是强调这个,至少那些梅西小学这个东西还是很重要的,就是做学术的话,大家是看这个东西的啊,那work的好也重要,简单讲一下这个photo tsm对吧。

你们有谁知道这个东西吗,这是一个cpf cpf 06年的文章,我觉得这个这个文章它好在哪啊,不知道,ok这个这个这个文章好在哪,他就说首先这个思想很重要啊,很重要啊,思想很重要。

就是说你首先这个问题是什么啊,这个问题,但是后面他们也做了一系列的工作,做了一系列的工作,这样的就是说它首先给定一些image对吧,给定一些image,这里有很多images,然后呢是从哪来的。

从网上搬的,比如说你设置一个是那个很像对吧,或者时代关卡,因为得到很多很多image,很多images,对不对,你得到这些,因为这以后呢怎么办呢,所以对吧。

你就会想想我们怎么能用这strual motion官网的得到这个image post,一些重建一个点,就是那些correspondent,这个思想其实很小,因为因为internet出来以后。

你有很多这种问题对吧,没有这些音乐剧去干这些事情,这其实是非常非常非常非常beautiful的东西对吧,字幕图片以后对吧,然后你就怎么样,你就可以对吧,match这个fish point你会得到什么。

这个你就可以得到这个campos以及一个spark point your call,但最后你还可以做motiv stavo对吧,如果如果我们有足够的信息,下一会我们会讲啊。

这么大规模的一个image flash,你怎么来做呢,哎这个东西啊其实说白了自己做过啊,你是说不清楚的,你需要自己亲身去体会一下,那我们首先讲一讲一讲怎么做呢。

这就是说你首先做这个要做这个feature mac,我们前面讲的理论就是已知的feature correspond,我们怎么去recover rep jp这个地方我们下载就是图片对吧,怎么也没有。

这个时候呢,我们首先要做feature detection对吧,那有什么东西呢,实际上就用this features对吧,一张image里面这个shift c这个这个你们学计算机视觉,你们应该学过啊。

我不讲这个东西,它是一种比较dance的这种体型,每个音乐就大概有2000多个点,然后呢你see the fish呢,不但有这个fish,还有这个,description对吧。

你可以通过match fish description,你可以得到这个image和image叫做correspondence,你可以等到image和image叫做correspondence对吧。

然后呢你就refine mine using redex,所以我们讲过对吧,render some of consensus对吧,也就是说我找八个点,你可以s没,反正没什么举措的,你如果有。

因为觉得你是个自带的这个隐身这个信息我们是有的,你可以什么这个centration in sement that eight point matter,这个这个这个这个这个东西,它是用了这个东西啊。

用了这个eight point method,这个ptsans这篇文章啊,有了这个东西以后怎么做呢,然后你就可以做这个课程,对。

你就可以可以那个link up promise match for connect,conformal match of course,server images对吧,你就可以你可以就是link这个点。

acromotile images,就是所有这些点对吧,但是这个东西怎么做比较鲁班,我们下下节课会讲啊,就syndation的问题。

lina以后呢可以得到这个一个一个large这种connectivity是吧,就是哪些image,哪些image match对吧,有了这个东西以后呢,你就做structure emotion对吧。

实际上就是minimize那个,首先你要,minimize这个这个这个这个对吧,minimize the reprojection error对吧,这个raper jio对不对。

实际上这个地方就是说你project predict,insual notation和optive image location对吧,这个difference平衡和对吧,然后你有一个这样的东西对吧。

解一个是质量,就是一个bundle justment对吧,justment我们前面讲过的,完了以后呢,你就得到了这个呃location translation和和这个。

那个那个那每个点的cody里面对吧,按照教授们,你有很多问题就minimu怎么去,非常非常非常efficient去记忆对吧,就是非常非常困难的东西啊,很多很多variables对吧。

这个东西efficially the robots me,这其实是一个nerc老教材,数字分析解优化解什么去解释优化问题,这样的东西,对,东西呢嗯,我那个课程主页上有本书啊。

叫做numerical optimization,你可以nerical optimization啊,你们可以看一下啊,很有意思的啊,你要怎么减呢,你就是用这个怎么initialize呢。

你就是用什么incremental stra motion to猝死节去弄一个猝死结,然后然后你就可以呃对吧,对你就可以解这个优化得到一个烦恼的这种出现,那下一节下一节课呢我们会讲这个stereo。

stereo这种reconstruction啊,stereo reconstruction,这节课呢稍微短一点啊,这个tp很重要啊,加上motion,实际上,那一块我们会多讲一些c不得的东西啊。

c不掉的东西,包括一些呃最近的一些有一些基本能力的方法来解serial,哎,那是一个发展的,相对来说比较还是发展的比较快吧,嗯很string a motion。

这个问题我们分一部分东西到这个slization那个那那那节课去啊,前面我们讲了很多这个他的重点讲的camera connegration。

以及怎么做这个two years starter motion啊,这些东西我希望大家就是有课件对吧,你可以看看那个网页那本书就是我觉得比较难理解的,就是这个线这个线性代数很重要。

这个是相对来说比较难理解,应该做很重要啊啊这些东西,然后,那今天这节课我们就到这好吧,然后大家有什么问题啊,给我发email啊,我搜到了几分email啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES203: 三维重建和理解 - P5:Lecture 5 Multi-View Stereo - GAMES-Webinar - BV1pw411d7aS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好的那我们开始讲,今天我们讲那个重建的最后一节课叫multiview stereo,就是说啊三节课呢我们讲了这个motion motion以后呢,实际上大家做了一件得到了什么东西呢。

就是说你得到了很多天赋,其实在我个pose以及呃intrinsic camera rameter,那我们今天呢讲的是怎么把这利用这个东西得到那种非常dance对吧。

就非常非常非常呃就是这种high quality的重现对吧,实际上也就是说我们想估计呢每一个pixel的一个depth value对吧,那首先我要讲一点,就是说概念上大家不能混淆对吧。

其实这个重建它是分为两步的,对不对,就是第一步实际上是说这个,第一第一步实际上就是说我们从这个嗯image,我们得到了得到他的那个image的pose,一些spark,spark的这种稀疏的充电对吧。

那第二步我们要得到那种非常dance对吧,就是重建对吧,它是两步,那今天我们讲非常nice的重建啊,这个东西呢很有意思在哪,第一呢就是说实际上我们知道就是高中高中的这个数学学过对吧。

甚至初中就是说你如果知道了这个correspondence,就是这个image,每每一个pixel跟另外一个pixel对吧,我们有correspond,那这个时候我们就能得到def对吧。

这个stereo我会讲起来会很复杂对吧,会会讲很多东西,你就记住一点对吧,就是说stereo跟这个传统的这种image之间做匹配有什么区别,那就是stereo它是在一条线上面,我们上节课讲了是吧。

这叫power line对吧,在一条线上面去找correspondence对吧,那你这个搜索空间对吧,我们通常讲这个search space,它就会比什么在整个image上早呢要小得多,对不对。

哎这一点是你要记住的好吧,这一点是你要记住的啊,ok啊那你上完这门课你应该记住,但是我们还会打,还有一些别的东西啊,还有一些别的东西我们要去讲啊,但是这一点你是一定要记住的啊。

其实我觉得现在算法基本上都离不开这些东西啊,你包括我我我我当我不能告诉你比谁的文章,包括省一些文章对吧,别的文章其实说白了我就发现吧,嗯就是现在的很好的工作,他基本上也离不开自己。

反着馒头东西就是说spimac应该怎么做,这是第一点,第二点就是说当然我觉得这个这个这个基础还是打的不牢啊,这一点这一点我是真的要呃我要强调的啊,所以这个就虽然虽然现在是机器学习,深度学习的时代对吧。

那怎么办,这个东西做的最好更好诶,这个这个是我那个什么的,那么首先讲就是两张image啊,其实两张image的做法跟多上image的做法啊,还是有一些不同的啊,但是原理是一样的,做法上不同。

原理上是一样的,好那什么是两张图片的stereo呢,就是说你比如说我们上节课讲了嘛,就是你给这两张图对吧,首先你要注意注意一点,就是说我们有很多假设的这个啊,我们有很多假设的这个就是说这两张图片对吧。

他拍的都是同一个什么拍的都是同一个这个同一个场景对吧,假设它是静止的啊对吧,你沿着两个不同的方向去拍对吧,然后呢你知道他的这个relatives transformation对吧,就是啊。

然后呢你就希望通过这两张图片呢能得到一个dem对吧,就比如说在第一个视角下面,就是每个pex of the depth就得了个depp m啊,我们想怎么做好吧,哎这个东西其实还是很很很有意思的啊。

你们谁啊,呃谁接触过这个东西吗,我想我想问一下,你说没接接触过这个东西吗,对吧,我假设大家也还多多少少有一点接触吧,好吧,有点了解啊,那,那这个东西怎么来做,首先首先我们要强调一点。

就是说什么东西是不能做的,比如说你这个这个这个这个这个r o这个deft r solute skill,我们是recover不出来的啊,这个东西大家要要了解,但是呢除了这个以后呢。

如果我们能找到corresponse,还是能做的啊,然后那个有一个basic stereo match agrant对吧。

就是说实际上就是for each pixel in the first damage对吧,你find the corresponding flower in the red image对吧。

就是因为你这个点嘛,实际上你就得应对对应了一个什么,你这个点你就对应了一个呃,对应了一个线,对不对,然后你把这个线带在第二张image去做投影,就得到了一个a ba line对吧。

就是for each pic in the first time,i find the corresponding in the right image对吧。

然后然后呢你就examine all pixels on the flipk best match吧,你就在这张呃,你觉得这这这这这这个那个呃上面对吧,你你去找那个最最好的那个match,哎。

这个东西呢很有意思,在哪呢,就是说,对我刚才讲的就是他的search space要小很多啊,search space要小很多,ok对吧,你就去找对吧,然后你找到了以后呢。

因为你是因为你是calibrate这个英语配对吧,然后你就可以求这两个字性的相交对吧,然后你就能得到那个深度系啊,当然对ap polar line呢,你如果对image对于z的image来说呢。

它这个a p ploon它不一定是这个水平的对吧,那如果是水平的更好对吧,你写一个for loop的话,你每个对吧,你只需要找他的那个corn index对吧。

这样相对来说呃这样做起来他就相对来说就比较effici了对吧,呃做做起来就比较efficient,对不对,哎对,然后你就是我们就是说什么时候开始对吧,实际上这个东西那是什么时候呢。

实际上就是什么时候都会有这个东西呢,它就是说这个parallel应该哎这个地方,我就相对来说你就是在这个lodge base啊,就是说怎么去做的话,你真正要学的,因为是三维视觉的问题啊。

嗯我这里稍微给你带一下,就是一个knowledge的这种东西,就是说,就是说就是说什么情况下会发生呢,实际上这个很好理解,就是in the play of the camera。

the pio对象的对吧,就是说这个image print they are camercer has been hei对吧,total eth of the same对吧,就是他要满足这些特性对吧。

唉这些特性呢它也不是说那么任意两个硬币就配了对吧,其实你开了就不好了对吧,你比如说照相机可以照相的时候可以弯一点对吧,那那那那就不满足这个东西了对吧,诶他就不满足这个东西。

那这个时候呢我们就如果你有这个情况,那很好办对吧,就是说你这个dex你就可以直接从这个简单的这个相似变换对吧,得到对吧,就是disparity就是x减去x方对吧。

实际上是等于b乘以give y对y z对吧,你就能得到这个disparity对吧,呃然后呃,然后这个东西大家应该很清楚了,对不对对吧,实际上就是说你对吧,这只是一个相似变换,非常简单啊。

我觉得应该初中吧,初中大家应该学过,那难点就是说你怎么能得到对吧,比如说你上两张图片,现在是这个样子对吧,这是一个这个绿的是undermine的那个three object对吧。

然后这个灰的是两个ping对吧,也就是你造的时候这个imagine plan对吧,那这个时候呢你就不会得到这种horidental line,实际上的话你就对吧,那怎么做呢。

实际上它就有一个sal image actification的算法啊,这个我就不讲了,我就告诉你其实很好理解嘛对吧,因为你你你如果carry位的好的话。

你是知道这个image这个orientation啊什么东西的对吧,然后呢你可以可以可以须佐率create两个image play,它是自我pipo的,对不对,然后呢你就把这个灰的跟这个黄的对吧。

然后呢你是知道他们之间的相似变换的,这个相似变换呢实际上是一个什么东西呢,实际上就是说它是一个3x3的那个呃叫做homographics,对,就是说实际上它是这个一个三,为什么三个三四。

就是说我们那个要丢了那个号,genesports ne,哎你可以看看这篇文章啊,这个我觉得是一个非常非常inferinferential的工作啊,嗯嗯嗯这个我就不讲了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是说然后我给你一个大概的visually啊,让大家加上这个呃去加上这个理解好吧,呃去加深这个理解,呃,这个的理解就是比如说你上面这两张图片对吧,这是on就是说没有requify对吧。

你可以发现就是说实际上我上次讲了,就是说实际上是第一个image里面的一个line对吧,对应成第二个image的一个line吧,这就是说实际上你第一个image line就对应了那个空间中的。

你跟那个camera center就对应了空间中的一个平面嘛,然后那个平面跟第二个英文相交,就变成一个line对吧,就像这里面的,比如说我们任何一个line对应的都是第二个image,最后一个了对吧。

然后你就发现了这两个line通通都不是水平的对吧,统统都不是水平的,而这个时候呢我们就可以怎么呢,就可以通过一种算法,就是刚才我show的那个对吧,就讲那个文章里面对吧。

你可以把第一个image把它做一个三次方的变换对吧,变换以后你注意它就不是一个什么,不是一个正方形了对吧,它是一个斜的啊,实际上就是因为他首先是个linutransformation in the。

就是在那个home gi corner下面对吧,然后你搞完了以后,你就变成什么,你就会变成这个斜的对吧,image都变形了,但是他能保证一点,就是说啊就是啊你你这个这个是水平的。

但是这个水平的对应是原来的页面里面的,他不是什么,它不是水平的对吧,所以也就是说你变换以后,这个image有些有些p手,它是全白的,它是这个的外面对吧,然后呢这边呢也同样,你就把这个页面写的就变弯了嘛。

然后有些是平衡在外面的,但是你保证什么呢,就是说你找的时候呢,你所有的对应对应的点它都是在这一条那个水平线上面,哎这样就比较好算对吧,这样就比较好算啊,这样就比较好算。

啊这都是三维视觉里面很很经典的结果啊,很经典的结果,这都是有很好的实现啊,open cp这些东西啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后下面我就想要怎么去找correspondence对吧,也就是说你对于您左边那个image里面任何一个pixel对吧,你要在右边找那个corresponders对吧,在右边找火respondence。

对不对对吧,然后呢你要找一个这种找一个,那那怎么办呢,实际上呢你就是说左边,比如说你你找一个点对应点,你肯定要看它都会在这个neo,对不对对,你肯定要看他的neighborhood。

你不可能随随便乱找对吧,随便乱找啊,然后这个时候呢你就取一个neighbourhood size,size通常是一个这个rectangular的字母patch对吧,然后右边呢你对于这个线上面对吧。

任何一个点你取一个patch,然后你就比较这两个patch是不是相似对吧,那怎么比较,你可以说他们对应的pixel的difference对吧,你可以用new network对吧。

最近的大家呃比较常用的就算一个用用net过去算对吧,然后呢你给一两个pad,假设你能得到一个词呢,你就可以画一个这样的曲线对吧,这边就是说那个pixel index,我们通常叫做depar,对不对。

就是你到底offset了多少对吧,y ax is呢就是你的matching cart对吧对吧,就是过过给定了一个pixel对吧,我他们的ighborhood有多相似对吧,对吧,是这样子的啊,然后。

你注意呢这个curve呢他肯定很有意义,但是确实就是他可能有多个的local minimum,对不对,诶,他也不一定很smooth对吧,哎但是就是说我们在这个地方呢就想找一个最好的对吧,那对吧。

你可以用不同的方法去算对吧,然后你就找一个最好的对,你可以有有的时候你找最小的对吧,有时候找最大depending on,就是你有什么样的match去做comparison对吧。

然后呢这个地方很显然有一个很重要的这个这个这个hyperparameter,就是你这个windows选多大对吧对吧,你如果window显得特别小的时候呢,因为你你只包含了一些局部的信息对吧。

你这个match就非常非常的noisy对吧,你就会非常非常的noisy对吧,因为你会有很多false positive,就是你找错了嘛对吧,但是呢因为你们都选择小呢。

基本上你这个map呢相对来说还是比较还是比较shop,就是有些ash对吧,然后你只要你把windows找大,因为你两个因为不一样对吧,你你把这个如果这个windows size搞大的时候呢。

相对来说呢它就会有一种什么东西啊,它会有一些smooing的这种模式在里面,smooing的东西在里面,而这个时候呢你这个结果就比较smooth,但不会像这个windows size比较小的时候。

那么的noisy啊对吧,这是大家要注意的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对这是一个比如说这是一个结果对吧,就是说你有一个data对吧,然后the window base mesh对吧,这是光子出的。

你会发现window base mesh它相对来说还是li that’s limited啊,没有光的truth对吧好,那怎么圈子这些问题呢。

然后你看这个gm choose跟这个window base mesh对吧,大家作为研究的时候,其实很多时候很interesting,你比如说你你基本上会从最简单的算法开始对吧,从最简单的上网开始以后呢。

你就得到了这个windows machine是吧,然后你会发现诶这个windows mac怎么跟这个方式差别在哪对吧,然后我怎么能加一些recognization,加pride去解决这个问题啊。

去解决这个问题,那怎么办,你首先会发现哦这个ground truth对吧,一般情况下对吧,他还是很smooth对吧,它会在某些pixel有一些跳跃跳跃对吧对吧,就是说你你这个对。

但是就比如说你从一个object的boundary到另外一个object会跳片,它基本上还是很,然后你会发现这个windows vmc非常不适,墨子对吧,那这个时候我们就可以怎么样。

我们就可以说我能不能enforce一些smoothness,就是说这个这个depp对吧,来来解决这个问题,哎这个思想呢现在其实说白了就是以前大家做审批审时候很常用,我们现在用的相对来说少一点少一点。

但是在第五层的时候,大家也是用的啊对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那我们怎么来做呢,它就是会我们就会enforce很多这种concert对对,就是就是有哪些nno或者concert就对吧,for any point one image。

there should be the most one match point in音调的image对吧,你你比如说呃你这条线上面对吧。

比如说source image有三个点都match了target image的一个pk,那就出问题了嘛对吧,你不可能出现这种情况嘛对吧,但是你单个单个做的时候呢,你不能避免这种东西对吧。

其实有时候讲这个research要讲一些,比如说一个一个lication固有的东西,但很多时候啊你会发现什么,你会发现其实好多时候大家用的某些能力,或者说安特拉这个安德拉这种机制基本上都是相通的啊。

这个地方实际上就是用的nono或者constrainb,什么时候有啊,比如说你做啊,你找correspondence的时候会用上对吧,比如说你这个,对吧,你做这个sementation的时候。

我也会用咱们这个地方我们用来做找这个steremachine,but stercorpd好吧,the unique,另外is ordering对吧,比如说里面有两个点对吧,走在一对于另外一个评测的左边。

那你的correspondence呢基本上也要保持这种all,怎么主要在横对啊,除了在某些情况下,你是order会稍微跳一下对吧,对吧,好吧就稍微会跳一下嗯,但在大部分情况下。

这个ordering是要保持的对吧,还有一种就是smoothness对吧,就是说你这个despite value slowly对吧,或者most part对吧,那怎么做呢。

实际上这就是一种在计算机视觉对吧,包括graph里面对吧,你只要牵涉到这种峰哥啊,dance prediction啊,这个都用得上啊,比如比如说你把你做做model的时候。

你把一个point cod分割成很多primitive patches,诶,这个也是用得上的,那这个怎么用呢,就是说你就加两个特征对吧,就是说t实际上就是每个pixel的depth value对吧。

每个pixel的depth value对吧,就是异地对吧,就是它有两个turn对吧,一个turn这个matching class对吧,还有一个turn。

实际上就是这种consistence expose,就是说对啊,什么是consistency mansion,cos,就是windows search对吧,我只是说如果我没有第二个turn。

那这个这个解这个东西它就是那个window base设计的结果对吧,那加了第二个呢,实际上就是enforce这些uniqueness ordering a mo,就是在做这些东西对吧。

这个时候呢我就是在这个地方呢就会involve这两个pixel的这样了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后你就为我做一个comparison对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个mf我就不讲啊,大家如果有兴趣,你们可以自己搜一下好吧,就是这个mf怎么写啊,嗯有两种办法对吧,一种办法就是说你可以用这种grapcr对吧,嗯就是从康纳那边出来的对吧,大家也嗯还有一种办法。

最近呢就是做这个linear program relaxation对吧,唉这两种办法啊对吧,就是piece of nation school sim pio,你们可以截个优化。

能够得到optimized的那个吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后你会做个对比吧,就是windows search对吧,然后这是下面是gravcgm truth,好,然后你就会发现gravcd得到的梗,对不对,但是他还不完全跟这个跟这个呃光shows一样对吧。

但是要好很多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对吧对吧,这篇文章对吧,你可以读一下,就是fast acosment and indication,输入graph cos对吧,就是py的篇文章啊,然后。

对然后然后这个东西怎么用deep learning来做啊,现在比较对,还是有一些那个还是有一些这个研究的啊,有一些研究的,有什么问题吗,你们有在听吗,我没有看到很多回复啊,ok好的对好。

那这就是一个简单的这个stereo matching的解pipeline啊,我觉得嗯其实哎这个东西还是很有意思的啊,还是很有意思啊,这个,大家有兴趣的话可以读读那篇文章好吧。

那下面我要讲的就是multiview stereo啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个我开头讲的对吧,就是说有一点大家一定要记住的对吧,就是说stereo为什么是to stereo match,那么他他是找的什么。

找一个one dimension of the correspondence,对吧啊,好modic stereo呢其实他也是dal spondence,但他呢他不这么难干啊。

