TowardsDataScience 博客中文翻译 2019(四十一)

原文:TowardsDataScience Blog

协议:CC BY-NC-SA 4.0

人工智能驱动的外星智能搜索——分析无线电望远镜数据

原文:https://towardsdatascience.com/ai-powered-search-for-extra-terrestrial-intelligence-analyzing-radio-telescopic-data-c9e46741041?source=collection_archive---------14-----------------------

人工智能造福社会系列—第 2.1 部分

从 SETI 了解射电望远镜信号数据

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Ambir Tolang on Unsplash

介绍

在这个由两部分组成的系列文章中,我们将看看人工智能(AI)如何与开源工具和框架的力量相结合,来解决非常规领域中一个非常有趣的问题——寻找外星智能!

也许你们中的许多人已经熟悉了 SETI(搜寻外星智能)研究所,该研究所专注于试图找出宇宙中是否存在外星智能,正如其使命所暗示的那样“探索、理解和解释宇宙中生命的起源和性质以及智能的进化”。最近,我在 Kaggle 上看到了 SETI 的一个开放数据集,其中谈到 SETI 专注于几个公共倡议,这些倡议以过去发生的比赛形式在他们的数据集上利用人工智能。虽然竞争现在已经停止,但是这些数据的子集仍然可以用于分析和建模,这是本系列文章的主要重点。

我们将着眼于分析 SETI 获得的数据,作为他们过去倡议的一部分,ML4SETI 机器学习 4 寻找外星智慧。这项计划的数据是基于无线电信号的模拟数据,目标是让数据科学家找到一种可靠的信号分类算法,用于寻找外星人无线电通信的任务。这里的重点是能够准确地对不同类