我待会来讲其实是一个就是思想是一样的啊,但是就是formulation对吧,就是怎么去怎么去去去去去做这个东西,稍微有一点点变化啊,稍微有一点点变化啊。

嗯就是motive serial from internet connection,对吧,challenge就是比如说appear pearance,variation,reservation。

massive connection对吧,就是你可以设置那个internet得到很多很多这种很多很多images,对不对嗯对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后你怎么来做呢,就是说你不是两个image对吧,比如说我们上次讲这个啊,the street view对吧,就是这个photoya当然了很多image对吧。

你现在我们假设已经得到了这个每个image的一个camera post对吧,包括它的ring camera parameters,在这个时候。

然后我比如说我要把一个image每个pixx去s m的depth,在这个时候对吧,你两个两个去搞他,他就第一个慢,再一个你没有用到更多的信息嘛对吧,这个时候呢怎么说呢,实际上就是这样对吧。

你比如说就是你实际上就是说首先带给一部分这种呃images啊,一部分这种images对吧,首先你要把这个revenant relevant images给找出来,就是你注意有两点,就是说,有两点啊。

就是说首先呢我会讲这个formulation会有不一样,实际上呢它会比如说他会去test,他不是去找鬼,respondence,因为你找过response的话,你是这么想的啊,我们首先想这个问题啊。

就是说你可以对这个reference view对,然后是假设对对和这些image假设找到了,这个就是它会有一些overlain vision对吧,假设找到了这个的这些东西。

那你可以把每个image去跟这个每个那个name is a image做对,因为我们刚才的算法对吧,你可以得到一个depth对吧,但是显然这个dex怎么样,他是不consistent对吧。

因为你是independence去做的对吧,他不会consistent对吧,那怎么来做呢,实际上就是说我会通过什么,我首先要改变一个思想啊,这个东西我待会讲。

就你对于每个pixel我假设做一些death hypothesis对吧,比如说deft是1。01。01,1。021。03,对不对,然后你把你把这个你把这个带子,然后你再在那个什么,你站在这个。

你站在这个target image,so projection对吧,然后你就找到你,你有deft,你就会对应点对吧,然后你再去value,比如说这个大induce correspondence。

在所有的那个image里面,它有多它有多好对吧,哎这个时候就能利用所有的信息对吧,哎to view和motiv它相对来说它是不一样的,所以说好。

那当然就是说你说这个的时候取决于你你怎么去找这种view嘛,然后这边这个就是比如说你像这个photosho,包括做做这种multic series的东西。

他会说哎呀你每个拼凑你对应的那个iimage差不多不样对吧,你这个patch那个人对吧,你你一个patch你可以找到啊,就是news neighbors,它会不一样啊。

local uselection对吧对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就比如说任何为人呢相对来说都不一样对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ok啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

等一下这个地方。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

呃这个地方我好像漏掉了一个slice啊,我看看怎么,这个地方好像漏掉了一个slide。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这样我就讲吧,大家去理解好不好啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我这个地方漏掉了一个slice,还挺关键的,我看看啊,what do you stereo对吧,这个呃大家可能不会理解这个啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我在这里再讲一遍吧,好吧,我觉得就是用口述的办法啊,因为现在就是我们知道to view对吧,to view它是怎么做的呢,to you做的这个办法。

实际上就是说我去在那个app port line上面去找correspondent对吧,找到了我就可以做相似变换,那么初中学的对吧,得到dex,它不一样对吧,同它是稍微变一下。

就是我首先去找那个corresponding dp对吧,to be就是说我有很多hypothesis of corresponders对吧。

他给的任何一个pixel带来正面a p p line上面都是corresponding,correspondent,那这个地方呢就是depth对吧,multiple它都是prop。

然后我把这个dh呢做一个projection对吧,做一个projection对,做一个projection,然后你就能找到那个correspondence对吧,你就能找到那个correspond对吧。

然后,你然后你掌握考方式,就是这个时候呢你给定一个de在那个就是左边的这些image里面对吧,你都能找到一个对应的pixel对吧,然后你就可以用to evaluate这个pixel的这个patch。

就是跟这个他一个source image这个patch有多像对吧,你有100个呃,那本也没,你就一你要以value 100个值,然后你取一个mini media对吧。

看看看看看看这个是不是很match对吧,然后就是每个depth都有一个value对吧,那边是每个correspondence,有to也是每个correspondence有一个value对吧。

这个地方是每个depth对有一个value,然后你选那个depth value最小,那时候demate depth对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这就是结果啊,思想一样,那么稍微变了一遍啊,稍微变了一遍啊,然后你就可以发现啊对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是你当你看到这些结果的时候,还是蛮shopping的对吧,因为这都是internet image,然后你如果用于扫描仪去扫,也不过如此嘛对吧,这些detail的地方当你发现还是有一些。

比如说有一些这种clusion啊,内容有问题对吧对啊,这是motive view,motiv stereo,what give you stm的这个算法,这个是10年是十多年前的工作。

但是还是很多amazing对吧,实际上就是通过image也能得到这种非常detail的教训啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊这是一个系统工程,系统工程是一个工程性的东西,是一个工程性的东西啊对吧,你其实你看这里有很多张图片啊,然后呢你如果用multi server,比如说你你这个这是你的这个image对吧。

然后你把这个然后你做一个这个multi spa的话,你能得到这个结果,就是每个pixel取得sm的dex,然后你会发现什么嗯,然后你会发现这个,然后你会发现这个呃,啊这个depp还是有非常多的diss。

肯定非常多的diss it好吧,非常多的discontinuity啊,就是这个这个这个这个这个这个里面的后,它其实呃处理的呃,他处理的不是很好啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ok然后你看就说这是上面上面就是来拉的吧,我们一起讲过的拉的这种得到的结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你发现还是有一点差别,但是从image如果你能得到这种结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这已经很好了对吧,已经很好了,当然你跟这个还是没法比了对吧,但是你发现呢这个其实这个image呢它其实还是什么,就是说如果你的response能找到很准的话,在没有没有blution的情况下。

相对来说它还是应该非常精确的对吧,实际上还是correspondence的问题是吧,fd是难在哪呢,就是说像这种passive method的难在哪,男的就是说你有很多偏白的对吧,有很多很多白的地方。

你比如说你对两个墙去做这种spiration,你是不可能有好的那种correspondents的对吧,因为你白的地方,任何一个pixel都可以被match对吧,所以对这是一个问题,对不对,好的啊。

那怎么去解决这个问题呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那下面我们要讲的就是说用这个就是加addition fire。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你比如说像这个图图片,你会发现什么,你会发现很多地方他都是p出来,sla有很多平面的信息对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对吧,那就是用use of structural parts of prise,对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对啊,刚才我说的就是说你mod有stereo还是比如说你什么时候最成功啊,就什么时候最牛牛啊,比如说你有这种结构光的时候对吧,因为结果你如果打上去了,结果光,那基本上还是还是这个很好的对吧。

你如果打不到极果光对吗。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个会出现,比如说你there’s no text是吧,这个时候你就很难去解决这个问题了,那这个时候呢比如雅肃啊,这个现在在山上了,friser他就做了很一系列工作。

就是说嗯要让我们能不能换一个思考问题的方式对吧,我们怎么能嗯就不是每个p都去做决定,因为因为你比如说你这个音做的这种场景里面,它有什么,它有很多这种playing的结构,对不对。

还有很多这种playing的结构啊,这个时候呢我看看我们能不能用这种plying的结构去重新define,这个serious mine flower,对不对,对,你如果比如说在这个时候。

你看比如说你有一张这样的image对吧,你如果没有结过光的话,你会发现这个image还是有一些可选的,但大部分情况下它这个tt对吧,但color vation非常小,color version非常小。

那就说明什么,就是你没有match吧,哎你不是你就是会有很大的这种身体对吧,诶这个时候就会出问题对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那怎么做呢,那那就找一些这种有一种东西,我觉得大家是要理解就是漫画动对吧,mod sup,特别是比如说如果你从点云对吧,来来来这种点云对吧,你对整个场景建模就是城市建模对吧。

哎这个em来说很特别像中国对吧啊这种商品是很好的对吧,就是说它会有很多plan对吧,它会有很多这种垂直的结构,哎这个东西是非常好的对吧,比如说你做deft imation的时候对吧。

你比如说一个image c对吧,然后你有这些词对不对,那怎么做呢,实际上就是你你在stand的这种呃mf的时候呢,比如说你会写什么东西呢对吧,大家去可以去读读这篇文章,我觉得还是对这个东西感兴趣的话。

你可以去读一读,就是说你对每个piece of一个depth,然后neighbour neighbor的话,你要买这种smoothness constrength对吧,但是这个时候呢你会发现什么。

就是说实际上就是说对吧,就是说这种这种东西它相对来说的话对吧,相对来说的话,他就是你不能保证对吧,你不能保证这种不能保证这种是moothness啊,就是说对吧,这是我们刚才复习一下,对吧啊对吧。

然后你现在想做的是我们现在想做的是什么,我知道这个场景它是必出对吧,就是number of plants相对来说啊,要远远的小于小于number of pixels对吧。

主要是我们现在想做的就是我们呃对吧,我们我们想用以以少部分的这种plane去去model这个online in的场景对吧,那怎么做呢,就是说对啊,就是大家可以想一想啊。

这这有一系列的工作都是10年10年比较相对来说他比较欧的啊对吧,那怎么做呢,实际上就是说你有个reference,也有光truth对吧,这边paper相对来说我觉得还是很巧妙的。

就是就是global stereo ctrl,选用三个note requires对吧,stmf呢它用的是什么呢,就是说用的是两个pixel对吧,他有什mooth对吧,它有smooth对吧。

smooth的话,你想一个平面,它也是smooth,对不对,一个曲面,只要你没有那种很大的跳跃,它也是实木子对吧,那这个时候你怎么来in boss它它这个pin呢,其实其实你发现没有。

我想说的一个观点是什么,就是说你不管是grace,为什么我自己做的工作,就是说越简单的东西,它往往有时候他影响力啊,相对来说它越大啊,就是说,比如说我们怎么能看这种sm,不就是两个b口对吧。

它距离要相近吧,呃那个depth怎么把它稍微变一下,就变成这个你重建的这个结果,deft它会飞了,这种play呢大家可以想一分钟啊,我建议大家去想一分钟啊,可以想一分钟,然后我公布答案。

大家不要小看这个东西,你可能觉得跟graph没写相关,但我跟你讲,这个dance tradiction非常非常有用非常有用的,还有30秒啊,大家再想想啊,对吧,可以想一想,那这个时候呢怎么做呢。

对吧这是传统的对吧,传统的就是这个对吧,右边呢他怎么说呢,就是考虑三个json的pixel对吧,就p q r对吧,然后呢你会in inforce什么呢,就是说诶这个很聪明对吧。

就是说如果你真的是一个play的话,那p加3d啊,因为它在一个平面上嘛对吧,然后你如果那就必须除以二,就必须等于dq对吧,你就尽量飞吧,这种东西对吧,就是说基本上所有的基本上所有的pixel对吧。

除了在那个plan boundary的地方,否则在别的pixel这个东西都要满足对吧,这个东西都要满足对吧,这个东西都要满足诶,通过这种方式对吧,通过这种方式你就能这样。

你就能得到一个得到就inforce rin对吧,实际上你看这个m f和mf with a triple k对吧,你就通过优化这个东西对吧,你就能得到这个呃,你就能得到这个。

你加了这个triplet loss,你就能得到这个play,对吧,那怎么解呢对吧,它实际上它还是有一些对吧,有一些这个如果只有这种事,如果只是这种standard mf的话。

你可以用bf cs或者bpulation这个beef plication,同时它还是applicable to cherlost。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后再有些experimental result对吧,比如说那个reference image image对吧,你这个output def map对吧,这相对来说就会好很多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后这是一个comparison,对不对,就是说这是广the truth对吧,你会发现啊这个嗯就stmf它会非常buy对吧,非常棒y然后如果用这种trifate这种东西。

你会发现它的recovery smooth啊,就是你明显能感觉到他有这种peace mini的结果在等啊。

就是这种formulation其实在写这个在graph上面写inverse problem and spending,你包括解一些,比如说在呃你没选就解优化的时候,怎么去formly这种energy。

这都是很重要的,这都是很重要的哦,ok。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后然后下面就是怎么去integrate with the top down,primitive approach,对吧,哎这个时候就是说嗯对吧好吧,我们要休息五分钟好吧,休息五分钟,我们再接着讲啊。

啊,好我们接着讲啊,就是说嗯比如说我们再讲讲,就是说一些别的方法来formula这种structure,这种por,就说比如说你在standard的时候。

standard这个那个mx里面我们是估计的是每个pio的一个dx对吧,那我们也可以怎么样,因为我们知道就是说你这个plan对吧,如果如果如果这个thing对吧,能被一一部分plain给表示的时候。

那我会怎么样,假设如果比如说有这个曼哈顿的这种direction,曼哈顿从哪儿去曼哈顿对吧,纽约你会发现这个所有建筑对吧,他那个fs都是演的几个少数几个direction对吧,我们就可以可以可以对吧。

extract这种manian direction,然后在extract ples对吧,那怎么来说呢,我们就可以有这种有这种possible price,这是possible print。

各种的都会比较少对吧,个数会比较少,对不对,然后我们就会什么,首先extract这种possible这种direction对吧,然后我们可以去,我们可以去古迹,比如说这种possible prince。

对不对,给定一个plane对吧,给定一个plan,我们可以去valu,给定一个plan,就怎么样给定了一个play,首先它有些possible direction。

有些possible这个什么possible这个offset对吧,给定一个plane对吧,就跟deft一样对吧,给定了一个plane对吧,我们就能得到什么,我们就能evaluate。

就就就我们就得到了什么,就得到了一部分新手,每个pixel基于这个play我们都能得到一个dep对吧,这种这种矛盾很有意思的对吧,这是给另一个play,我们就在每个pic都有个def。

然后对每个pixel如果有个depth的话,你实际上就有什么就有correspondence了对吧,然后你就会去evaluate,比如说这个plan induce the pixel depth。

有多少pixel pixel depth是好的,有多少pixel deft是好的,对不对,对吧,那这个时候呢你就可以得人对吧,你这个这对吧,你会得到一个这种这种这种depth的这种map。

这种play map,就是说我想我首先有一个hypothesis对吧,就是固定direction offset,对不对,几个direction,然后呢我就可以对每一个固定的play呢。

我可以用那个chaos吧,就我推广那个也that s的那种算法,我会evaluate这些plane,他的每一个score,对不对,有了这些score以后,我就可以解放这个什么unit对吧。

这个地方也是你看上面对吧,上面这个地方我们是这个就是就是def是每个pixel depth为一个score,对吧,地方是每一个playmap,我有有有一个错误,对不对。

你注意这个pain的这个score跟这个bb的pixel score它有什么不一样的地方,你不是说你这个damap这个说他是local的对吧,非常的不鲁棒对吧。

你你这个地方呢一个play你是让所有的pixel都去vote,对不对,word这个play好不好对吧,这个时候这个过程相对来说就会比较鲁莽对吧,相对于上面对吧,当然你还可以加一些这个什么。

还可以加一些这种play和plane之间的这种这种similar这种什么对吧,比如说两个plan他的垂直,那它就比较好对吧,或者明星对吧,哎这个时候你可以问你可以把这些prior对吧。

就是比如说在那个这个step map,这个case就是nonlocal constraint对吧,这个order不是那啥啊,这个地方就是这种东西对吧,然后你把这两个东西合在一起呢。

你就能得到就能得到这个就能得到这个death map对吧对,那但是你估计出来以后呢,呃你解出来这个pin以后呢,你每个plane有哪些品种,这个print equation是吻合的吗,你对吧。

因为就是那些战士他们是好的对吧,你可以可以可以从这个东西里面直接出来对吧,哎对吧,比如说两个pil是playing对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

他要尽量尽量compatible对吧,哎这个时候你就会发现这个comparison啊,这个我知道大家喜欢看图对吧,讲了半天对吧,那到底结果怎么样,你会发现这个区别对吧。

这个是standard master,就是每个people去攻击对吧,你会飞发现它会容易飞对吧,然后你加了非常strong的pride的话,你会发现什么,这是一个tv上的result对吧。

哎他就是有垂直关系对吧,然后哎这个这个这个这个就完全不一样了对吧,相对来说要好好很多对吧对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是一些结果啊啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是刚才一个方法啊,我再讲几个方法,让大家就是其实这个你你们可能觉得做做做笔设计,我可能不用这些对吧,但我觉得我想讲的就是说啊,他的这个就是他这种毛这种思路对吧,这种毛这里的思路,是很重要的。

是这种思路是很重要的,实际上比如说这个东西它怎么做呢,就是说sponse对吧,and pose pose detect place对吧,就是说首先要比如说这个对吧,这里有60张图对吧。

你可以做raft motion,你也可以reconstruct这些nn对吧,然后你可以通过这个non detect a plan,然后用mf叫graph cut对吧。

去去把这个plane跟这个peace association给给弄出来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊啊这个地方呢就是说你不需要这些flag那个少数几个方向对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你这个地方你可以发现这个这个这个这个音mage,它还是有这种批次,this one这种structure对吧,只是只是这个pin它的equation就会完全不一样。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

relax吗,哈登对吧,我觉得这些方法在做building model的时候,outdoor这种building model的时候是很有用的啊,就发现你发现没有思想就一个对吧。

思想就比如说你有了depth对吧,你就有corespondent,有了correspondent,就有depth对吧,然后你可以你可以在两者之间切换对吧,然后去value的这种cc对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后你可以enable curve的对吧,就是说可能发发top with a curve surface对吧,啊,我再讲一个东西嘛。

就peace white plana nana theory for open threconstruction,我觉得要记住一点,然后我就刚才讲讲最开始强调的那个对吧。

就是说这个cereal他跟这个这个这个形容cover image correspond,它是有本质区别,它是在一条线上去做match。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也带来了很多好处,带来很多好处,这个这个面板e t h的做什么东西,他是从这个时候是v圈发video对吧,street size这种video对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后你可以做这种没有讨厌的这种stereo对吧,比如说你有一些video friends,对不对对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那你怎么做呢,就是说你给一个video,对不对,你首先做一个real time,这stereo对不对,看stereo就是比如说我们用我们那个qq的那个算法对吧,然后呢你就做什么。

你说什么你就做这种play detection对吧,你就可以看看哪个地方对吧,会有plane对吧,那哪个地方不是play,对不对,做一种plain的detection,就是semitation嘛。

就是哎就是semantic semitation,是哪些地方是对,哪些地方是,no plane,或者就是有些病人我就干他不要了对吧,哎你就做这种detection是吧。

我们前面说的是就是对前面那种就是我有一些海报对吧,我要去label对吧,变成一个labeling problem,这个地方实际上就是说你首先有一个一定是solution,对不对。

然后基于你现在solution还有一些非常你做这种plan detection是吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你做完plain detection就可以怎么样,你就可以去refine,对不对。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你可以去refine对吧,对你可以去be fine对吧,然后对吧,就用那种preme map的方法去去放一下对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就能得到更好的play。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是我讲的这种play对吧,呃这个地方就一笔带过了啊,我觉得比较容易就是比较容易去理解的,就是那个planet map,planet map对吧。

他是他就是把平时label neighbor变成playing ighbling啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

简单讲一下这个not skill这个motivo这个就是非常大场景的对吧,比如说image对吧,你怎么去做对吧,因为对吧,这是一个大的场景对吧。

你比如说你有这这这这个每个每个propl的这个就是你拍了一张图片吗,你在这么大的场景情况下,你要怎么去做对吧,唉我觉得这个地方比如说如果你是读ph d啊或者什么东西的,我觉得就是说不仅仅是解决问题对吧。

你要propose一些事都选出来,propose一些solution出来啊,这个时候你就会问怎么做呢,你就把它抵外很多这种,很多很多微信对吧,然后呃然后那个,对外层很多女生以后。

然后在这个区间里面去做吧,每个区间里面去做,但是每个区间里面去做的时候呢,你还要把它拼在一起,对不对啊对吧,这是一篇文章是吧,building文明啊,day,这是篇很有名的文章对吧。

就是哎你怎么去diy的,其实是一个很大的change啊,就是对吧,或者就是说你devin model space,english space对吧,这也是雅思的一篇文章对吧。

towards the internet multi serial,这个时候呢他就找了一个算法对吧,就是说尽量其实这个东西很有意思啊,就是说啊那个photott那边paper它它它强调的一个观点。

就是说这个这,个这个image这个这个camera post它是from class对吧,因为你去旅游对吧,比如说这个叫这个很著名的,比如明确旅游呢大家拍图片基本都是在一些固定的点附近牌啊。

固定点附近牌对吧,你得到这个东西,它就是有机构,啊那怎么说呢,它实际上就是说你你去你去把它变成一个这种because the problem对,就是你从你你希望把这些class给找出来对吧。

就是说这个我就简单的讲一讲,简单的讲一讲,简单的讲一讲啊,就说stretch emotion的这种point对吧,fm就strucmotion对吧,然后你看一看,比如说你重建的这个东西对吧。

你这protection这些点对吧,如果这些点,你如果因为在一个image class里面呢,那么会出现什么情况呢,就是这些点啊,它尽量都同时appear在这些image里面。

这就是一个好的class对吧,第一个点对吧,比如说你有两个image,它的这个这个motion这种point呀,o f不大对吧,那这个时候呢这两个因为其实不应该在一个什么不应该在一个,在一个里面对吧。

因为你这个point在一个class里面实际上就是overlap之比较大嘛对吧,这个东西以后呢,哎这就抵抗了一个那个,我们就可以通过这个东西去做image class对吧。

这个也它实际上是做了一个用了一个规律的算法对吧,用了一个规律的算法去去找这个呃clusters对吧,这个image class which is on the images in the cost对吧。

all my compenewill keep or keeping courage对吧,如果如果如果如果这个卡死的size不会转弯太大了呢,那你就是class对吧。

但同时你要满足就是说那个就是满足cover就costraint对吧,对这个东西啊,我觉得是这样,就是这个这个solution它不一定特别interesting对吧。

但是就是当你遇到一个呃我想讲的是什么呢,就特别是国内跟国外啊,我个人感觉就是大家解决问题的能力很强,能能到更好更好的算法啊,但是就是说能不能propose一点啊,就是新的问题新的问题出来哎。

是要去思考的对吧,比如说这这篇文章就是说要讲的是就是想要做的,就是说我们怎么能把一个much skt problem break down the small skills对吧,然后呢还能把它合在一起。

对吧你看这是这个一些结果对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

嗯我今天的课就讲到这啊那个,然后,这节课我们就开始讲讲一些比较graphic,也包括一些deep learning的东西啊,就姐妹是个deep learning,重点就是讲representation。

我image session,我相对来说我讲的时间要短一点啊,因为我觉得这门课并不是这不是在这个这个这个上面啊,但是因为嗯怎么说呢,就是说这毕竟他也是重建嘛啊一个这思路嘛,一个pipeline嘛对吧。

就是从image based来来解决这个重建的问题,我想说的就是你真正没有写过这个算法的话啊,啊你是搞不懂的,你必须自己真的去做做spa motion。

你必须自己真正去做过这个motive stereo啊,你才能呃真的理解这个东西啊,它的fundamental principles是非常非常简单的啊。

哦对下节课我要讲一个叫max schization的东西啊,就是说解解解这种毛线啊,ject的motion view,我觉得是一个很重要的东西啊,大家可能送死啊,理解那是什么东西啊。

我觉得特别在这个特别现在地图能拧出来了嘛对吧,我觉得那个东西跟deep learning相关的很好的东西啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好吧,那就今天就这样啊。

GAMES203: 三维重建和理解 - P6:Lecture 6 Map Synchronization for Inverse Problems - GAMES-Webinar - BV1pw411d7aS

好吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我从头开始讲好吧,没有问题吧,啊,我今天讲的我今天我刚开始说,我就是今天讲这个topic呢,相对来说,这个名词大家可能没听说过,哎,像现在这个名词可能没听说过好吧,但是这个很重要啊,很重要,哎。

很重要好吧,就是他首先要解决一个什么问题呢,就是我们其实在前面两天课里面已经遇到过了,对吧,就是你给定一个比如说一个image connection,对吧。

我们要build这个就是consistent map嘛,对吧,input呢,就是两两去做matching,对吧,这两个image我们讲了这个算法,对吧,但是两个image,你有些是错的嘛,对吧。

那我们的想法想问的问题就是说,你怎么在多个物体中间对吧,在build这种consistent的东西对吧,这个topic我一直在研究啊,但是我觉得大家往往其实好多时候怎么说呢,这不重不重视这个问题啊。

不重视对吧,哎,他其实这个问题里面还是很很interesting,比如说他他比如说application对吧,就是说比如说我们前面讲的multi-scan matching。

multi-view structural motion,比如说你solving这个puzzle,比如说一个一个一个茶壶对吧,一个打碎了,你怎么拼在一起对吧,哎,解决这个问题对吧,但没会讲一些别的东西。

比如说那个,new network,对很interesting,这个课呢,呃,这节课呢会比较technical啊,你们在网上download那个slides下下载那个slides,其实你可以看到他。

他会非常的这个呃technical啊,没关系啊,就是适合适合你们对吧,就是如果你觉得自己一点技术都没有啊,那我希望前面这些multi-vision的东西你能听懂对吧。

以及一些简单的formulation对吧,如果你数学技术比较好,那我希望希望你能听懂一些跟优化相关的东西对吧,哎,如果你觉得这这这看对吧,如果你也对这理论比较感兴趣对吧,那我希望您听懂更多的东西啊。

大概是这样一个expectation对吧,这样一个期望,好,那我首先讲一些比较interesting的例子好吧,就是说,这singularization简单的就是说你要把所有的东西合在一起去弄对吧。

你要把所有的东西合在一起,那为什么要这样对吧,这个东西,所以在这个飞的飞飞飞飞在那个对吧,对吧,那其实呢,我们想说的呢,他实际上就是有些就是说,就说就说你做这个matching的时候啊。

他是有很多ambiguity对吧,我们就像讲两个images,就能match对吧,我们的我们一个假设就是这两个东西应该被match到对吧,但是好多时候呢,你会出现什么呢,就这两个images。

比如说你map一个白的images跟一个白的images,没有东西可以match嘛,对吧,没有东西可以match嘛,你比如说这两个piece对吧,你去做matching的时候,实际上,哎。

他你就会发现他没有东西可以去做matching,没有什么东西可以去做matching,哎,他没有feature对吧,哎,你有很多种可能对不对,你不知道,哪种是好的对吧,那这个时候我们怎么弄呢。

你们我想要同学们回答一下,你们你们会怎么弄,别看slice,slice上面有解答,啊,这个应该怎么弄,你们能不能type一下怎么解决这个问题,对吧,哎,这个东西很重要啊,这个例子很重要。

你怎么怎么解决这个问题啊,你们有谁有想法吗,对,这有很多种可能对吧,你们能哪哪哪哪一种是是是可能的match的,我看cc的现在还没有吧,这个是我们需要consistency,但问题是现在还没来吗。

你你就我不要consistency的回答吗,我就说你们平时如果比如说你到一个考古队去对吧,哎,你可以遇到这样,这是个真实的例子,这是大概是一个希腊那个地方一个地化,大概有几千个碎片啊。

不同学挑两个问你们这个问题对吧,那这个时候你们会怎么办,如果这两个碎片,你你知道他可能拼在一起,但你又不知道怎么拼对吧,怎么办,这个时候,绕圈旋转去是问题是你再怎么试的话,他没有选,你不知道他是不是啊。

是不是match的,对吧,好,我给我给大家答案啊,这个东西你对这个时候一般情况你会找别的piece对吧,比如说这儿这儿有另外一个piece,哦,你知道对吧,这个地方有一个那个,那个那个text对吧。

这两个text应该是match,你把这两个match在以后,你发现这个p就能跟他们match上,对吧,哎,对吧,也就是说你做这个matching的时候啊。

你不能只看两个images的information,但不能只看两个scan的information,有时候你还会有一个别的scan,对吧,他能提供一些辅助,对吧,就是说你这个matching要一起来搞。

对吧,哎,我希望大家理解这个东西,好吧,就是你你你做两个scan,你做matching,你写个software,他可能没有足够多的feature,对啊,没有足够多的feature去match,对吧,哎。

这个这个是很,很那个的对吧,然后,哎,好,我再给你们一个例子好吧,这个例子就跟算法有些关系,比如,你现在你现在有两个物体,对吧,我举三三个模型,因为这是graphics的课嘛,对吧。

其实你做vision这个这个例子对做vision也存在,对吧,嗯,我给你两个model,然后然后你上网去下载一个software,对吧,然后这个software呢,你可以输入两个object。

然后你press一个button,然后就会给你一些correspondence,对吧,对不对,那如果在这个时候出来的这个东西,他有一些correspondence是对的。

有些correspondence错了,怎么办,一般情况下你们会怎么做啊,一般情况下你们去啊,我是不是调料餐,对吧,对不对,你包括你自己写了一个software,也会调餐嘛,对吧,对吧。

neonetwork的这个deep learning这个阶段就是调那个网络架构,对不对,对吧,但是问题是你调餐,你需要理解这个paper不然去瞎调对吧,但问题是有时候很多时候你这个paper你都看不懂。

或者就是很难看,那,我可以告诉你有一种更好的办法,你怎么做呢,你就比如说你找一个intermediate object,你们现在是大数据时代,对吧,你可以找到很多电脑,我们就说他就是他,他相对来说。

他跟这个p个的那个号呢,他他这个shape的difference都没那么大,对吧,哎,这个时候呢,你根本不需要调餐,你就用什么,你就用相同的software,对吧,你就漏了两次两个pair。

press the button,因为这个问题就变简单了吧,就是每一个你解解两步,每一步变简单了,所以那个software的话就给你good correspondence,对吧,他这个时候怎么办,哎。

这个时候你就把它怎么把这两个compose在一起,对吧,就得到一个更好的东西,你看对吧,就是这个东西很neat,对吧,就是说你也不需要调餐,对吧,你甚至不需要这个知道这个software干了什么,对吧。

你只需要去找data,对哎,我希望大家记住这样的例子啊,这样的例子,我觉得好,这这很容易理解,我觉得你不需要任何基础,你也能理解,对吧,是吧,好,那现在呢,我们就是想要把这个principle的例子。

把它变成一个算法,对吧,你不能说人物,你不用上网的时候,你给这个两个,你都能为去找找intermediate object,有时候是你有些少两个吗,对吧,一个可能还不够,对吧,哎。

我们需要变一个算法去想一想,对吧,就说,那真的我现在就是想了,就是说比如说你可以想,比如说你假设你愿你希望去map两个object对吧,然后呢,你有一堆一个一个collection of object。

但但比如说你说我们做重建的时候,这次自然就有这个东西对吧,好,然后呢,你有一,然后呢,你能build your graph,graph就是他的这个景点啊。

是individual object edge呢,就是说这两个object之间有个map,对吧,对吧,哎,然后就是说但你这个map呢,你如果用一个software对吧,你到下载一个software。

他有些人好有些是好的,有些是坏的,对吧,啊,但是我想说的是什么,他就说,如果你能把坏的去掉了,剩下这个好的呢,已经足够了,对吧,他还是一个就是说,小你connected graph对吧,就是说。

如果这个三水不成,让你就淹死了更多的水对吧,直到他知道他这个这个三是满足对吧,直到这个三是满足对吧,哎,好,那你那那那那那如果是这个情况的话,那我们我们要做的是什么,我们就说呃,那个其次还有个问题。

就是说我给你一堆小的,然后你在网络上当了一个双倍对吧,然后你就press一个button对吧,然后,呃,比拼我陪了一起陪着,那你就得到一个怪,但是这个怪物里面有的是错的有不好的对吧,但我问你。

你能不能把错的给扔掉,把好的留下来,如果你能干这一步对吧,那实际上就是说你就得到了all pay,注意这一步我要讲清楚,第一就是说你从一个算法的角度来说,你算了一个man。

你是没法check他是不是好的对吧,他可能有些是错的,correspondent,对不对,有些correspondent是错的,你没法很好地去check嘛,对不对,你没法去evaluate。

因为你不知道光去是吗,对吧,啊,哎好吧,大家想想这个问题啊,我想问你们就是说这个问题,当然你需要一些additional information,对吧。

那但additional information是什么呢,大家可以简单的想想,给你们一分钟时间啊,嗯,嗯,我们下个节目再见,下个节目再见,下个节目再见,下个节目再见,下个节目再见,下个节目再见。

下个节目再见,下个节目再见,下个节目再见,请问是否能够看到并海上地铁站的位置,我们大多数人都在电脑上看着。在你和我之间的观察,我得知了地铁站在哪里,它在哪个区域。这是一个非常重要的问题。

你们必须尽量了解。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置。

我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。

请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。请问能不能看到地铁站的位置,我们大多数人都在电脑上看着。如果是一个随机的设置。

你就可以感觉到一些。因为实际上,它不可能所有的声音都一样。你可以感觉到这种随机的模式,就是两个物体的可能性,如果是一个随机的模式,就会感觉到这种可能性。如果是一个随机的模式,就会感觉到这种可能性。

如果是一个随机的模式,就会感觉到这种可能性。如果是一个随机的模式,就会感觉到这种可能性。假设是这样,那你就能证出一个东西,就是说你这个MAP对的概率。

它实际上只要把一些non-factorial的能量化在需要更好的利益。对吧?刚刚不是一这种,只需要这个比例,对不对?Exact recovery condition是这样的。

然后你会有一些information theoretical limit,不可能当你这个observation的个子小于这个的时候,对吧?小于高的目的的时候,没有MAP会work嘛。

这个东西你如果没有这个background,你就可以预料,你不小心。但是我为了让这个东西完善,毕竟有这样的理论嘛,我简单的提一下。然后还有一点就是说,你这个MAP synchronization。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

跟传统的low-rank matrix recovery有什么关系,对吧?那我为什么不能用RPCA,这是非常好的方法,对吧?为什么不能用它?你直接去用的话,因为MAP是有些constraint的嘛。

你直接把这些constraint的滤掉的话,它就不行了。这个时候你的recovery rate就不是optimal。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

原因是什么呢?原因我们可以简单的解释一下,这个地方我反而想的比较technical,你如果对这个东西不是很了解,你可以skip掉,就是一分钟。如果你了解的话,你就知道RPCA的handle。

data collection, if the observation is inhibited,就有这种random find,对吧?但是MAPing constraint实际上它是。

比如说你这个random find,但是如果你对这个permutation做expectation,它不是random,对吧?因为为什么?它所有的enemy都是正的嘛,它不可能是正负,对不对?

它不是random的。但是你这个MAPing constraint,比如说行核链的时候B,它就是有一个quotient space,如果你在这个expectation。

在这个quotient space去做,它就会B,对吧?如果你已经force这个MAPing constraint,我们就能跑得更加dense,然后呢,我们现在讲的是permutation。

所以说实际上好多时候,这个object-object的MAP相对来说,它是partial的,对吧?就是一部分点MAP到那边的一部分点,对吧?那这个时候怎么做呢?你就可以解两步,对吧?

第一步你可以用special technique去解除,就是说,这个matrix rank,然后第二步呢,你再写一个revised STP。

去recover这个consistent correspondence,同时我们也可以build一些noise model,然后在这个noise model下面。

我们可以研究它的recovery rate,好,这是那个STP,我讲的是这个point-to-point correspondence,实际上呢,这一系列。

就是说对于rotation synchronization呢,也有一系列的结果,好吧,这个也是比较重要的,好吧,这个也是比较重要的,好,然后我们讲讲这个special technique。

STP相对来说解起来比较复杂,那special呢,它实际上就是干什么呢?我直接把那个observation,我把它输入到,就是那个input输入到一个observation,这个matrix,对吧?

然后呢,我把它分解成一个ground truth,ground truth就是说它是cycle consistent的呀,什么东西,对吧?然后加一个noise,对吧?

就是如果我能知道一个ground truth,我直接做那个special,然后我只要做一个low rank decomposition,我就能得到那个好的东西,对吧?我实际上observe的呢。

是这个ground truth加了一个noise,一个perturbation,对不对?但是呢,有一个Davis-Khan新闻就说呢,你虽然加了perturbation。

只要你这个ground truth它的spectral gap比较大,足够大的话,就是说,那么你这个x-observation的spectral呢。

跟x-ground truth的spectral还是很接近的,对吧?比如说这个是0。1,这个是0。2,0。8,对吧?这样子的,那就是说,这个motivated我那个special太低。

因为它的这个underlying principle就是说,这个spectral decomposition相对来说,就是你在x-noise,如果它不足够大的话。

x-observation的spectral跟x-ground truth的spectral,它是比较近的,这个时候呢,你就可以用在x-observation上面做decomposition。

x-ground truth,对吧?那就是说,你实际上第一步就是做这个leading algorithmic computation,对吧?然后第二步就是rounding,做一些把它,比如说。

你从得到的是0。2,0。8,对吧?你可以把它做一个,写一个linear assignment,对吧?你可以得到这个理序取证,好,然后,这个就是比较快,缺点就是说相对来说,它没有那个,没有那个,没有那个。

那个东西比较快,对不对?这个randomized setting实际上就是说,你也可以有一个optimal recovery rate,但是实际上的话,它就是说,还是没有SCP好,但是比较快,比较快。

ok,然后,我们先来休息5分钟吧,我们休息5分钟,然后我接下来会讲一些,这个地方就是,你记住它有SCP,有SPEC就可以了,如果你没有这个background的话,这一下子也讲不清楚,对,然后这个,对。

你可以,这个,这个我刚刚讲了,这个,这个我的主页上是有那个PDF,就是这个slice,你必须下载,好,我们5分钟以后再见,5分钟以后再见,好,再见,好,好,好,再见,再见,再见,好,再见,再见。

如果有人看到這個項目,如果有人找到這個項目,會有很多人反映說,為什麼你要用這個項目,為什麼要做這個項目,我才會跟他同聲,你不聽我的話,我才會跟他同聲,這是必須的,所以我把它起訴,我還好意思跟他同聲。

因為我真的覺得,有人在問我,我本來希望這一項目,能夠在不論什麼時間,在不同的空間,活在不同的地方,但是我還是覺得,如果有人看我的影片,我會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲。

所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,所以我才會跟他同聲,(音樂),(音樂),(音樂),(音樂)。

(音樂),(音樂),(音樂),(音樂),呼,呼,呼,转一下这个方向,好,我们接下来啊,就是Neon Networks,对吧?然后他也是这个东西,他也是一个map,啊,这也是一个map,嗯。哎。

这个思想很重要,就是说你比如说比如说我们,呃,这个大学就熟悉了,对吧?我一修这个东西,我当然喜欢的,我一讲数学估计大家爱,对吧?啊,你别说在国内啊,在美国也一样,对吧?我的学生,包括我的学生,对吧?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一谈到这种什么一个固定的vision task,啊,大家开心了,对吧?对吧?就是说,但实际上我想讲讲的是什么东西呢?就比如说这个molecular construction,对吧?

就是说你从一个从一个一个一个partial scan得到一个complete的东西,对吧?你实际上可以理解成就是说,对吧?Space of images, space of 3D model。

中间他也是一个map,对吧?哎,比如说image captioning,啊,你马上我们会讲这个东西为什么跟maps进步,你先别急啊,我们先慢慢的build up这个东西,啊。

就说这个image captioning呢,你可以怎么去看呢?它实际上是space of images to space of natural language descriptions,对吧?好。

这个joining neural network实际上是,我就说我现在的,我其实现在我改变一个思路啊,它实际上就是说,我们首先给一些简单的例子啊,就是说讲讲这个东西是怎么玩的啊。

然后我们来讲这个为什么他跟这个abstract,跟这个maps inquisition,对吧?什么是joining neural network呢?比如说我们简给大家一个toy的example。

就是你有哪个language,对吧?然后你,你这个有spot pair的data,对不对?就between,对吧?呃,这个时候呢。

你就没有sufficient data去build一个neural network,就是train一个neural network,那这个时候怎么办呢?哎。

这个时候你就可以找一个那个mother language,mother language,对吧?然后他们之间呢,有which pair of data,对吧?

你注意这个which pair of data,你不是说你有一个korean,他有个translation,在english,那个particular sentence。

他有个translation in portuguese,对吧?你我们我们build这个翻译库的话,他他他不是这么来的,他不consistent,对吧?但是这个时候你可以干什么?

你可以train两个neural network,对吧?就machine translation network,就是你从,对吧?你那个时候呢,你你如果neural network的话。

你就能compose,对吧?你就能解决这个问题,对吧?哎,这个例子呢,实际上你就会发现他跟这个传统的这个maps ingredient相关了,对吧?实际上是什么?你发现这个每个energy。

它是个map,对吧?这传统的那个前面讲,前面部分讲的那个,它是什么?它是这个correspondence transformation,现在就是一个neural network,对吧?然后每个框呢。

它是一个object,现在就是space of a domain,对不对?space of images, space of 3D models, space of triangular meshes。

space of point clouds,对吧?这就是那个domain,好,这是一块,对吧?然后另外一块呢,他可以leverage,unlabeled data,对吧?怎么做呢?

你可以一个一个input,对吧?然后你有一个representation,然后通过一个neural network呢,你得到一个output,对吧?standard setting呢,就是说这个东西。

你用enabled的办法来搞,对吧?你用enabled的东西来搞,对吧?然后呢,如果这个joined setting呢,你就是说,你用两个representation,对吧?

你能够build两个neural network,对不对?然后你给一个unlabeled的东西as input,对吧?然后呢,你这个时候呢,你虽然不知道output是什么。

但是你到这个两个representation下面,得到的这个output,它是consistent,对吧?这个时候呢,他就有一个unsupervised loss来train,对不对?

这个东西很interesting,然后呢,实际上neural network呢,你可以比如说我们单会讲到,对吧?你可以说build一个graph,也可以build一个graph,那个edge呢。

就是或者是一个可以trainable neural network,或者是一个deterministic procedure,对吧?然后呢,nodes呢,就是这个domains,对不对?

然后你build一个这个东西的话呢,它实际上也会回到我们原来的synchronization的问题,对吧?你会发现这个里面还是有consistency的概念,对吧?或者invariance的概念,对吧?

呃,就是不同的,如果有cycle,或者就是说,呃,我们,我们单会讲这个constraint的啊,对吧?然后我们如果在传统的那个setting下面。

我们是通过这个matrix representation来解决的,但是,呃,在neural network上面,我们没法通过matrix来解决,对吧?对吧?

因为你没法把neural network表示是matrix,但是这是个很interesting的研究问题啊,但是至少我们传统意义上,我们没法这么去弄,对吧?那这个时候呢,我们就怎么办呢?我们就。

我们想想一些别的方法来引迫出这些,呃,这种这种cycle,cycling,或者passing,我们会讲啊,就是这种constraint,对吧?研究这个东西,然后我回到原来这个东西,对吧?原来这个东西。

we就可以用一个graph来表示,对不对?就是说,呃,你有三个node,对吧?然后每一个node是一个language,对吧?然后你有三个edge。

每个edge是一个translation network,对吧?然后,然后我们刚开始讲的那个例子呢,实际上就是一个single equation,就是f3,对吧?它没法change,但是你知道呢。

它等于f2和f1的composition,并且f1和f2都有足够的data去change,对吧?哎,就是,哎,这个东西其实我就希望大家就是,呃,了解,对吧?了解这些东西。

对我们叫做passive variance,对吧?它跟这个cycle consistency,它还是有一定的这个区别的,对吧?cycle consistency是along the cycle,对吧?

就是f3,compose f2,compose f1等于identity,对吧?对不对?是这样子的,然后,好,但不等于了,不等于,然后我们想,就是想问这样一个问题,那既然是这样。

就是你沿着就是一个graph,对吧?你任何两个点之间,如果你把这两个之间所有的path把它collapse在一起,对不对?把它的收集在一起。对吧?然后,沿每个path呢。

你可以定义一个composition neural network,对吧?那那也就是说,这个collapse of neural network,passive variance,f2,对吧?

它对所有的path都满足,那我们就讲它是passive variance,就是每个path的pair呢,它都给了一个这种regularization。

或者self-supervision的constraint,对吧?好,那这个地方呢,就有一个notion叫做passive variance basis,对吧?就是说,你有这么多paths。

是不是所有都需要,对吧?有没有重复的,对吧?对,有没有重复的,啊,它是不是,它就是说,你,我们,或者能不能说我们能不能找到一个small connection。

它能induce all the other paths,对吧?你有了这个small connection呢,你就可以真的去formulate这个training learning,对吧?就说。

每个edge的neural network,我们要一起去学它,对吧?然后有两个term,第一个term就是说,啊,如果有training data,那我们就把它enforce一下,对吧?

第二个term呢,就是说,它要,它要invariant along path pair,对吧?第一个是superfluous,第二个是unsuperfluous,对吧?对吧?就是这样子,对吧?那现在好。

那简单就是说,你如果要efficient的话,你要尽量让这个pair,对吧?这个basis比较少,对吧?越多的话,嗯,它有implementation的问题,它有这个什么,对吧?

它implementation的问题,它不是一个instance,直接往里面塞,对吧?你要build一些data structure在里面,对吧?好,那这个时候怎么办呢?我就是说,我能那个,呃,就是我。

我首先要定义怎么去induce,对吧?induce实际上就是说,它有三种这种induction operations,对吧?就是merge, stitch和cut,对吧?嗯。

实际上就是primitive observation that preserves the path invariance property,对吧?然后在这种情况下呢,你就会证明了就是说。

give a directive graph with n vertices and edges that exist on the path invariant basis with size at most O(n*n)。

对吧?嗯,就这样子,对吧?这个很interesting,你就是说,你这个,你不管,你这样一个directive graph,对吧?你虽然path pairs可以有explanation,对吧?

但实际上你能找到一个size就是至少是n*m的,对吧?这是一个passive random basis with size at most o n time, 对吧?对吧?好,这个正名我就不讲了啊。

然后大家如果有兴趣呢,大家可以参一下,有一个东西啊,就是叫做cycle basis,就是说。这是,这是有一个theory啊,如果你对这个东西感兴趣,呃,你可以去翻一下啊,你就查cycle basis。

查这个人的那个,呃,名字,你就能收到这个东西啊。就是我总感觉现在就是我,我讲完这个课,我会提一点啊,提一点,然后然后当然你也可以notion of cycle。

cycle consistency basis,对吧?就是地方的underwise graph,对吧?然后他跟这个passive random basis不一样啊,就是说那个的话相对来说也简单一些啊。

就是cycle consistency basis又简单一些。这就是为什么我们要把passive random和cycle consistency分开的原因啊,因为他的theory都不一样啊。

他的这个结果也不一样啊,但是有很多conjecture,testing是那个,computing也是NPR的conjecture。当然你说为什么我们不能做像stock,还是鬼你现在去做random。

sampling对吧?因为你implement每个pair,他都有个cost的吗?你要load一个data structure,对吧?他不像你一个instance,也不像一个instance,你都可以。

你可以直接去那个,直接去做bad propagate就可以,对吧?哎,ok,然后他有conversions的问题啊,好,然后这个东西work吗?in practice就是说。

就是说如果比如说你用一个这样的neural network,graph a neural network,对吧?那么note也能不同的这个,呃。

watermetric或者是那种point號在不同的表述中去下面,对吧?然后,那我们就可以证明就是说,8%的label,就是叫9%的unlabeled data就等于30%的labeled data。

哎,这就说明你用unlabeled data还是有用的啊,然后呢,呃,在特别sparser的情况下,呃,直接直接inforce这种passive random或sample random。

他要比用这种low rank的technique要好啊。好,这还有一些,这是这个这个videos啊,好,这种课呢,这节课我今天我们就到这,呃,然后我想讲的是什么呢?就是说,呃。

这个东西你如果对这个东西一点了解都没有,有点听后面一部分,前面的例子我希望大家都明白了,你后面的这个东西稍微有一点点就是比较technical啊,我可以去读书,读读这些文章,我想讲的是什么?那就是说。

呃,特别是这个deep learning的时代,包括我自己学生有这个问题啊,我非常坦坦坦坦,我就是说,你如果想在这个方向做的比较深,做的比较远的话,我觉得你还是要多读一些基础的东西,把基础打牢,对吧?

就跟大家做体育,你把体能对吧?练一下自己的体能,对吧?能力对吧?呃,就是多读一读这种优化graph theory啊,优化这种东西啊,probability啊,这些东西,我觉得你虽然即使是做重新学对吧?

嗯,还是有好处的,对吧?还是有好处的,嗯,至少让你能站得高,看得远一些,好吧,那我今天就讲。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES203: 三维重建和理解 - P7:Lecture 7 Point Cloud Processing - GAMES-Webinar - BV1pw411d7aS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有声音吗,有声音了,百分,我们我们接着讲课,这节课这个有声音了啊,好了啊,我们我们接着讲课,那节课现在这样啊,就是就是就是我们接着来讲啊,那现在有声音啊,就是有声音啊。

就这节课啊啊我我想讲的是什么东西呢,就是说现在大家都想做deep learning对吧,都想做deep learning,没图像,有图像啊,我这看有图像啊,你们再刷新一下,对吧,就是。

就是你需要学这个traditional of,which will be useful for developing,point best new network对吧。

就是就是我们现在学的这我就读三篇文章啊,这三篇文章都有20年那个了,但是你发现就是其实你的如果就是你没仔细,如果你们还是有很多你不知道的啊,第二个是我觉得你把这三篇文章读读懂了。

基本上这个point firepresentation,一些一些传统的东西能够就有一个good foundation对吧,to give up new that。

其实你看现在的比如说foreign convolution啊,dnm这些东西大部分的这种crimitive都在这三篇文章里面出现了啊,我们不算第一篇文章叫做point shop three d啊。

这个是那个西瓜2002年的一篇文章啊,其实我2002年也是我最开始大概是那个时候不近嘛,我开始做笔设计了,我当时就是读这份上,我觉得就是说第一我不知道,我就是想知道他这个是干什么对吧,你现在回过头来。

当然就是好多时候你随着人的这个知识积累,在所有有头来看这些文章,你可能有一种啊,可能有一种那个不同的看法啊,我同事因为这是个提高课吧对吧,我也想讲一些这个,就怎么说呢,就是你怎么去做你事情。

比如说你将来你将来如果我知道这里面的学生有多少个,将来会去做这个会去做笔字去啊,我我我并不知道这个东西,但是我想你如果要真正做设计的话,我也会提一些。

就是说比如说我们那个graphic那个build怎么往前发展对吧,怎么往前发的啊,这个是这个是比较重要的啊,说这个是比较重要的啊,怎么往前发展啊,然后那个我也想讲一讲这方面的东西啊。

就是说你你你首先啊就是说一个build的,比如说你说point base graphic对吧,你说这个point的base是一个good representation,首先你要你如果从长远来看。

你要能支撑这个东西,你具备具体需要具备具备三个条件啊,这个我我会把这个课讲的稍微随意点啊,这样大家有有点希望有点听相声的感觉啊,我尽量尽量把这这这节课的technical不是很那么壮了是吧。

我我就会给讲讲一些这种假如说大家大家大家愿意听的东西,你比如说这个py的base graphic对吧,他为什么是个raptor,就是你要有这个学科啊,他第一他就是说第一一般情况下像这种图形学和教低视觉。

它是这种应用学科对吧,他这种应用学科对吧,应用学科是什么东西啊,应用学科就是说你必须有比如说几个要素,第一你必须有一个data set对吧,现在做模型的你没有个data set,你比如说神秘地对吧。

有shape net,什么pop net这些东西对吧,什么啊,那个什么sc啊,现在咱没有了什么three d france这些data fat对吧。

第二个呢就是你要有一个open source software对吧,让大家都能用的,当时还没有get up对吧,你看bd它就是一个software对吧,然后然后让大家来用,对不对。

就是说你有一个fbi呢,就是说你真的能experimentally去bil些算法对吧,第三呢就是要有一些opening,就是skeleton对吧,就open the futhe work。

就是skeleton这种的这种work,唉这几点是缺缺缺缺都缺不了的,都缺不了的,呃所以所以我想point three d呃,我们首先要怎么去看啊,b就是要觉得他就是要看到一点。

他是真的推动这个学科发展的一个很重要的方式,对这是很重要的好吧,就比如说你们将来做旅社群,你不管是说把grapp应用到一个比如说石油勘探啊,呃比如说这个做做这个商人地图啊。

啊他好多时候都是要有一个双子来推动这个东西的,这个你有时候你这个双子不是一个人,搞不懂现在几个up上面对吧对吧,你比如说我学生的嘛,歇歇一些,soda对吧,有时候一个大的sd他往往是很多人一起看去对吧。

这个东西我希望大家注意啊,特别是呃我反复强调graphics of vision对吧,这这这这这个东西这个东西很重要啊,这个东西很重要,好point three d呢,但是现在他2007年他就不可以了。

2007年他就不不那个了,他就不不support了对吧,这个维护它是需要成本的嘛,但是我觉得就是从学科的发展角度来说是吧,它起到了一个很严很重要的作用的对吧,他其实就是说他是干什么的。

他是他是有一些一个系统对吧,然后呢他support一些basic的这种这种这种component的,比如说他说话对吧,因为这是个挑课,我觉得力刚老师肯定给你们讲过。

这个肯定给你们讲过这个参数化等等这些东西啊,对吧对吧,它可以做resembling对吧,可以做对吧,这叫operation对吧,就是在这个我会简单的介绍一下对吧,就是说你build一个系统。

比如说你做一个reputation的角度来说对吧,当然你说比如pvp就可以做几百个,几千个那个,不同的不同应用对吧,但是嗯你从从从从学科的学术发展的角度来说,他总有一些应用对吧。

总有一些应用是最基本的对吧,我们需要把这些最基本的哎做好,然后呢复杂的呢往往是这些最基本的排列组合,那么就是compose在一起啊,这个我希望大家那个注意对吧。

你比如说做我们讲这个representation对吧,比如说像pcd是这种ea bleed repetition,那比如说参数化对吧,the max对吧,其实还有朋友呢,我今天没法讲啊,就是你可以做做。

可以在那个可以在这个破被这这这个service上面做special special的那个single processing,比如说resampling对吧。

比如说editing对吧啊我今天会讲一下这些东西,然后你会注意呢,就是有几点你会注意,就是呃我中心会提嘛,有一些东西是需要大家注意啊。

就是这是一个extended interactive system for cobain是吧,它实际上就是把这个photoshop对吧,把photoshop提高了这个到three three d上面去。

就是you swedish service pixels对吧,the circles或者叫normal was also desplay and modern对吧,其实pn倍数很重要的一点。

它一个东西或random对吧,这个我也没法讲对吧,可以去看那个cos rose啊啊ryin其实也是很interesting对吧,就是说对,就是说你比如说他这个拍出来就是这样,可能你有一个input对吧。

very recoser model对吧,然后你就说这个sec对吧,output呢是一个point seven model是吧。

the door require intermediate tegration是吧,就是这样子的这样子这样子的对吧,啊它是一个这样的东西啊,啊就是你说这个东西现在可能大家不一定用了对吧。

这个但是我们要学的是很多东西是怎么弄的对吧,其实怎么就manifate的point对吧,以前大家做过什么样的工作,我觉得你把这些东西也会了解,你真的去就open一个反复强调,就是真的你后面几万的。

你牛奶的我有什么用的啊,好concept,就是比如说preposition,其实比如说你看啊这是一个什么呢,这都是point base啊,它是rader出来,是这样一个东西吧。

比如说比赛里有一个patch对吧,然后呢我可以我可以在这个上面,比如说做一些resampling对吧,就是resampling把它做成参数化对吧,传说化了以后呢,你就可以贴纹理嘛对吧,就是可以贴纹理嘛。

但是就是这有一个问题,就是说我们没有一个选手的mac,我想问一下你们对这个mesh的参数化有没有网格的参数化有没有了解,就是力刚老师应该讲过对吧,这个东西应该是很重要的啊。

我觉得就是科大力刚老师那边传说的话做过做过,就是他们组做过,应该最近做过很多这样的工作啊,这这个很好理解了对吧,你如果学过open gl的话对吧,你还是给一个tech corner,他说话嘛对吧。

然后你们贴贴纹理啊,好那t corner实际上就是说你去我们需要有一个这种point cod对吧,呃就是bring service brush,your common referring。

然后然后然后要你要做这个dynamic resembling,然后你做对吧,实际上就是说你有一个anything operator对吧,然后你有一个pose,然后你有一个brush。

然后然后你就可以可以可以做的,但这个其实很好理解啊,关键就是参数化啊,关键就是参数化对吧,他说话怎么做呢对吧,其实就是说这个东西啊啊我不知道嗯,现在来讲这个东西的话。

其实嗯首先3号这个问题有没有完全解决,没有对吧啊,现在是不是热点了,这个东西很那现在还是一个大家非常关心的问题啊,其实从98年啊,也包括我们的顾晓峰老师对吧,嗯等等等等,这个很多人研究过这个问题啊。

还没有完全解决啊,数据上也没有完全解决呃,现在在这个deep learning的这个趋势下面呢,啊还没有人真正用deep learning去查询这个东西很少啊,这个东西啊,对吧,但是没有完全解决啊。

但是我我现在就是觉得就是说至少一些基本的方法,大家要知道啊,当比较复杂,他用了很深的数学工具是吧,看包括启航学啊,这些东西一直用的很多对吧,没有完全解决啊,一般情况下我推荐是什么。

就是如果你学一个东西啊,就是说你不可能你像我也不可能知道所有的东西,我知道一些啊,我不可能知道所有东西,但是我会知道一些基本的对吧,然后知道了基本以后,我就会去这个,我就会去那个弄那个更更复杂的啊。

就是说可以通过阅读吧,我今天讲一点最基本的东西啊,但是这个参数画一个写本书啊,呃这个写文写了本书啊,好吧,ok然后呢它实际上呢就是说这个这个算法呢是2001年,svip有一个做mesh吧。

或者you graphics to match的这个算法是吧,c管和2002年我们就把它用到那个群算法啊,反正就是瘫痪,你就记住它在几个优化对吧,实际上就是说比如说你有一个优优,就是那个preme对吧。

就是说你要你要求解,就是每个点我要给他一个promise对吧,对吧就是比如说是这样的,这大概就是说实际上就比如说用户比你有个mod对吧,你写point对不对。

mod一些point跟那个跟个啊这个tt对吧,因为color这个image对吧,然后这个kiphone都是对应的,那我如果有keen声音呢,你就可以得到一个这样的参数化。

参数化就是就发现这个iphone了呀,他就是对应的那个ub是吧,那上面实际上你可以理解就是说我知道这些key point的那个参数对吧,我想把它卡出extrapolate到所有的点,没什么,对吧。

他的话就是说你find find the magiex that minimua,minimuof jection section是吧,就是说啊实际上就是说你优化的实际上是呃,是实际上每个点的参数嘛。

每个点的参数对不对,然后呢你要然后呢你的你要满满足这些点呢,它的参数是要对应的对吧,然后你还会有一个就是说你还会有一个reacez什么,因为第一个turn对吧,第一个称左边。

比如说你在这个音频上面有三四个点,那么只有30个ctrl对吧啊不够对吧,还需要加一些additional constraint对吧,叫regalization对吧对吧,那那怎么说呢,就是说。

就是说你做参数化嘛,那就是说你要买一些这种discortion对吧,比如说一种传统的方法,就是说那个要让这个东西添上了mooth对吧,smooth对吧,就scared qq群。

you can local polar recondition吧,就是说你要这个参数啊对吧,它实际上是一个meme,你要这个餐的话,要smooth对吧,你要你要你要尽量smooth对吧。

呃实际上就是说你可以呃可以可以把这个参数化对吧,呃用这个logo的proxation对吧,就是给你一个点,给您周围几个点对吧,那我就可以啊,就是用这种离散的办法去approximate。

就去逼近这个连续的东西对吧,你就会得到一个离散的formulation,对吧啊,实际上写的就是每一个点的那个每个点的参数对吧,然后同时邀你这个这个鬼一点的尽量的不对吧,唉是这样子的对吧啊。

它是这样一个东西好吧,map wii,那下面就是说你怎么计算这个derivative在一point of上面对吧,就假设你有一些点哪个上面有,就是你怎么就是下面就是这个问题了对吧,就是说你有这个方面。

但在这个方面的一些不是不是不是那种最r的最终的,所以有很多别的方面类型的方法对吧,比如说你还要让他cfo啊,这些东西我们就不讲啊,我希望唉我希望谁啊。

比如说黄金老师来给你奶奶讲一个这个边上的那个传说话对吧,vx只有顶端对吧,我也可以想啊,但是他可黄磊老师做这个的啊,他应该觉得来讲我觉得这些东西都很重要啊,我我个人感觉或者我们要写峰老师来讲一下。

我个人感觉这方面的人还是还是很很有意思的,能学到很多东西啊,好那我们现在就这里就搞一个,那不那么就是这个像什么,就是那个l two mic是吧,其实他也这个核心的就是说你怎么在点云上面去算这个东西。

去formulate对吧,至于是什么样的potential,不是这篇文章嗯,重要的对吧,我们要讲的封印的loud,它是离散的对吧啊,那你怎么在零三上面算嘛对吧。

那也就是说在每个点上面我有个fashion valley,我怎么去计算dervity of demand order对吧,那这个时候呢你就build一个no cocodex对吧。

direction extensions,diy different based on taneous neighbors对吧,就是说你有一个点对吧,然后你基于周围的点对吧,然后你算一下这个呃。

算一下这个normal section,就是放一个这个cosystem对吧,就是一个corner system,有了这个coding system以后呢,你就可以在这个呃点云上面做这个做这个离散计算啊。

最简单的一个算法就是你把它你把你你把它给参数化嘛对吧,他说话啊,还有就是比如说你可以可以假设这个呃可以做一个logo的这种b对吧,做一个logo的b,然后那个呃然后,然后然后然后把这个东西再带进去。

所以我就不讲了,我就讲这个我跟你我跟大家列出这个问题对吧,就是你怎么在点击上面哎去做interpoation对吧,做ation啊,然后呢你说了这个以后呢,它就会变成一个这种display的这种问题啊。

display的问题检查说话啊,然后你可以求解对吧,哎参数化,这是参数化的问题,然后还有一个重建的问题啊,这个谈话我因为今天东西很多啊,你这个地方你没听懂,那没关系,你就知道啊。

我就希望你知道有这么一个问题,就是怎么在电源上面做做做点题啊,你记住这个问题就好了啊,自己去看一下啊,然后今天东西有点多,我主要是也是一个这种highlight这种东西啊,就是然后你可以再点。

然后你就可以有了这个bug做这个fm进行集优化嘛,啊接换一个就是做一个历史规律的批评啊,好你猜不化,那么生生下来就是你怎么从连续的对吧,呃怎么从离散到连续对吧,就是extrapolation对吧。

就是说你给了一些钱,对不对啊对吧,然后这个东西呢我就不讲了,因为我们在讲那个invited section和我们讲这个东西啊,实际上它核心思想就是什么,你怎么得到从理想得到连续。

那你就是做一个basis对吧,就是你有一个这个iu对吧,我们我们我们讲过radio basis b对吧,其实就是说你把这个连续的对吧,把离散的把把它把它变成连续的,加一个basic啊,然后就可以对吧。

然后reconstruction with a feeding sections对吧,就waiting section for the space,对吧就是嗯哦好吧,这个我就不讲了啊。

这个我就不讲了对好,然后就是重建吧,重建其实就是点名你没法避免的一个东西,因为你是离散的吧对吧,你需要把这个离散的做一些interpolation嘛,对吧啊,这个point这个我刚才强调了对吧。

我们在做影视曲面的时候接触到这个东西,接触到,然后这个sc还提供什么东西呢,比如说ing operation对吧,比如说做painting对吧,就是如果你有了这个以后,你可以在上面加一些纹理对吧。

你可以做一些这种,可以在上面做一些这种displacement对吧,有了参数化以后。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有了点击参数化以后,这些东西都可以做对吧,这个rendering我没讲ring,其实说白了我不知道诶,呃那个那奇老师应该讲过对吧,比如说rendering最重要的就是什么,你就是一个ready。

你怎么跟这个surface去算那个焦点对吧,哎你这破破的靠怎么做呢,呃一种情况下就是我们待会会提到,就是说一种就是我们把它变成一个隐形曲面,对吧对吧,我们那个做呃前两节课讲过对吧。

呃呃然后你可以用一个瑞跟隐私曲面积相交对吧,还有一种就是你把你找到找到那个最近的吧,就是这个跟这个瑞最近的那个pixel,然后用那个pixel那个quin对吧,做repaint section对吧对。

然后我想说的是什么呢,就是如果你真正做的好的话,你看这个rs效果啊,你看不出这是一个点,你知道吧,你看不出这真是一个point cloud对吧。

你还是有很多这种呃这种rendering的exce出来的啊,啊这就是为什么point in the base graph,07年大概就从99年到07年8年的时间啊,是一个非常active的比赛去。

就那现在肯定用active对吧,供应链的解决了这个呃machine learning的问题,那我一回来了对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊对吧,ing operation是吧,tering appearance and geometry对吧,你比如说你可以在上面可以detect的那种feature,feature对吧,这是优酷app。

也是2003年的一点配合可以做这种模式好,这是我简单的讲了这个sc对吧,呃我没讲这个technical details对吧,我们总结一下就是有几点我们需要的叙事学到的对吧,第一就是说一个学科你要发展好。

你必须有一个大家都公认的,甚至是几个大家都公认的刷回来啊,我觉得或者data set对吧,或者是那个比较有名的算法对吧,大家能去cp,我觉得这个逃不出这个这个东西是离不开离不掉的啊。

第二呢就是一个氛围呢,它会有一些最基本的东西,比如说他说话对吧,你给一个patch,我能做参数化对吧,这样我就能贴文理对吧,我能做这个上面的点,我就能在point cos上去做对吧。

第三个就是说你怎么把零散的把它重建对吧,就是重建成连续的对吧,基本上对吧,你通信靠基本上都是这这就是一些北体的东西,那剩下的东西就是在它上面,好那下面我讲两篇文章吧,啊都是那个mark fly。

也是这个tutorial的那个一个,呃呃一个一个一个那个organized吧对吧,就是两篇文章啊,你鞋是什么东西呢,比如说啊这个比如说我们要做mesh对吧,如果你跟那个谁或者说跟周鹏老师说。

他就会告诉你对吧,你首先一定要自己实现一下这个magic vacation是吧,就是pcd,你如果说的好啊,我建议您也要去实现一下point cosliation simplification。

为什么呢,这是通过之后这个东西啊,你对这个data它就了解了,那第二就是说你做这个过程中间,你进了你就慢慢了解了一下这个pc最基本的一些operation,这个东西是是最重要的啊。

我现在其实觉得比如说我们d wave这个呃,point of base the new network对吧,嗯我觉得大部分学生啊,他他是不知道你们不知道这个对。

以前那个比如说创新号vacation sevication,我觉得你很多学生是不知道的对吧,怎么做的,我觉得这就这就出现了什么东西呢,就出现了最近对吧,最近的这个一些现象啊。

其实我个人觉得有有有有抓到的,那其实很多大家都是没有抓到对吧,但是抓到他性质比较严重了,太太明显了,但是实际上我想强调强调一个什么观点,比如说你问我的是什么观点。

我就觉得现在啊这个整个这个deep learning这一块,这近亲繁殖太严重了,什么近亲繁殖呢,就那么几个最简单的东西对吧,然后大家用来用去用来用去对吧,就是就会出现什么。

就是说你第一篇文章跟上面文章很相信对吧,你图呃那个图差不多对吧,那个图要干什么都差不多对吧,形成了一种模式对吧,就很容易进行繁殖对吧,你查出来了是吧,有的是可能很多还没查出来的对吧,你自己去除对吧。

大家都有这种感觉是吧,我觉得这样是不好的啊,这就是我这门课为什么跟你讲20年前的文章对吧,哎我觉得这些东西往往是最重要的对吧,呃你比如说point cos上面有有点像或者选大家怎么做的对吧。

诶你把这些东西了解了,你就是嘛,你就听样子,就这就是从从从遗传学的角度来说对吧,我有说看整个学学科它会怎么发展,最开始比如说你老虎吧,东北虎明园最爱巴斯老虎对吧,你如果把这些to学好以后。

你可能最开始就几十字,对不对,这样的话他就我那个金钱房子相对来说就能改善对吧,懂我的意思吧,好吧哎所以我跟你讲两篇文章,20年前的啊,这是对这是roduction对吧,这是干什么呢。

承担这次motivation,就是说你你是个podcast现出来的对吧,它是用for sampling嘛对吧,uniform samply对吧,那其实这个非常nice,family。

那many application require coopoxation对吧,这种cost这种approxation对吧。

ebb and storage special processing ring对吧,就是我们需要这个same producation,map,reduce complex deo对吧。

好比如说这是一个与三毛对吧,就是十个10k20 k60 k222 200k那2000k是吧,好那我怎么来做simplification呢,这是这篇文章就讲了三个方法对吧。

就是说嗯heroic hierarchical classroom对吧,其实你要说这些东西从哪来,从vision里来的对吧,intro intro ducpk是从mesh来的对吧。

the party of similation,我觉得这是一个啊也会靠的比较独有的东西,然后后面呢很interesting,就是有时候也看这个学科怎么发展。

比如说他们最后在这个文章的基础上又做了什么逻辑呢,在这个文章的基础上,他们又做了,比如说point of base information simulation,ok好,那么一个一个来讲吧。

首先我们就是这是一个to local serviclc吧,这是我们需要掌握的一个to对吧,就是就是我们这个point sample describe the one in manipulation对吧。

我们就是说我们需要就是说啊,我们能不能从这个point得到一些logo的surface property对吧,比如说啊我们如果想做approximation的话,就是movidispler对吧。

我们两个之前讲过的这个东西,然后还有fast assuming pansion,plan college是吧,这个pc啊啊这个我们讲一下啊,就是这些东西呢呃是tv repetition最主要的东西啊。

最主要的东西啊,最主要的东西,然后呢你build on top of this,比如说我们要算这个,比如说算一个tension plane对吧。

the man上面那就是每个点的one renewable,我可以做一个测评视频,对不对对吧,然后那个name replace to tida,forgive me special for。

你在point com上面,哎你的name是什么啊,这个东西我觉得它就比较比较interesting啊,这个东西就是比较interesting对吧,实际上就是说呃像point of或者说约定。

包括后面任何一个做简约的东西,包括现在做第2年对吧对吧,你都需要什么,就是一个点周围的navel,我们需要知道,对不对,哎,就是computer nel queclean di。

incompleted pi,就比如说这个东西怎么算呢,就是怎么算呢啊就是说你一point cos上面就给你一个点对吧,你需要很快的找到他的kneighbors,kneighbors这个东西啊。

其实比如说point shop three,它有一个自己的input dation,它自己写一个kd train啊啊你包括matlab,其实它它有这种data structure是吧。

就是不同的data structure,他有他有poon count,那决定了就是他的那个performance,在于你这个呃,在于你这个呃东西有,就是你这个点的distribution啊。

in the distribution啊,如果你是像一个service uniform distribution的话,你可on to比较好的,非常好啊,如果是以very的话,kd去。

就比如说有的地方非常赞啊,要非常快,这个是用什么去比较好,kd去比较好对,还有b sb啊,群这个啊,ok canyneighbor,对不对啊,然后呢这是一个东西对吧,你cany’s neighbor呃。

这个东西它你说好不好呢,决定也决定啊,你如果做这个angular,如果这个地区是regular的时候啊,你这个nahood你需要什么,你就需要每个方向都有,对不对,哎所以这是安卓creria对吧。

既然这个东西怎么做呢,实际上就是说,你可以就是sneighbor based on angle对吧,就是说你首先找一个大的candidate对吧,然后在里面选一个小好吧,这样然后当然还有一些别的算法。

就是logo提供ation啊,我这我这个课好像没讲对吧,没讲就是说有一个就是computation的简要去背的那种充电啊,从从学术的角度来说,他还是在呃还是占有很重要的地位的,其实就是内系列文章。

比如说nina mana对吧,现在davi啊做过很多很多反对小的工作啊,就是什么呢,就是说给定一个surface,包括time a day啊,现在在辅助啊,就是,你上头一些点对吧。

如果你这个三文说的好的话,我只能cover,我们就能收回,performation of your maj,这几个上top top的都是become,然后下面就是一个这种covier老了。

covier老了对,就是confirm啊,这个东西是干嘛的呢,就算那个normal对吧,就算科v准就名科北准啊,这个东西啊就是我们前面我们前面也讲过吧,就是这个就我前面讲过一次啊,其实怎么做呢。

就是说就feat your brain to set a point是吧,这个地方呢就是你给力一点,找t0 对吧,然后你就做这个pcl,老老实对吧,你这个比如说点云,它就是一个3x3的矩阵,对不对。

然后还有三个特征跟,然后因为c是因为c是半分,你知道吗,半分离的,所以他但实际上这个这个东西mini edge吧,现在说大家要清楚所有的一个value都比较value,对吧,你找到精灵。

然后你c的一个这个b c a就能得到他的口算的i跟max,然后这个地方很interesting,就是说啊是吧,就比如说total by vision,就是所有点对吧,照你这个到你这个ser的情况对吧。

它实际上就是所有的车能跟相加对吧,然后你比方那个sp版本就是最小的那个男的,名字是最小的那个圣人根对吧,这个实际上是mor fc,就拿作品猫猫对吧,实际上这个东西等价于什么呢。

实际上它是等价于这个名词名词啊,就是你在电源上面做pc对吧,你不仅仅是i can make a管用,agon vue给你很多东西对吧,就是说那您以外就摆这个东西对吧,然后你可以做个实验。

这块就是original link vision的,然后你会发现当然当然就是说呃这个viviation呃,就是说bance viviation就是这个公司啊。

让你去tiness neighbor或者diy的时候对吧,得到这个词,你发现还是一个非常good proation,非常good proximation,这是covery analysis。

后面我们做过那个integral various,实际上也就是说呃简单来说就是mc vision是两个pencil crash像相加对吧,嗯,然后还有一个高频科学学吧,高兴科技学实际上就是他跟什么相关。

他跟这个debu可展曲面相关对吧,可可展曲面相关啊,就是说如果高科位就是零,就是有一个科学学,他是零对吧,哎然后这个,对吧,inclusion variation对吧。

vivation the origation,好ok然后我们后面说的那个in tegral就是怎么取名呢,就是积分不变性的这种descript啊,就是就是helmetman啊啊收到了。

然后那个也可以证明,就是说基本上得到这个debution,得到mc是比较容易得到,高科学有点难度啊,有点难度啊,这个这个需要的工作要更多啊,而且高兴,可是往往我记得不是那么懂的,毒霸你要在曲面上。

你要估计这种高性qq群非常难,mean couvature比较重啊,这个估计的比较准啊,其实这种mk vision,ok对吧,这就是这就是我们前面讲的这个covim和牢牢整齐的点。

上面这个q我刚才讲这个to是希望大家记住这个to,我是希望大家记住,好吧好,我们下面就讲一些machine learning的东西,data mining的东西啊,相关的对吧,就是怎么你用用了这个东西。

为什么要坐牢了呢,就是因为就是我希望希望保持这个频率比较高一点对吧,我尽量让那个地方三步的dh一点对吧,这这是这是这是这个go对吧,那怎么做silication,它这个东西有些东西不是pcl的固有的啊。

有些东西是point cos固有的会我会强调一下是吧,它实际上是一个top down po对吧,就是说我不断的把这些呃,把把那个不断的把这几点公布在一起对吧,就top down approach。

就是不断的区分区分对吧,to the positioning,然后呢,我每一个petitions就得到一个class吗,在class里面找一个webentity,是不。

就speed paint方把time roid的action对,就说你如果这里面的点它是有variation足够大,那就说明这个地方很很,这个曲面很复杂嘛对吧,非常简单的一个princible对吧。

那我就怎么样,那我就需要在这个里面怎么样,我需要在这个对吧,对吧,然后你不断的提醒,当你这个revision缩小的时候,他就能背什么,背一个plan b的好吧,那这个时候呢我就对吧。

这是这是一个人这个东西,这个投稿表他们做的很好啊,就是说比如说你有一个to d的东西对吧,这有个有一个play,他们都会怎么怎么做呢,就是基本上是,对吧,就是说呃你首先算所有的点都删除对吧。

然后沿着什么东西处理的,也肯定沿着那个就是那个男的,就是最大的那个方向,因为这个地方的ban最大嘛对吧,沿着那个方向去做媒体对吧,沿着那个最大的话要做sli,得到两个以后对吧。

然后你就不断做switch,对吧啊每个对吧,然后哎这个东西我建议大家写一写,其实还是很有意思,对吧,那最后的话呢就在每个历史的里面呢,这个你做一个这种做一个做一个这个歌词很细节对吧。

红的就是那个所有的那个list里面对应的那些黑点,把它算出一对吧,非常简单对吧,这是一个那个呃对吧,就是就是那个petition对吧,然后不断的partition负担,petition这个结对啊。

你还可以说这种adaptive对吧,就是说呃你可以在那个举高的地方,让它在这个shopping的那个快递员对吧,所以说这个w是class对吧,唉这个算法很简单啊,这个算法很简单。

啊你在mac上面可以做这个东西啊,在mac上面的那个做这个东西,其实我觉得这个东西你比如说最近大家有没有看一篇pv,就是在合作的both knet facebook上对吧。

其实他就是不断的对这个point去做什么,去去做contraction,其实这些东西我讲这些东西都我都相关的啊,后面具体讲一些探索的时候,我会我会想我现在提提提提提就是讲这些东西就是给大家一个bo对吧。

将来我们去看那些文章的时候,眼光就不一样了对吧,就比ok对吧,是然后第二个算法这个东西是从max来的对吧,就是match preligation时候用这个东西对吧,它实际上就是说这个是bup。

我不但上面那个字,我不断的把所有点分类分不肯定对吧,你看上面这个东西非常明显的就是不断的肯定ition,对吧,这个地方就是esilication,就是,这个东西是从哪来的。

就是说q都是match上一个非常经典的文章啊,算飞行1000多吧,好像5000了吧,我记不太清楚了,就97年的文章,1997年的文章啊啊,非常simple非常简单啊。

那么他们看到这个放在cos上面怎么做对吧,实际上就是说,这个东西怎么来,就是你不断找两个点,把它默认成一个点对吧,那也就是说我们要定义一个mac,这就是为什么找这两个配合点是吧,我不找别的对吧。

就是说实际上就是说什么呢,就是说你simplify以后,你把两个点默认成一个点以后,你这个新的点他要跟原来的那个东西怎么样,原来那个service怎么样怎么样,要要尽量的信对吧。

就比如说你这个mod是在planet reach是吧,就是flash vision上,它实际上也就是说实际上代代是什么呢,就是说就是每个点呢,就是在中间的时候我都带了一个,我全是form。

就是说你给你任何一个点,我知道这个点,比如说这个点是前面100个点improvise出来的对吧,我就到前面100个就是他的那个呃周旋这100个点的那个啊,加这个的这个decent平方和对吧。

就是plain plain by max,什么意义的p r g b是吧,然后就算一下啊,这个这个这个我再讲一遍,如果大家不理解,就是说我不断的找对吧,但是我每次呢我找的时候呢。

第一我要知道哪个连两个pad能更好的被finished对吧,能把它cp在一起,我要知道新的点我放在哪对吧,新的点我放在那,那怎么做呢,就是每个点呢我就define一个,好像那个缝对吧。

那如果最开始点就是这个点对吧,这个屏这个normal对吧,point的话,normal这个回答是或后面当你把两个点位置在一起的时候呢,你就把两个点的火车去boss那样把它加在一,这样一个东西啊。

这个东西是这个color half 9706文章去搜一下,搜到电影名来的啊,那个文章就是打印机的声音,就是说为什么影响力大了就非常简单一个id对吧,同时可以简单在简历上面用,同时也是在检验上用对吧。

那就是说你computer initial point fairs,the candidate对吧,你就computer就是fmental protesting对吧,然后呢你就sympa以后。

然后看看就是说就是说找那个最好的那个点,看到的比例就是多少对吧,你把两个点移成一个点,我保不下来,就你就把那两个反的慢走和标准加在一起,然后你就会对吧,就是比如说有些edge每个有个cos。

这个cos就是那个cosy的最小值对吧,然后你就不断的首先把这两个点对吧,扔掉吧,扔掉以后呢,然后你就会然后继续update as,就变了以后就叫update跟这个点相邻的这些edge对吧。

你要把那口袋里报名重新算一下啊,然后你再找再找每个最后你就找到这,啊啊核心的东西呢是那个q那个那个match superfication的那个算法,这个地方你发现点名上面特有什么关键。

你还是要找一些没准,对不对,就是每个点都为那几点对吧,诶,那kenneighbor对吧,我做contraction,对不对,好吧啊,所以这个neighbor做点源的processing是非常重要的。

其实反正mac lab现在那个库应该不错了,应该a kn 40,max lam kn 4是很好的,这是intrusive simplication对吧,我们in the model。

increment model对吧,然后还有一些就是剩下remain point,there contraction candidates对吧,对就你发现就是基本上就是这种科学的地方。

你发现地还是比较多对吧,flag的地方啊,就就就那个就点就车比较多啊,这说明什么,这说明那个match acation上来了,然后对就是有很多啊,你不要小看这些plication啊。

这不是这不是你这不是低空两点,我不学的,我是绝对不行啊,这些我说白了就是讲女方哥在里面反metal的东西,最反metal的一些算法,完了其实我想呢你可能觉得黄老师也没讲特别多,我其实说白了我看这种课吧。

我就跟你讲吧,其实说白了你就是我会讲一些东西也不对,但我是更重要的,我就跟你讲这个学科对吧,就是哪些东西是最重要的,哪些文章你应该去读对吧,第三个那个东西呢它是一个postulation。

实际上就是说我怎么用一小部分的这个point,那个点去那个更dance的东西对吧,moon service quality对吧,就是说你会定义一些这个这个pose对吧。

就是同时也能呃可同时也可以用来做upset对吧,就是这个simillion是irendering pread pole对吧,计算一些boss对boss就是这些点对吧。

就是所有其他的点去把这些particle去拉他吧,如果一个地方如果一个地方没有点的话,那他就需要把一些点给拉过去,现在,然后呢你拉过去以后呢,这些点它当然它就不拉过了。

update一些点他就不在那个分明的ji,我在这里给一个excel对吧,就是enzation rendering spread对吧,然后呢会有一些力把它去拉,对不对,把这些人拉拉完以后。

他就不在这个设备上面了对吧,然后你做一个projection再回去吧,就这样不断的update啊,这个东西从哪来,这个东西是从那个ping出来的对吧,就是最后呢你你会出现什么,最后就是这些点啊。

它都是1000对吧,如果你是以reaction或者就是有些地方没有抛不掉,那那那他周围的那些点会怎么样,他会有一个那个非常大的force把它往那个地方去拉对吧。

最后呢就是说实际上形成一种equilibri平衡对吧,就形成一种平衡啊,对吧就是partition对吧,这就是那个一个结果啊,可以说就是你可以就是可以把这个力的这个定义啊。

就是这个service的那个这个科学好吧,magic这个error对mac diss必须替换上自己的三个flash出来,melo对吧,就是说做一些做一些这个问题。

然后mrero就是说你sirfid的up sample对吧,然后你可以比较两个字的区,然后你会发现就是说嗯海go crap肯定是最快的,但是他的这个positiation它就不那么不那么flag。

然后这个什么最慢呢,对interactive这种crification是最慢的,但是它最accurate啊,就最accurate,啊然后一些比较对吧,就是说aero classroom。

那肯定是最efficientation,也是最简单的,对不对,simplification就是他这个effici是吧,但是控制控制这个service control error对吧。

但是你这个control相对来说就不那么reaction,一直在想ok了对吧,simulation就是esia,还有比较efficieno也比较不错吧,很臭对吧,我比较flexible对吧。

可以定义那个力嘛对吧,那个力可以体现呢各种hp对吧,你不a等相对来说复杂一点好吧,那我们就休息三分钟五分钟好吧,然后我们接着回来接过头来讲,下半年没配合好吧,谢谢mozing啊。

啊这我这个里面我们也会学一些别的东西啊,学一些别的东西,这个文章啊就是efficient to savor of point of psimple,j,大规模混了,还有一种做up sey是。

就说说up family啊啊我我那个谁,我明天明天我去学校啊,我把那个都update,你可以在网页上找到了,我今天忘记up了,up主我是那个pdf那个s,小虎牙大规模混靠fbs采样率低。

做一些up sely啊,其实,嗯这个比如说lia的这种v人那个破cd被采样,那个老师这个801里面有没有到,可以去,你可以去那个参考一下,现在用既不能做到的怎么做是吧,你可以做up 300。

detail贴上去对吧,如果有个参数化是可以可以可以在这个logo的这个point cod,其实现在没有解决什么问题都没有,那我可就说鼻子破烂的啊,我我我在讲这篇文章。

我跟大家大家一个在这里有个互动对吧,这个呃,抗的你如果问我对吧,deep learning,那破号最主要解决是什么,就解决了一个and stan,看point point net上面对吧。

你做的是做这个and standing,而且detection这些东西做得非常好对吧,状态都standing是吧,three division做的很好,麻烦你现在对吧。

你趋势上我觉得大家不会用bug卡对吧,比如说第一你推荐sc是吧,我会选对吧,a s d f对吧对吧,啊对,pricy解决矛盾的问题,我觉得还是要有一些是logo里的参数啊对吧,而且实际还是要跟什么。

还是要跟这个ing的结合对吧,你比如说你ining the day,可以可以可以可以可以可以结合在一起对吧,所以我们后面会讲就是modern的角度来说。

现在deep呢你比如说你用pcb去c的一个model,这个效果目前来看它不会比不会比这个shift的那个d vs d f要好,但但是不能绝对这么说啊,因为我觉得,就看你就看你怎么去怎么去弄他了对吧。

如果加一些这个,如果加一些个别的revation ingredients,这还是可以的,叫那个shift modern啊,那个就是实际上就是说motivation,这是计划和2013年的问题啊。

这个sweety common coviation,python和magic model对吧,quite对吧,然后做重建,然后你做processing,最后你就做rendering啊对吧,对。

这个这个派放这是20年前就有的,现在其实说白了也没有,也没有什么太大的改进嘛,还是这样子对吧啊,好的收处理设计啊,减云的场景重现有哪些前前沿研究方向,是是室内场景室外场景啊,室外场景的话。

我觉得就是说multimodel对吧,就是说你一个model y你是不可能看到,怎么这个东西其实很有意思啊,就是说maddy你是看不全的对吧,比如说你买了你高的点找不到,对不对,他他他是有一个那个。

都有个physical mutation的对吧,然后嗯,比如说你还有那个那个那个鸟鸟,那个什么就是空中拍的对吧,那你就能拍到比较高的对吧,moi model对吧,你怎么把moi model集合在一起。

再一个呢,就是说,怎么能把你搞一个系统,大家能搞得非常拥抱,那个就我觉得也是很很那个的,再一个就是说你怎么解决这些有的点,但是找不到的对吧对吧,你不对吧,你怎么做一些补全对吧。

composition对吧,这个室外场景就是说你真正要解决的,就比如他不是企鹅的重建都没开始对吧,你怎么把颜色也重现出来,你怎么把shallow给去掉,对吧,对不对,场景重现还有数嘛对吧。

这些都可以研究对吧,重建动态的物体对吧,怎么把outline,比如说人啊,production那个这个这个这个东西对吧,你扫描的过程中肯定有自己的东西,怎么把那个很好去掉,如果你不想要这些东西对吧。

哎都可以研究对吧,其实有时候你们有时候自己感觉自己研究不出什么东西,我觉得大家都很聪明吧对吧,你就几百篇文章对吧,特别是我讲的这些东西,让你回去把这些文章都读一读,自然就有想法,你读的东西越多。

你就越有想法,而且好多时候做比特权,我也是说嘛,就是说我个人的,包括我自己带学生,你不能急对吧,你得打基础,这篇文章这篇文章不帮我解决,基本上你的问题不是这样的话,你还是得去读啊好吧。

那我接着讲这个东西啊,对的,特别是f对吧,这个的话就牵涉到两种representation,然后我们还会讲了。

比如说有两种representation移动的explicit services in expression是吧,就是说,就是limitation这些东西就是以fficient rendering啊。

上分的角色就对,然后increasing services呢,就是说,有never said radio basic sessions,还有这种archbservices对吧。

invitation就是bully operation,the operation changes of technology for extreme information是吧。

那就是for the count呢,就这就是我们提出一种hyperretation这种hiit representation,就是要把要么搬什么,就是实际上是要把这个不同的这种想要把它合在一起。

就是press card point in sample,president emodel是吧,就是说实际上就是说他就是minimise requirement for extreme deformation对吧。

就是说fast inside outside classification for blooperation,也就是说每个representation呢就是说比如说呃国内做这个软件嘛对吧。

cad的软件对吧,我是一个小鬼,要我我那个把这个课讲完,我再回答你这个问题啊,好吧,就是说你有一些有一些基本的要求对吧。

一种就是说这个mini minimal confident deequirement对吧,就是这个inside这个outside producation对吧。

就是这个express modering shopping hip对吧,就说build一个representation对吧,你要support的一些最基本的结构对吧,哎这种呢就是处理这些东西对。

就是说比如说一个go就是这个sp的model,这边就是说你有一个reset point simple对吧,然后你的地方有continue service对吧,这个东西呢啊,比如说你是point cd。

这个就像我们前面讲过的,然后他有一些帮我解说ml foration是吧,喜欢the stational research projection,可以。

这是wake的lisquare optimization的高ing color faction都会pose对吧,bully operation对吧,在考场上面做解决这个问题对吧。

boing operations了,就是说什么什么东西是比较好容易搞混联,我觉得你是一个比较容易对吧,你又不能说我没,我就把这个point cos把转成这个presentation是吧,那个太太太麻烦。

太太太,cospl,一般你讲这个做讲漫是毛囊的地方啊,比如说说对吧,就是就实际上就是说这个当那怎么呢,就是说我要,制造这个新的shape对吧。

然后呢我把把in shift呢呃然后呢用一些union intercession of different operators,operating,operation,把它组合在一起对吧,是比较重要的。

c a d c a是吧,你任何一个auto cad对吧,solid work对吧,如果你买这些刷出来的话,这些东西都在评论上看啊,你非要比较难的。

他就是做这个permantic surface surface tension是吧,好,这样就基本思想就是说你做你要做inside outside test的装。

就是用那个就是using science section in use by ml projection是吧,我们才会讲啊,然后呢然后呢再怎么说fly对吧。

你如果如果如果有那个设备设备的在can go对吧,嗯,我就怎么怎么怎么做这个m配的公寓,意思为设备再到这三位是就是这个rendering是吧,就说你做rendering时候。

我们需要就是说真正有意义上去model这个项目框架是,pication是吧,come on smooth,closed,circuit point对吧,p是inside outside是吧。

那怎么回答这个问题呢,那你就你找个正经点对吧,哎然后你算一下这个三distance,然后就cos mp f inside的比就是b小于零吧,outside的比值d大于零,这样。

这是一个classification的问题,如果这个东西怎么在在在在这个封号上面做呢,就是你发的coc point具有t对吧,class是p对吧,就cos point对吧。

如果你这个点是小于零的凹陷是吧,这是一种最简单的办法,对不对,但是这个这个问问题就来了对吧,你如果在这个如果你是这种p算话没选,就是说你会有一些这种不好的分类对吧,就是当你这个点cos的时候对吧。

这样一个区域内对吧,它就会有不好的分类,就是第一次很轻吧,跳来跳去的这种分类对吧,这时候就出问题了对吧,那怎么来做呢,分类就会有一种这样的情况,那就非常非常低的对吧,什么时候送呢,主要就是说怎么说呢。

我就是用一个use那个就是movie script projection p就是for correct,可以说这是我们前两节课讲的东西,那么就是呃可以可以从一个点出发对吧。

可以可以可以找那个就fit一个locally是吧,locally fit一个那个,可是吧这个fing的时候呢,这个fing的位他那个权重对吧,这个权重就做做做拟合的权重啊,它是depend on。

这个每个点到周围的这些点,严重啊,嗯嗯这是三分的intersection课对吧,就是你给力两个,他那个求对吧,你做一个excession对吧,说的30以后呢。

呃你现在就发现如果你不去sample这个这个这个shop的这个哎,他就会出现什么就会出现这个他就会出现这个啊就是走样嘛,t a a对不对,这个地方它相对来说不那么实木的对吧。

如果不足够好的去ctrl它的话,那下面呢就是sely对吧,就是我们怎么来做这个东西对吧,怎么说呢,他虽然是用一种牛顿牛顿的这种法则,也就是说,service,每个service是一个port com。

对不对,就是就是那边是还有一个那边是红的这些点吧,然后你的找一些这个找一些最近的点啊,其实graphics我现在想到这,比如说ri他我操aciation,它一下,paiation。

series in在后面是什么,解决一些实际的问题啊,它它是有一些功能性的东西在在工程性的东西在比如point out对吧,我觉得讲实际上是告诉你有一些类似的问题,你怎么去处理它,对吧啊。

总觉得就是包括我自己,我仿佛强,那我就说了解这个东西,你后面这个这个这个这个做这个东西,它就相对来说还是跟那个,然后你找了你就找这些,找这些那个close for the c,这些投资或者py以后呢。

呃然后呢你做什么东西呢,然后你的identiment the cost for ta,对不对,那你就要找这个什么computer for our intention,face对吧。

他们他们他们这个相交的这个点出来,就process for the section of fa,然后你就把这个什么两个点呢,就是你首先交这个r是这两个点对吧,现在写,比如说红的对吧对吧。

然后呢你再再再再把这两个点让我加入到我们这种设定上对吧,哦v这种设定上,哈哈哈,然后你再iterate是吧,这样你你就怎么样,你就能把这个同采样一些点了,使得这些点呢跟这个excel的这个课文呢。

呃对啊,跟这个intersection的会有更新吧,做空一个completion对吧,或者做这个做这个是of family一下吧,有些点对吧,你有些消费也需要有些点对吧,这时候呢就可以用这种方法对吧。

做一些重采样啊,解决的东西我觉得都是很英气啊,这个非常非常非常非常非常非常有意思的啊,软的那个上次那个就是这个东西呢,这个时候呢你就是实际上就是你rap dance这个东西比two tiful对吧。

就是同一个点,但它normal不一样对吧,哎这个时候呢你就可以render这个东西,就是做point of complain section,so对吧,我们得到不同的反向,他就有效果。

这个嘴剪的周围对吧对,得到一些得到一些这样的结果,sers也写过,简单对吧,那是非常简单,然后他就说呃工程性的东西啊,有这种功能性的东西,核心就是你教出来一个错误对吧,因为你是离散的吗。

对客户如果不删不好的话,那是不行的吧,他他就给了一种办法对吧,能能在这个课这个周围撒谎的跟bs,这也是一些采样的方法,在下,creeche shake it compress。

我估计啊大家很多很多同学可能连这个bing operations都快接受太多了,其实,去年那个best就是pa vos c v p啊,那就不领回去吧,账号做的对吧,看这些东西好多id了对吧。

啥时候都多少出现过,但你怎么用对吧,唉那就非常非常非常不错,你用平面相交对吧,就cut cut cut,最后cut出来能看的出来非常复杂的东西,还有一还有一些呃,这文章也提出提出一些别的方法。

有cardigdi对吧,这个位子不让你说啊,我就不讲了,你看看那个文章好吧,然后下面讲一讲这个啊,formation对吧,就是说其实modering对吧,最重要的一个东西。

我们选择c rv 9800 pm celebrt yu的一个老师做非常fml的贡献,对吧啊,这graphy对吧,点一个shape,你怎么把它deform就可以,你deform以后呃,处理对吧。

怎么来处理这个方面,还有shift的问题,这是我们要解决的对吧,smooth deformation field f,从232333,one one three d对。

它实际上也可以apply to pan example,对吧,哎这个东西fm比movie,我问一下你们有谁听说过吗,s b,听说不等于这个东西了,所以for deformation,没有人听说过吧。

所以你们没准是这样的,就是说诶一个就是你你把一个model在一个three dispace是吧,点呢它你把这个space比如说拍成十分十的十的网格对吧。

1000比如说11的三次方这么多个control point的一个deformation re,每个点它都有一个参数嘛对吧,然后你deform deformation规则的时候呢。

同时你对shift就会发生一些感觉,也会发生一些改变对吧,然后你就得到了这个,有点像它实际上是一个b样条曲面的一个曲线的一个,deformation相关的啊。

就是说这个东西有人用ab或deformation去做wage的deformation啊,这是一种nvideformation b样条曲面啊,前面的那个一个一个推广吧,啊养成全面推广啊。

文章你既然大家我看到的不是很了解我,我明天会会把那个这个文章已经发到那上上发到我的微信,就啊,方案的deformation系统,这些东西呢就做做surface deformation的时候啊。

啊这算是比较重要的一点,就是information啊,任何一种information它比较难的,就比如说包括做这个杯子的体面,ation最难的就是做做an detection对吧。

the handle strong san resembling,啊啊这些都是问题对吧,我们来讲一下,to对吧,就怎么你现在讲的是怎么去抵抗这个deformation,对不对。

for handle using combination,transition tation,就是这篇文章呢我要强调一点,就是他实际上他发出来的时候啊啊啊这个field还没有information。

那个field还没有发展起来啊,information field还没发展起来,实际上他这个deformation对,所以他就是用的freeform deformation嘛。

但是后面其实我我们包括在点评上面做这个方面上,我们都是用not reach的地方,为什么来做对吧,用nvisual deformation来做的对吧,然后这个。

比如说那个呃switch positive对吧,这些东西这些概念在这篇文章里面都没有那种我们后面的话说话啊,啊是最重要的对吧啊,现在就是先讲一讲。

比如说这个东西就是怎么来处理一些啊deformation团队的问题,特别是在点评上面什么来处理好吧,其实很简单,就是比如说你有一个比较必须就这关是真的,华为的那部分是女form对吧。

然后你有一个文件service deform service就变这样了,怎么来说呢,其实也是一个plending的思想对吧,就是你有一个就是每个点对吧,每个点你都有一个,一个呃区间是吧。

就是不动的和这个红的是一区间,这个定的对吧,然后这个b比如说d0 b1 ,然后那个p呢实际上就决定了你,是有多大程度被这个红的这块东西给干扰对吧,这个点在男的里面就是t t h就是零嘛对吧。

如果是红的t h就是一嘛对吧,只有一个bending french对吧,一个blending french fa对吧,就是就是白老在零里面一个一直在中间的话,你可以做一个卡子,对不对。

然后呢你就发forming field的,直接两步,他就一个c选一个rotation,对不对,然后这个translation它就是决定了你这个x就是tx对z对吧,v就是你的那个direement对吧。

然后这个dispacement呢它加一个全对,这个全是tx,就这个点权重对吧,然后就是有一个rotation rotation,它rotate多少呢,也有一个权重对吧。

比如说他有个angle in an access,最简单的information啊,但是跟后面我们也就是大概有那么10年左右的工作吧,大家谨慎,我一起考什么这些东西,对不对。

呃然后那个工作他是非常他说那个什么的对吧,然后,对吧,然后,第一种就是说你可以认为是一种hand clap it人为指定的啊,deformation的方式啊,这个不重要啊。

就是说你可以做一些deformation,然后这个planning faction可以长这样是吧,你可别有不同的这种from service的结构对吧。

哎可以在这个这种东西来做一个deformation,你发了,那现在也一样对吧,你得找一些比较酷的地,大家cing这么说有点功利啊,但没办法,确实是这样子的,好formation是这样对吧。

然后deformation你要解决的问题,就是说,不能检测对吧,你比如说你给后面两个人的手对吧,你要保你要保证这个deformed两个手对吧,我求word,他不能瞎交对吧啊,那怎么办呢。

就是a fly bully inside outside,procreation exc,那这篇文章当做的比较简单了。

就mistrict connection between the deformed via,只有一就是efficient condition,解决解决,你们从做研究的角度来说。

你包括后面发展这些avicial,possible,这些方法也没有解决这个ition开始的问题,就是你要be sevsession re动静怎么不是那么好解决啊。

呃希望在new network这个阶段能在这方面的突破吧,好吧,就是用new network pose,你如果对information感兴趣,你可以试一试这个方向啊,啊怎么做呢。

实际上就是说它实际上就是用这种bal data structure,对不对,就是你丢的一个是increase the fit对吧,你feel的一个increased fit以后呢,然后呢你就。

他是水以后呢,那你就用这个也是用的这个increment and planning的事情对吧,把里面的这些东西都给扔掉啊,把你的东西都给扔掉啊,对不ing,operation去做detection。

他说不定交往对,然后,就是dynamic ely,dynamic emply,就是说你几方面有一些对吧。

如果large more information net strong surface discortion,就有地方stretch非常非常严重对吧。

request station of sembly dancing吧,就是有的地方你就在3号的dance里面就叫做just吧,你要调整吗,就是这个这个东西呢。

也就是这篇文章和support diab型号的3号operation,当然你可以说他是有点invitation,但他怎么做这个东西,我觉得大家比较熟的吧。

因为这怎么你change这个point cos dimand dynamic,对吧啊,可能我们做new network的时候也可以用到对吧,如果你看到这个的话,你可以搬过去吧对吧,就比如说。

这样的东西吧是吧,就是宅男没有比赛是吧,就是说你如果是color出来,就是说你如果直接比如说你把一个平面做一个这样的对吧,这个时候这个point in sam它就相当于对你做什么东西呢。

你就需要做一些重采样对吧,做一些重采样对,怎么说呢,就是说嗯,可以买买这个这个走对,stretch for final modepose是吧,就是其实就是那个假口变对吧。

就是假口变它的那个最大特征根最小三分分对吧,对选c对吧,如果你这个这个stretch ratio呢答应某个东西的时候呢,就跟那个海real crossing吧,你把一个sample给你整两个对吧。

独立了以后呢,你要重新让这些腮红相对来说logo它比较uniform对吧,福利的时候呢,你还做一些做一些这种说,如果pture的时候,那你就做一些pation啊,做一些pination。

一个to的一个stration对吧,就是formation以后这个你发现这个东西了,这个deformation对吧,他这个special deformation嘛,你可以算一个在三维空间中的导数嘛。

so spring spring完了以后,你可以做一些这种vr station,就是,就是这就是那个interactive modern session,对,啊你看就是说你做你那个做的这些东西啊。

只要做一些重来一样嘛对吧,这样你就保证比如说这个surface相对来说还是比较相对来说比较,希望你这节课呢那个大家勾勒一下,大家知道那个托尼卡上面大家做什么东西对吧,核心我跟你讲,就两个核心的东西。

其实就两个三个吧,第一个就是你要能找到你那本对吧,第二就是你要能算是个pg,然后我拿的水是反复用的,第三类做一些菜的参数化,做参数化这个logo里对吧,要你要能把他们有个参数化是吧。

别的我把他们都拍到一个平面上进行ab面的东西的啊,这个还是很impressive,其实这个porn coha最大的区别,比如说在cad的软件里面,就是它是介于一种imprey到expect之间嘛对吧。

就是比如说那个ml构造组很复杂的那个呃,而且很很detail的那个influence设备啊,psg是下面一个吧,你删掉的就是1926781个surface的,非常简单的,类似这种东西啊。

你看这这些结果要看的话,其实就是说啊啊就这篇文章我觉得比较information,就是他们支持一些bing非常复杂的物体之间的这种bully operation啊,先试试这个。

那下面下一步就是做b c semination啊,做pscombation啊,operation of scanddata对吧,就是evement and novation models啊,这些东西。

选择就是pa works shift modefy,就是说它实际上,就是这么advantage是有的,但是呢他的ution呢又不是那么那么的可定啊,比如说ml的这种东西,这个东西大家研究的很多啊。

但实际上它的真正的这种包就不是well understood啊,啊这是我们要解决一个参化的问题啊,他又能引引以为这个bing operation都很重要对吧。

然后就form deformation啊啊我问up主几篇文章,让大家去读读是吧,因为它是这种point配置呢,就是说它有这种dnly beach,那他不跟mac它相对来说要比较bk的话。

比如说mac上面有个洞对吧,你要去补一个洞,然后你出来还是要还是要比个lash,哎这个东西的话你觉得很好对吧,你点云怎么存在这个问题对吧,点云的话你就在那些地方多谈一些点是吧,嗯这点对吧。

rendering的时候,你搞一些smoothing是吧,不过也累了,结果image的话相对来说不动这些东西,我没讲不动啊,但是不动这个东西点名我觉得是相对来说它是比较比较flexible一些。

mac的话就比较难,就是说我个人的观点是什么,我讲了这个就是说就是我就是说这个啊,你如果说逼不得已的话,我觉得现在大家做了很多了,什么什么bot net或cn在mc n嘛是吧。

但是嗯我觉得就是说这个点源的power还没有真正利用起来,就做更复杂的那个东西,这些东西啊我觉得典型还没有完全做起来啊,我觉得,现在有d和tf单u的多,但是这个东西没有没有福利的福利。

对今天的课就讲到这吧,然后下面我给你回答一个问题,是吧内的呃,室内的话我觉得就是说你需要你看到的毛子领吧,其实我觉得好多时候大家做重建,他就是focus在将局上面,你重建出来这个东西。

还有rua过去别人一定要有菜吃,做做做lm的时候,你要让你讲出去,你能不能保证这个tech让我玩的很好,哎这些东西是很重要的啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES203: 三维重建和理解 - P8:Lecture 8 Mesh Processing - GAMES-Webinar - BV1pw411d7aS

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以听到我说话是吧,大家好啊啊可可可以可以可以可以,我自走,听到了好好,那我们今天接着上课啊,那今天讲一个比较多的pov max profe,首先首先我想说一点,就是那个,我们应该怎么去学这个东西对吧。

因为立刚老师他自己讲过几个故事对吧,啊在做呢我们想强调的就是说我们想重温一下啊,当然我们会讲一些它它没有power是吧,就是说我想讲一点啊,就是说我们通过学这个东西。

其实是拓展大家的这个一个叫roy对吧,就是说拓展他的思维,就是说帮助大家将来比如说如果我们我new it was a mason对吧,呃提供一个这样的帮助对吧,其实我们后面我们学完这些东西以后。

然后我们看那个最近的这些啊,deep learning的文章是在mac上面,你会发现诶这些东西其实说白了都是一些传统的方法,给点cad过来啊,啊我只想强强调这个东西好吧,但我今天不会讲地图理啊。

我们会在第三部分去讲地图learning,我们现在要讲的就是这种传统的match boy,这种东西,对就说对啊,就是说这本书对吧,我觉得他的那个这本书写的很好,大家可以到网上找一下好了。

然后他的那个neural flies其实写的很好,这基本是从哪来的,但我会掺杂一点自己的思路给大家勾勾勾勾勾一下啊,啊你可以到网上去找这本书啊,嗯就是说这个match representation。

我们前面讲了这个for a co对吧,marepresentation,它是一个就是说它是一个就是说被广泛使用的啊,他其实就是说为什么呢。

就比如说你这个他们这个rap ban这个up your apology对吧,就是说或者就是他能就是说他能很好的去准备refine对吧,当然比较du这方面的这个这个这个poverty是是很好的啊。

就是我们今天会讲一些这方面的一些processing东西好吧,就是说你看这个地方它有flash bility对吧,就是有h的地方,你可以用大的大的那个全呃,小的圈口是没h的地方,你可以用大的拳头对吧。

他就比较flexiftable对吧,你这个东西你比如说做deep learning的时候,它就会相对来说对这方面会比较好对吧,然后然后呢同时这个影影视曲面呢它就能识破这个一倍x或者对吧。

就是说呃它是一种highway reaction,就是说如果大家要找这个,你要你找找neighbor是吧,那那你卖你编辑部mac上面的美国太平了对吧,所以用一些k进去l具体的东西对吧啊。

这是我想讲的好吧,然后那我们下面就讲一些这种皮肤的,就是给大家简单的勾勒一下对吧,就是说你比如说,这个match representation啊,它是一种,这个不好意思啊,观音下火啊。

这个match版本pation对吧,其实比如说它是什么东西,像呢啊,它首先是一种影视的表示方式对吧,ingrees对吧,coin house也是一种ingressive match呢。

他跟其实跟这个primatic surface是很像的啊,我们我们后面会简单的提一下对吧,我觉得这个东西很重要啊,那个smooth的重力对吧,他有position,有normal,还有科学性。

然后还有一种叫zen to translate message对吧,像position的话,他就做这种by centric这种incipation对吧,做这种bbc incipation对不对。

然后normal的话你可以可以对吧,你可以在那个杯子上面算normal对吧,然后做一些做一些c也可,然后normal你可以做,你可以在那个呃vertex上面放normal,做一件integration。

唉这些东西大家学random的时候都学过吧,学学rnn的时候都都学过啊,嗯对吧啊这些东西大家都会对吧,那那还有就是比如说还有一些比较重要的东西,比如distance对吧,为什么要算算diance对吧。

那你比如说你做注册的时候对吧,你比如说一个典型的一个全部的match上联网页面片,你注册的时候你需要算decent嘛对吧,你要写个decent对吧啊,有时候你做做做投影对不对。

做投影做projection对吧,你都会放list对吧,就smooth的surface呢,那你就是写这样一个franction是吧,解这样一个呃这个prime参数曲面了。

你就写一个这样的equation对吧,全都message,那就用k d c e r d d r by the rosetgg对吧,然后你在做,然后用father base bby。

就说你找一个最近的对吧,找一个那个创造全都是投影嘛对吧,找一个最近,这些东西我觉得大家我希望大家那个我我没在烧饭啊,我我我在这三点开始,那个我也不知道了啊,我们大家都是都是骗人,这个好。

然后呢还有一些东西要注意的呢,就是说比如说你作为一个体面的自动graphic角度来说,就是编辑对吧,我想讲的比如说这个b样条曲面是编起来就是帅帅这个这个那个control point,对吧,嗯对啊。

只要the control point match呢,实际上呢他赚的是什么呢,它实际上它是这个东西,我们就没法讲啊,他这样转圈,我们讲那个match的,比如说呃这个ing的时候。

我们会讲一些diss learning的方法,还是然后那个对吧,我们那个我们这边也有一些这种下水,因为下个月就这些东西,就是看直播,就是追风方面,ation要帮助chrome。

还有就是这种mesh data structures对吧,然后就是说这个这方面呢以后我们会讲,然后就是这种match data structure,how to spend duty。

是用compact stories这些东西呢,我想简单讲一下,为什么呢,就说,对吧,大家大家都是喜欢点名对吧,为什么点一点呢。

这个class point和这个point这个这个这个是很那个什么东西的对吧,然后这个match呢,这个structures呢它实际的话叫做它有它有一定的这个拓扑的那个concertop了。

这个conce对吧,他有这种top logic contrain,对不对,然后,比如说你看他对吧,他他这个第二啊那个点啊,这个是怎么连的,它要满足下cc对吧对吧,诶然后呢你有了这些考性的话。

你还要你还有一个c叫你要做成这种definition的这种呃,这种这上面这种navigation这种这些东西对吧,对不对,对不对,对吧,那那就是说这个怎么去处理这个dh c的标准。

所以这个怎么选这个这个就很重要了对吧,说我们将来想简化同in简化,把一些要点扔掉就可以了对吧,不用管它是怎么相连的,你mac的话,你不能随便说,我把这个我猜肯定扔掉对吧,你还要对吧。

所以最后你先出来以后还要这个match对吧,哎这个东西我觉得就就就比较对吧,比如说啊我我我个人想想这些东西,就是说比如说你现在大家如果抵抗一个牛奶work去做cpation,去做dba的话对吧。

唉这个的话那就就比较那个什么了,对吧对吧,这个地方就比较比较小了对吧对吧,就需要保持这个mac的这种那march一般怎么传呢,你随便no的话,他们也只能上个s gl,它就是这么黑色对吧啊。

他没有含在具体对吧,你要不进来的话,需要把这些点进去点缀去对对,去去去那个去去那个real站对,去点赞,去抽取这种match的连接关系对吧,你像c罗在下o b g o f f这些东西对吧。

what time what time is it on base water english,这些东西的话相对来说它就呃他就比较复杂了对吧,就相对来说比较复杂啊,啊他一个人跟conce对吧。

就是你点它就是坐标都挤给你了,对吧,但是呢这个它东西它是没有这个啊,没有这个点对吧,就是点的navel对吧,它是这个每个圈口,它是给了一个点in dex,这个相对来说这是用的最多的一种。

用的最多的一种存储方式对吧,但有时存一般在o p g和那个oa f f都给你的是那个呃那个阿斯玛的,我们对吧,你像p层层p o y的话能更狠一点啊,层层真的繁荣也行,好然后然后下面就是讲一些这个标的。

就说你比如说我们首先想想要支持什么样的运算,这个啊,比如说我举个例子,比如说你可以去看一下,比如说max 0 n对吧,那可能是h队,对不对啊。

这种这种这种结构对吧啊啊那那the interesting question,就是你怎么能能不能搞成face或者what tex这个face connect对吧,哎这个是比较阴沉的对吧,就是说你要对吧。

做simplification的时候,能不能能不能这个data structure,能不能去保持这个,对吧,那那比如说facebook pvp就是你有我在还有position对吧。

然后那个negrand zip对吧,然后每个face呢它有三个vis,它有三个face neighbor,对不对,就是说对吧,这证有了这些东西的话呢,呃你就会发现呃你就能比如说给定一个face。

你能你能给定一个点,对不对,你能找到什么,你能找到他的那个negr对吧,他的黄米news对吧,其实啊比如说大家如果做match,但我现在是可能从不立刚老师讲过的一些东西。

但是就是说我我感觉你你熟悉这个max c的需要选对吧,你第一件事要做的就是写一个算法对吧,把你这个每个点周围的这个完美neighbourhood给变一点,对吧,哎能把这个东西做好。

我觉得基本上你对这个呃dao上谁会有一个初步的了解,初步的了解,edge分级分析呢它相对来说它不是那么,已知省的啊,这就是就是说你需要存一些呃很多东西对吧。

比如说那个我tx它一个ition有一个一个对吧,就是初始那个每个h呢它有两个我在对他有两个相邻的飞行,还有四个那个什么还有四个对吧,你看看这个图,还有四个像你们这对吧。

每个face的话相对来说它有它有一个第一个,用的比较常见的啊,用的比较常见的是一个,对吧,实际上它是一个就是说他是一个那个用的最多的话,就是说用的最多的一种一种数据结构啊。

啊它实际上呢就是说它不是最efficient啊,不是最effici,但是呢呃但是呢它有一个trade,就是说你你你做便秘的时候对吧,做便秘的时候,比如找妈妈那个我他就是说你要快,对不对。

那你这个c 12 c compact对不对,你要看你这个data的时间就考考反派对吧,你如果如果如果那个哦你要换你这个data的资料相对来说就不卡带,你就传的东西更多嘛。

如果你要这个data只要有compact的话,那你下不来说,那你的给你的速度就会减加起来对吧,下载啊,对这个half edge tf h c是他的case,它它的结构是这样的。

有个我在他有个position,然后有一个哈佛h出来对吧,每个huh呢它有个初始的我才对吧,它的它的这个half为是orange的,它的这个哈佛h左边会有一个背对吧。

然后呢呃这个half edge呢还会有一个dual对吧,就是一个half edge是从比如同在这个红的对不对,红的这个耗费,然后呢回过头来对吧,他有个train是吧,一般情况下是吧。

哎就存一个这样的东西对吧,这样的话呢你就能建立,比如说比如说我们这个讲这个亡灵的小伙手都要用哈佛来做对吧,你杀了我这个活塞对吧,你首先找一个how show edge,对不对,对不对,对吧。

然后你怎么做呢,然后你就找到那个object hob对吧,对不对,所以odd half呢,然后呢你就再找一个,比如说net hobby,对不对,nt就是nt对吧。

就是这个东西一个half在左边这个tl的那个next habit,对不对,然后你再找到这个呃这个opti,你找到就找找找到这个object,然后你就能找到这个火柴对吧,就找人找到他的火柴对吧。

它就是一种这样的电力结构啊,这个东西我最开始做这个,b o b b就是那个beat和wifi对吧,就是这个这个这个存存储有多大啊,我需要多大的存储,对这个半边结构啊。

就是这样不断的那个那个那个那个房对吧,就是这样不断的弄对吧,然后how far is hama splibrary的机构对吧,of mesh,对这些东西都都是有意义,都是有用的。

这个这个hoge的这种struction嗯,我看看,哈弗h的话就是说如果你要编你一个外面那个的话,它可以基本上是这款size的,同时能帮你做这个便利的一种内struction,嗯,我说这件事情吧。

就是说现在你这个存储这么这么大,实际上好多时候就是真的,就比如说你像gpu的processing,它不仅不是为了呃这种呃compressive的这种方式去存储,就是说像是gpu。

就是说我我就需要有这种vadvice structure对吧,你真的很快的学生,你像这种match啊,为什么会有half edge出来,就是因为这都是34年前开始,大家开始研究过,那个时候计算机。

就比如我开始读书的时候对吧,那个时候的那个计算机的那个mary是很limited对吧,你把一个mac能减那个30%,50%,那都是很了不起对吧,就能多漏的一些那个东西对吧。

现在的话我感觉你就拿我个人来说吧,我最开始写c加加程序的时候,那什么东西都要写得简单edition对吧,那那就看功夫对吧,你现在作品设计大师都用mac up,对不对,相对来说就不那么讲究了对吧。

不那么讲究了,但是对吧,但是就是这种哈弗h杯的rap当然很有用,很有用,你说啊,对我知道力刚老师的面面面写话作业用了这个东西,哎这个我知道力刚老师给你讲过,但是我还是想作为一个完善的东西。

大家呃简单讲讲立刻老师讲过的未婚几何吗,不知道是吧,好那我简单跟大家再讲讲微分几何,微分几何,首先我要讲两点啊,没有讲过,这里有点奇怪吗,那我简单的给大家,那那我觉得我讲的这个东西。

那就简单给大家呃勾画一下,就是微分几何呢实际上是什么呢,是就是说算曲面上的一些一些简单的power啊,对这个match processing它是很有用的啊,微分几何。

你像这种principal directions,对这些东西其实在那个mac上面做那个deep learning的时候,他也是我们也是用的很多的啊,最近的一些工作,对吧,一般就只要去收费水对吧。

我就是说实际上是这个对吧,u v对吧,就是说你从一个一个一个primer primal main到一个到一个设备上面,对吧对吧,诶他是研究一种这种参数曲面,对不对。

参数曲面的话它就有很多quality对吧,比如说像这种猫猫对不对,还有这种猫猫对吧,你比如说像这种这个啊这个这个这个normal嘛对吧,嗯我们讲过这个point pro上面怎么算normal对吧。

然后实际上这个呃严格意义上来说呢,就是嗯那个东西呢是一个就是一个近视吧,就是如果你有一个连续曲面,那么连续曲面呢说这个x等于x y等于y,z等于21x y加y等于吧对吧,这是一个二次曲面对吧。

normal呢实际上就是说我们首先要定义这个tension direction对吧,就是说他有一个有有一个plane,对不对,他刚好在这个点呢跟这个service touch,讲了是吧。

那我跟大家复习一下也没关系,他这就是猫猫啊,那讲的更好对吧,你是不是想让大家都忘了对吧,我觉得对,然后那个这是这是momo对吧,他就实际上呢你注意点,我们讲那个motion的时候想过对吧,就是说。

一个normal,一个normal跟一个平面有两个vip,这个平面垂直怎么说呢,是把这两个tension direction做一个cost for就得了。

这个motion啊啊然后呢你这个notion就是normal curvature对吧,什么是normal curvature呢,就是你给定了一个normal,然后你找一个平面,对不对对。

跟这个normal含在这个logo,然后这个平面跟这个service相交出一条线,对不对,相交相交出一条线,然后这条线的话如果跟这个呃,那我们就可以在这个线这个点上面算这个算这个qq群对吧。

算这个qq群对吧,像这个科学群,这个曲面上的收费群对吧,曲面这个点的收费群就是你找一个一个球,对不对,一个琴一个c口对吧,你这个c口跟这个曲线是相交,然后它是它是吻合的,很好对吧。

他就三个毛的领域也是一样的话,那他的courage就是这个这个circle的半径的invert啊,这就是courage啊对吧,所以你如果如果你越那个曲线越弯曲,那你这个球的raid越小都会选就越大啊。

就是这个东西这都是很重要的啊,就是说然后呢service provision呢它有它有一个mac cof,什么covision,就是沿着这个你这个平面,沿着这个平面转的时候对吧,这个科学有发生改变。

那有两个最大值,有两个最小的对吧,然后还有一个东西就是courage对吧,minerature对吧,还有一个就是高in qq群对吧,ging qq群就这两个兵的非常那个那个非主qq群的相乘对吧。

啊这个service servation对吧,然后princial servation呢它有一个公司,就是说就是那个minimal和mathematcher,它是像它是垂直的啊。

就是这个direction它是垂直的,然后你转的时候呢,实际上这个这个这个没关系,所有钱他会呃他会这个变了变的话,它是满足一个这样的公式,就扩散形,记得叫暂停,然后b对吧。

现在就是angle名词k k k one对吧,那就这样一个条件啊,啊这样一个条件,然后啊为什么要上principal quality,good question对吧。

比如说你在一个下颌edge的地方对吧,然后你the principle direction,那你去跟那个下面age of mind啊,非常好啊,非常好那个,然后非常好啊,好这就是一点点简单的那个知识。

其中这个curse这个东西啊对吧,你可以看看这个这个就是那个iso对吧,就是所有的线上面的各位都一样对吧,可以算得平均算两个相乘对吧,然后你看这个作用就大于2x traffic的,你够用。

order action对吧,还有x shy哎,对吧,你像这种princible direction,你注意一点,就是principal direction,你像那种那种东西对吧,就是说那个。

就是这个啊,这就是有ation就沿着细的发展到一个地方,去年的一个大的方向,就是你做design的时候,比如我们做mc的时候,最后做qumc,做这期我肯定是希望这些the reaction什么东西呢。

他都跟这个跟这个fish要要很好吧,这样的话我们这样的话这个这个对吧,比较美观好,然后不管是数学系的学这个微分几何啊,还是我们计算机系的啊,本人也是计算机系的,但本人懂一点顺序。

不管是数学系的还是计算机的学员,微分几何最重要的一个东西就是这个搞混nga啊,嗯当然如果你学的跟那个系以后呢,分很多了,怎么说,只要是学了各种东西的,这个这个喜欢magic flow啊。

就是你最开始入门写的话,其实数学系跟这个计算机都一样是吧,只是对这个高速博那些人的理解不一样对吧,理解不一样啊,反正怎么说呢,就是高斯和那个新闻,他就说这个,就是这个高斯曲率对吧,就比如说你这个球对吧。

球上面所谓的高斯那个curry是吧,如果你的radio是第一的话,高科学都是对吧,那你求积分,那就是球面的面积是四派对吧,这个cosport nc说的是什么意思呢,他是说啊就是说你不管这个曲面怎么变化。

deform对不对,你这个integration of the government courage,它永远是,诶这个比较重要,诶这个比较重要啊,这个是比较重要的。

对啊哎这个东西呢呃其实他有很深刻的道理,很深刻的道理就是可是我这里当然不讲,但是我我比如说告诉我,那feel了他跟什么东西可以建立等价关系呢,哎这个东西跟这比同一学就有关系。

就是他跟这个欧拉公式清理等价关系,就是number british techno mah,加上number basic,这个东西呢这个东西,它是什么东西,这个东西它实际上就是它是一个top变量啊。

也就是说一个曲面那个那个全部max,你不管怎么做简化对吧,大家待会儿会讲,不管怎么做简化,不管怎么样对吧,你怎么去做对吧,你这个东西这个量是不变的啊,而这个东西呢其实就引入了一个什么呢。

就是discrete sign of geometry啊,就是说calculus这些东西,那我们就可以用一种在高速曲率曲率,这个是联系的情况下定义的对吧。

我们也可以在离散的情况下去离散的情况下去定义的啊,定义这个东西啊,我看看,高斯博那个新闻的定理在在b g上面有哪些应用重建不,高斯博内cen就是它是用来去定义,就是隐身定义,就叫做离散的备份几何。

就比如说我在网格上面怎么算那个那个曲率,同时呢使得这个曲率呢他还满足这个这个高斯博内fm对吧,实际上那个选项就是欧拉定理嘛,就v7 t加f我是这个意思啊,就实际上就是说这有什么好处呢。

就是说比如说我们现在做在网格上面做这个visio simulation,就比如说你这个fc station equation,他是在连续的情况下定义好的,你在网络上怎么去理想化。

使得你这个polily是要满足的话,哎你就从这个就是说你需要定义重新的网格上去定一些量对吧,他要满足这些properties对吧,嗯嗯我觉得这个是比较重要的,你在网格上算曲率对吧,有多种算法。

只用一种算法,比如说你做b具有什么ation的时候,它它整体它能保持一些那个在连续上的一些结构啊,这个东西怎么来,你就从这个离散啊,我先来啊,他是引入了一个一个学科一个体系啊,他引入了一个体系啊。

这个东西呢我是没法讲的,我希望谁,比如说黄静老师,到时候你可以给他发一秒,用来讲这个东西,第一个老师我不知道讲没讲了,一个,然后我们休息两分钟好吧,然后我们接着讲那个smoothing好吧。

我们今天在两次休息啊,那个鹦鹉今天稍微有点那个好吧,那我们过两分钟我们再接着讲啊,嗯嗯,哈哈哈,啊,好我们接着讲smoothing啊,那个就是就是光滑的吧,实际上就是这是一种大家如果学过信号处理的话啊。

这肯定是对这个词比较熟悉的,那mac上面smoking对吧,他肯定跟deep new net相关对吧,你像他是为什么相关呢,你们知道这个,为什么相关你们知道这个为什么这个跟那个。

这个deep learning相关有谁能回答吗,没错非常好,convolution啊,非常好,the moon就是convolution啊,那如果我们能在mac上面把这个头部给搞错了对吧。

方便大家在mac上面举的举报不及使用那种好了,非常好啊,这个嗯我对这个回答非常满意啊,那smoothly呢它有很多种方式对吧,比如说有一点注意,就比如说你在麦上面做跑车,那嗯其实其实很多东西他考研。

因为几十年来的就是idea嘛,这些idea音mage,那你看看对吧,比如说音mage里面怎么做smoothing呢,有很多种方式对吧,我这个地方简单给大家提两种吧,一种是拉普拉斯的这种,对不对。

那实际上就是说呃对吧,这个这个s它它随着自己就是不断的,它是个苍蝇吧,然后这个x对t求偏导对吧,它是等于这个六乘以这个拉拉of的是拉普拉星奥会的对吧,呃那个就这样子对吧。

can mulation of the meal,它是一个确定con对吧,然后这样的话呢对吧,你就随着时间变化的测试东西会变成什么,变得越来越不对吧,最后只要这个什么知道这个是德尔塔x他是零八对吧。

他是拉出现,我会的,他是零八,这是一种smoothing的方式对吧,就这就引入了这个mflush morning是吧,它是这种就是每一个pi对吧,每个我type pi。

我现在每个点周围算这个这个这个这个这个像这个得到pi的这个东西,很有意思啊,这个东西就是说就是每个点减去周围的那个one negrp对吧,的平均对吧,这就得上p啊,当然你怎么做平均。

你如果是mmc是100g的话,我们还需要就是有一些别的病对吧,实际上怎么在mac上面放拉普拉斯,我希望立刚老师应该讲过这个东西,这个东西的话嗯,用的最多的一种叫做cotgc啊啊就是供贴纸面的大哥啊。

共切法则吧,好吧哎然后呢你就算这个基准,然后呢你就把这个点的点的这个基本一下是吧,但是他就得到了一个新口的outplay room对吧,就可这是一个simple example对吧。

但是这有很多那个上下上下的这些东西是那个simple是吧,然后,对吧,然后你就是在每个每个点上面算一个depress对吧,然后,对吧,对吧,然后然后就是简单的ctrl就行,然后他就变一下。

这就是一个这样的东西对吧,然后你算上一个display是吧,再再变一下,再上一个电影,最后他就变得官网了,就变得官网还这个拉拉,真是我说在这个看上面这个对黄的时间。

就表示这个很to vision ma对啊,最后就变成这样子,这是一种模拟的方式啊对吧,你可以想想这个东西怎么去用,用这个东西来做这个啊,deep new network对吧,就是说怎么用。

所以想想就是说现在这个一个很简单的东西,我平时都在想,就是说这个拉胯选好推吧,可以可以把这个拉布拉自我with这个这个调查对吧,变成trainable,这样的话你就可以翻一个,可能我原来我去做什么。

去做这个别的computation好吧,啊我我非常同意啊,这个这个这个这个学学那个回到考古ution啊,所以说我觉得这方面的工作你可以看看,9m这个地方也相相相对来说不多啊,相对来说不多。

特别是怎么在这个irregular的网格上面,咱们把这个convolution啊这些东西做好,哎,这不是那么一个简单的事情,我觉得这方面的工作很少啊,我觉得做好了以后。

至少这个match上面的anything的这个这个东西我觉得会有一个飞跃啊,反正这个东西录像我有通话说对吧,我个人的感觉就是大家应该做这个东西啊,那发生什么事。

下面一个东西就是curvature flow对,就是commercial independent of transition对吧,就是啊这个东西很有意思对吧。

那flow information就是说哪个点呢,我沿着法线方向,我根据这个科学对吧,就mk对吧,就是根据这个科学对吧,就h是什么东西,叫做mcrash,就两个东西的平均对吧,对吧,实际上就是说呃。

在这里flow equation就是这样的,ingredient就是拉普拉斯是吧,他那个那最后他的一个ument实际上就是一个没什么设备啊,没什么设备,就是说他你可以通过这个方方式去做什么型啊。

做什么事,这叫cocflow啊,对啊,就是cvt的话,那我们就需要mean curvature flow macrage fc,这样对吧,use this to a flush operator。

就算我们courage就是这种display defense,这样这个东西最后呢实际上它也起到一种墨子的效果,下午你说你病了对吧,这个嗯然后你做这个这个是吧,或者这边对,就做这种风景的话。

就能得到一些啊不错的这个曲面啊,呃不同skin得到的结果当然不一样对吧,不同skin这个结果不一样,但同时他们都很默契啊,另外一方面就是说这个skin差的不是那么大啊,他的不是想象中的那么差,对啊。

当然还有一些别的方法对吧,做什么事对吧,你可以做这种各种各样的人的需求,还有各种喷的,体会过这,这些都是做ping的方法方法啊,啊我个人感觉啊,你们如果谁想在那个mac上面把这个地图能做好啊。

你把这个smoothing搞明白啊,我觉得帮助是很大的啊,我这个地方只能给你开个头啊,只能给你简单的简单的开个头啊,我不是嗯,我希望大家注意这个东西,抛砖引玉吧,好吧,我后面要讲的东西很多啊,就是。

再讲一遍嘛,就是如果大家想在mac上面做这个顶,等你的话,把smoothing的东西啊,这些方法,特别是这个smooth这个扇子是怎么在mac上面定义的,咱们把它搞清楚。

我觉得对大家就是正好在曲面上编辑啊,做一些editing啊,deformation啊,用deep learning来做,我觉得应该有很多东西可以做的,有很多东西可以做的,讲了the movie啊。

呃你们有什么问题吗,扇子的话你需要去看书啊,我希望立刚老师讲过啊,具体是怎么定义的,什么cosine定义这些东西,没有,那我就接着往前讲,那第三个我要讲的那个time remash这个东西呢。

上节课我们讲了那个point cod这种30对吧,就是我们如比如说我们如果一个东西到底deformation比较大了,那么我们就需要把这个点给重新的点去选择一下,对不对对吧。

比如说网格上就是做reaction对吧,要remax做是吧,那就是,replay actually starman by strones,这个立刚老师讲过没有讲过这个reaction。

现在大家不提这个东西啊,不提这个东西啊,这remac呢有很多种结构呢,什么regular或者stra的,比如说每个点对吧,比如说你看左边这个match,他的问题就是很多点。

他比如说他有多少个neighbor的,有没有五个,有七个,平均下来应该是六个对吧,那右边那个match就是平均下来每个点周围的内部都是六对吧,少部分有五个,少部分有七个对吧,这样,对吧,be mine。

还有很多很多东西,现在还是在研究啊,总之呢就是要有一个这么will shift the element,will shift element,这个东西呢它是做比如说我们做做设计啊,做rror的时候。

特别是做simulation的时候啊,有时候比如说你做这个,比如说你是就是微分算子对吧,比如说在mac上面算算算这个qq群,这个will charge match,相对来说它的这个误差就要小很多啊。

will sharch它的误差就小很多啊,所以remax大概提到一个就是说对这里讲for posers and secretation,有没有ical stability里就是对吧。

哎这方面这是很重要的啊,然后就是etmoptimization,对,这是做这个reaction一种最最常见的这种这种方法,啊啊啊这个那个微软的浏阳老师对他做过很多这方面的工作啊,文明老师做过很多啊。

其实有时呃一种情况就是说我总之呢就是这个mmage它也比较复杂啊,就是说从优化的角度来说,你不断的你首先你要improve这个what tech ribution对吧,就是说你要让这个这个全国的大小的。

因为是what ribution就决定了这个全国的这种对吧,你同时还有这个offset这种match可能低于t对吧对吧,这都是很很很难的问题,一般情况下怎么做呢,他就是说就是optimate对吧。

就是说你首先优化这个match的,what is ribution,看看能不能我们能做一些这种这个口头log的对吧,你比如说你把这个flip一下,就能改变这个就regularity,对不对。

对不就是one of bance edge,please,对吧,嗯,然后呢你能不能我们能不能uniform,这个我看比如说每个点都是他周围的那个点,跟周围那些点的那个呃irish的地方,他要尽量进对吧。

这样它的那个地形就选择这种就叫叫做and your smoothing not not break吧,好吧对吧,比如说local reaction opera operators吧。

只有一个你可以做一个edge plus,你可以做一个我们edge sleep对吧,你可以做这个edge sleep是吧,看这个地方要ley一下它,它它就更regular吧。

可以做一个modex的这个sheet,对相对来说它它它的那个他don’t graduate,对不过才,这样的工作呢像not coffee对吧,他们早期的一些工作跟这个很相关对吧,这是一种相对来说。

所以你纠结的方式,对你纠结的方式。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

比如说你还可以考虑一下,比如说我们可以有些小的lv max,就比如说你最长那边跟队长那边那个比值对不对,你要满足满足一定的条件对吧,你可以看出就是说你越来越fensible。

它相对来说它就越来越来越矛盾,上你越regular的话,相对来说就比较有个sofm,有个solid叫做to your magic bur,有麦你现在可能是sos的,也不慢啊,那以前那个扫帚做的非常好。

我觉得这方面特别在这种,现在现在如果大家用,大家如果对这个东西想亲身体验一下,我建议大家当了一个match model,有个有个操作叫match la。

你可以把那个可以把这个东西弄到mac app里面去做一些processing。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是reaction,reaction的话,我没多讲这方面的工作嗯,还有很多别的吧,嗯但是我觉得这个跟d不能理,我是不是特别相关,就不好说了啊,但是说从max的这个角度来说,这是一个很重要的东西啊。

你比如说嗯嗯一点比较重的,比如说我们如果做这个match呃,做这个这个这个match base牛奶的话对吧,你像mac对不怎么保持这个match reguarity。

我们在这个变形的过程中真是很重要的很重要的这个很重要的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后呢就是这个match simplification of potation,这个我要多讲讲啊,我知道力刚老师讲过啊,我知道力刚老师讲过,但是我还是要强调的,就是说什么呢。

就是这个东西是这个metric processing的核心的东西,简化prostation啊,这是核心的东西,你看那个math型,那个deep deep architor对吧,你仔细去读的话对吧。

我觉得应该是现在match应该是做的比较好吧,mad你会发现它其实跟cc cccation相关的,ccc相关的,就是这样对吧,就是你给另一个mesh,对不对,然后你要找一个呃另外一个match对吧。

他们两个之间的距离要很近,对不对,同时呢你那个新字很match呢,他的那个那个减的热度可能又少对吧,当然你还会有一些别的考string对吧,嗯别的场券的我这样会讲对吧,这不是fm呢。

非常非常难对非常非常难,但一般情况现在怎么不行,那就是我找一个神话就弄我这个抓捕就有可能选,对吧,look for example of timal solution,对吧,嗯然后呢。

我们还有respect,additional fans和电源,是综合解决,选选个sh,这不对吧,这些东西也可以,对吧,这些东西都是很重要的啊,这些东西都是很重要的啊,那一般情况下呢就是说有两种算法。

第一种算法呢啊当然还有别的,还有更多的主要就两种算法,第二章法就是motet crossing,这个东西呢从哪来的呢,他首先是从match里面来的啊,然后呢我们上节课讲那个风和我讲对吧,哎这个东西呢。

于是其实如果大家做神秘地进什么,你做的多的话,你会发现这个东西其实大家也可以做到那个什么用到这个deep learning,你用在这个地方一点。

你可以做这种这这这你说狂卡顿其实就跟那个max风有很相关对吧,你是在所有的点里面找右边三对吧,唉,对这种我讲这个东西虽然最终肯定是会进不得你服务的啊对吧,跟金刚老师那个课程那个go是不一样的,对吧。

但是我对任何一个operation对吧,这就是我为什么要大家学以前这个问题,要大家学以前的东西,就是这个原因啊,就是我觉得这些东西很重要对吧,你把它稍微稍微看一下,我觉得这对相关。

那这个其实你做sification对吧,实际上是什么,就是conution嘛,你看not in对吧,他就在上面做simpication,做这做sification对吧,同时还做了一个什么。

他这个nt恤做了一些变化对吧,就说这些东西这都是很有意思啊,就是说显示微信你怎么做cro水呢,你就对吧,你就是找一个那个registration,对不对,然后呢你把这个所有的对吧。

就比如说一个unit three green,然后你max what time to cross the sales对吧,然后就compurebred mesh,然后做错了就清楚对吧啊。

这些东西这都是多少了对吧,然后我们上上节课讲这个东西对吧,就是说你可以说有有这种ratic的课,上节课讲这个,我说大家记得的话,就是说不让说pc对不对,如果这个pp a的那个哦,它大于某个东西。

那我们就继续做细分对吧,那就是这个top down,我们也可以做官方二,对不对,就是不断的默契点是吧,如果他们能被一个平面对吧,然后你就做cc以后呢,然后下面你就做了这个representing对吧。

你就做了cos以后,你要找一个三九对吧,这就是麦克风也很像吧,但是就喜欢那这些,这个怎么computer呢,它就有average mediyour,apoge,就是你要去去算对吧对吧。

你看你可以有一个orange mother tradition对吧,你可以用no pauid是吧,你可以用medium tx tradition of se,还可以用那个ao ji js对吧对吧。

像这些东西,对啊就是so refly啊,我简单讲一下这个哎呦,我觉我上大学课没讲mc jin,实际上呢我就是我们传达一个就是gradiance v对吧。

就是说比如我们金库的每个cho它都有一个gradient fession是吧,这个东西用的很多了,不用做就做注册的时候用对吧,现在做简化也用对吧,嗯做简化,因为我发现我个人感觉我看这玩这个看20年了。

我感觉就跟vision一样啊,我带的这个ut我是叫cg视觉啊,真的是那个我不相信不能演啊,教教了,这视觉,今天第一节课,下午刚上完课,对,是真正在graphic的原因分手这个id这么几个啊,不多啊。

注册用对吧,那个算那个sification也用对吧,有时候做vision of saoration吧,还用对吧,这就很硬,确实,实际上就是说对吧对gredients to play对吧。

就是说有一个啊你可以说给定一个平面,给定一个平面,你可以算一个点到这个平面的距离平方对吧,哎这个可以表示成一个那种fashion对四的时候对对吧。

然后呢然后呢然后就说你可以上这个dance to water play,就很多个play,对不对,很多个play,然后,比如说你你有很多play是吧,你要把它刷摩尔和移动play对吧。

那这个怎么办呢对吧,比如说一个点要summer一个surface pen,一个mac和pad怎么办呢,这个点到所有的这个费,这个city don最小的那个东西,对你找个中文,那你就需要一个这个。

因为你这个第四层来去,如果这是一个可加分的话,他有这个他要加入这个事情,所以都求和在一起的,还是可加就放,所以就是说你做mod的时候,只要tx就是你对应的这个c它的一个国家这个form就可以了,对不对。

不需要把每个被子的国家里后再重启一下,就没有必要知道不断的update这个东西就可以对吧,然后你有了这个东西,你就写一个那个应该的对吧,对吧,然后你就可以算了是吧,平面对吧。

你所有的点废纸的平面都一样嘛,那你这个最后你简化以后的这个点就一定什么,一定是在原来那个平面上的对吧,这样你就能保持保持这个,你用meeting,用allergy,你会有一些走样就走样对吧。

为什么这个errock和drag还是相对来说比较popy的,最后到4000多的fpx啊,那你computer一个reactive对吧,我再再强调一下,首先就是你决定哪些点应该可以吃吧,对对吧。

那些免费卡手的时候呢,我会算那些到对应那几点相关的那些废那个square system对吧,就是point to play this,我去找求一个解一个4x4的这个linuber啊。

我去得到那个点的那个线的坐标是好,有了图拉斯以后,那我们现在就决定哪些卡组相连对吧,那这个时候呢就看哪些东西是原来那些那个也是他们建的项目的,那你就把他们在一起,这个water classing。

它是非常efficient,其实我觉得就是做and understanding的这种new network,你不需要保,最后你不需要保持这个mesh的ppology对吧,你只需要最后得到一个level。

对不对,对吧嗯,然后那个,这个时候呢这个国太要是算了就比较好啊,这就比较,不能不能保住这个manifo,复杂一点的呢,怎么说你也能保持一个medical infermemory。

就是你在这里简化的过程中,我永远保持mani,每一步呢我做一个小的改动啊对吧,这个东西呢现在来说你在cosprmsi的全麦,这个就用的比较多对吧,可能比较多。

其实我set up就这样to repeat peking in the mesh,vision of a quality to make sure that kill no problem。

we are f对啊,the gredient of认什么就for each vision是吧,very quality of mission对吧,然后就是找那个最,是啊。

还有还有就是要做一些格罗布l control对吧,convention operators对吧,首先要保证在哪个位置是吧,我这个地方可能稍微讲的快一点,因为我刚刚上。

然后就说我们还有就是呃那一般情况下就是说我们怎么办呢,比如说嗯我们从最简单来对吧,然后看看哪种东西,哪种方法都叫不动给另一个网格对吧,你首先实在是玩,那就不是吧,那那你就。

lily这个这个文太平洋把他的所有相关的东西分解,然后呢你在b后这种办法对吧,那这种办法相对来说也不那么flash是吧,flab flash是吧,但实际上就是说,eration对吧。

他就是说他说他他就是我这个号对吧,但是他们的toyal degree of me是吧,哎这种东西不是用的最多的,这种东西呢你就是把这作为edge club对吧。

你就是把这个merge to js chang new world exhibition,准备就是用的最多的,就是说你把两个我再把它磨成了一个,然后同时呢把你determinal location啊。

这种东西是最多的,还有一种就是呃这是一个extreme,可是对这个class one and point,它是一个special vocal,special edge club。

没有degree of freedom对吧,the one of the operate for haledge,这种相对来说用的就比较多。

这个这个max呢它的logo和max是这就是computer energy thing,no,comparison of no,这样的这种呢,就比如说你像这种呃。

simple fication eminal对吧,就是说你要不就是给定一个初始的n,然后你会定一个一个区间才能走向开始,还有这种to thank you的时候。

house of business none of,要是d a b等于,一般情况下我们现在的softw不会用gloo global的,相对来说你们知道为什么要用global的吗,操作我才福利的。

我们必须存对吧,必须存这个什么东西,是是我们必须存取这个history,否则没法做,可以嘛对吧,就是你把如果它推成两个对吧,但是你要determine,如果如果我们不存那个奥运的话,再说是没法做的。

大家知道为什么要做global error magic,我问下一个问题,就是为什么会有一个什么什么这个这个概念对吧,应该选emo,我们为什么要做这个事情,大家想一想,回回你们有谁能回答吗。

不是spa partnation是有一个自销的问题,就是说本来比如说你原来有个mac对吧,有两个区域离得非常近是吧,他不不想交,但是离得非常近,如果没有global air contcontrol的话。

你不ation的时候,你include的那个match啊,很有可能是直销的,你懂我意思吧,有可能是直销的,要解决这个问题,就需要这种slover era control这个东西,大家是要,注意的啊。

比如说做做牛奶work,你在mac上面做commodation,你不是说不希望改变逃跑的结,他就是说你比如说两个两个两个区间,他他自交了对吧,鼻子左边这个手跟右边那个手对吧。

你比如说一个max的model,两个手离得很近对吧,做simplication做完以后,他很有可能就死掉了,如果不做这个global air control的话。

你包括做match convolution,不解决好这个问题,不,然后他有一个对吧,有个这个这个这个问题,现在我30号说对吧,它就容易容易出这个东西对吧,它就容易出这个东西,我就希望大家注意啊。

我就希望大家注意这个东西好吧,让大家注意这个东西,这个这个我就跳好吧,我觉得这个这个高冷的harward这个文章的非常有名的french,非常有名的游戏啊,对吧,那我们还有这个fate界面。

比如说画majl对吧,比如说这个圈子shift这个这个这个这个大的这种angles是吧,说这个对吧,比如说这个spence是吧,你需要这个所有的那个,这就是比mc相关了啊。

根据mc相关的这些东西有一些办法对吧,你要解决这些问题,那你在做seventation的时候,你同时去做reaction啊,这方面的工作的话,个人感觉啊就是说这些东西啊。

最后大家我们坐在mac上面做deep learning的时候,会触及到都会涉及到啊,我为什么分开讲,我就希望大家把以前的这些东西,我翻那个bgv的那个东西,我会请一些senior的老师来对吧。

专门讲一个基础的东西,history的东西,我觉得我这门课也是对吧,我最后我会讲c不了啊,你不能练那些东西自己的,我不把前面把这些东西跟大家提一提的话,不知道那东西从哪来的对吧,你不知道那东西从哪来的。

你觉得就是蒙出来的吧,这样的话你自己就不能去做这些事情对吧,讲完这些东西再回过头去看那个最近的定论的东西,哎大家觉得很容易,那个这这还有这种finance cortana对吧。

well balance base对吧,比如说这种color base对吧,对这些东西啊,这都是比较特别的,one的东西也没有完全解决啊,有一些简单的comparison对吧,就是说这个。

what is space coin with the fans对吧,但是呢它就是缺点,就是就是不能不能保证投pology对,不能保证那manifod,rc卡车买什么cos对吧。

最后再简单的讲讲mesh repair啊,这东西呃怎么说呢,算法这个问题啊是一直存在的一直存在的啊,呃,因为那个算法mod的实在太好了,就是你想的动画直接帮你补了,但是属于是一个我们batch算法。

它有一种它有两种算法,这个topic呢现在,人不多了啊,因为那个东西你有些小说我直接他给你补了嘛对吧,这个东西比较相关的一个东西,实际上是,有个叫做completion对吧。

surface completion in completion,这个pad就是你meeting消啊,东西你怎么不回啊,我个人感觉啊,如果想做一篇新的文章。

你可以试尝试在mac上面把这个completion重新做一下啊,就真正自己出来一个match对吧,出来一个match,你用deep learning去做mash c,虽然他们秀了一下结果吧。

但是真的要把这个我觉得还是可以做一些文章的,作为文章的可信,为什么这么max retur就扫描做鼻子有些动,有的地方没找到,对嘛对,那这个时候呢你就需要把这呃把这个match上面hold,把股权嘛对吧。

两种算法,一种叫做surface of vip等m对吧,他就是说实际上是一种我待会想一个上网,但是呃have y对吧,那么缺点实际上就是不算很鲁迅啊,但同时他他对这个宋对吧,就是你要补的那个动。

他要求是蛮高的,要求是蛮高的,他这样也能not qualia control对吧,比如说我举个这样的例子对吧,他就是比如说你有一个这样的动对吧,这边呢就要把这个洞给补起来吧,把这个洞补起来。

你想想要要如果要做地图,你应该怎么做啊,低层的你能帮助什么啊,怎么做呢,实际上这个地方我想讲的一个东西,它就是这个就是这个feel,这个厚,对不对,就是你有一个three d的这个direpola。

对不对,你要uno on the t,你要把这个号补全呢,你需要多少个全功能,需要n减二个对吧,你还需要有一个sony fashion对吧,因为你把一个这个后补全,它有多种方法对吧。

那不仅仅是一个方法对吧,多种方法对不对,方法啊,那怎么去补呢,他就是说实际上这个地方呢它就会定义,比如说首先定义一个错误,对不对,就是说你假设你和好,你怎么去。

eva是个translation college对吧,但实际上有几种,一个就是这个,aa对吧,就是你既然要这个av要小对吧,同时你这个呃这个masm在黑人ang要小,这是一种方法对吧,那怎么去补呢。

很硬就行了,这个地方,你想打架,当然有没有学过dynamic,dynamic program,知道那个姓康这篇文章吗,做那个哦,ok图书馆,那怎么去做呢,其实你可以用散弹m program做对吧。

就是说你比如说w,比如说那个我们首先确定你说把二和九连成一条边对吧,可能它在它是一个圈ation对吧,你们然后这个store呢可以erative,就是用那种递归的话,你算什么,39就比外面的窗口吗。

二和九给一连对吧,你就把它break两个polg了对吧,你可以在不同的py里面去做,接了细分对吧,可以再接着细分,然后你就是239,这个大家要加三九对吧,然后就是2424949对吧,来了是吧,这不来了。

就被w c b的mini bobcat 7分全部跑一个a a加1等11吧,这样,然后他就有个reaction的画面,reaction这种方面推荐这种方面就是a a到c对吧,你就可以选一个b对吧。

a到b对吧,然后全部a b c到这个这样子的啊,所以就用这种,你可别去做那个先那个后对吧,像这种比because i的资源,那就对应的是比克牛仔的梦对吧,当你补完以后,你还需要一些gt care啊。

这个东西如果大家觉得不理解,那就是说你说算做数据结构的时候对吧,你你会学到这些东西,没有什么东西啊,嘻嘻,好你补完以后,你会发现这个这个这个这个网格有的很多三角形太大了吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那这个时候你就需要做一些什么呢,要做一个回放安全的问题对吧,可以做一些这种呃做smoothing啊,做一些reaction啊对吧,就是添加一些全口啊对吧,把一个拳头会分成两个对,做一些这样的东西对吧。

你会发现这个in是吧,实际上是非常奇怪的对吧,非常奇怪的对吧,肯定咱们肯定要用b服的,你去解决这个问题吧对吧,但是,这方面这方面的工作还不是很多,不是很多对吧,我觉得大家可以去考虑一下这样子啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后呢还有一些我还有一种方法就是want meat算法吧,所以说这个我就简单讲一下对吧,其实呃播送surface because,实际上选其实这个东西就很简单了。

实际上就是说你把缺interminable meter这三个有时候你会丢掉一些洗衣机,但然后呢你在这个网络mentation上面,你就可以做那个这个宝宝。

logical operation morning,啊对吧,你可以把它从影视曲面的角度对吧,就是每个点我都可以给称为它,是不是inside或者outside,对不对,你搞完以后呢。

你就用这个nacht在里面重建出一个nati,相对来说它就是把以前的这个东西给lost mos掉了都掉了,fully on the magic,对吧,那缺点就是你以前也是那个前的那个feature对吧。

转成这个呃,这个saber match representation的时候全都扔掉了,有一个方法那就很很很有意思的,比如说你有一个mac对吧,那这个时候我干什么了,就是你会发现就是你读以前的这些文章啊。

你经纪人你会发现有很多很新奇的视频idea,非常你能读到,都是能流传下来的id,我觉得这些id真的非常宝贵啊,啊设计师你真的应该去读一读啊,反正对吧,读这些东西很饱很硬,很一致,很饱和的i d。

这个东西我真是建议大家去读一个,那就是说比如说你有一个一个mac对吧,你可以一个方向投影仪,就得到了一个这个这个呃就造一个defaimage对吧,你可以用这个deft image。

我们通常把它叫做layer deft image对吧,recorn is that image是吧,这个你可以jquery或into each deem,你会比上面这个东西在里面,the one对吧。

啊好那我最后这个slide我觉得是最重要的啊,呃我刚才讲了那么多对吧,你我这12个晚上大家你可以呃,你可以下载下来再看一看,但是你记住一点啊,我觉得这个东西很重要。

就是第一这些传统的mac processing的东西啊,有本书我推荐了,我真的建议大家真的去读一读,里面有很多interesting idea。

我觉得对deep learning相比在mac上面做deep learning都很有帮助啊,嗯,实际上就是一些我们要学的就是一些没提高分析,还有就是我要讲的怎么把别的rap,那是转换的match对吧。

这个match cube对吧,这种重建的重建的时候,这种是很重要呃,那我还有几节课拿本书,就最开头的那个,这个书,去读一读啊,这样这么说,我我讲了里面的一部分东西啊,大家去读一读啊。

今天的这节课我就讲到这好吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后我们下周再见吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值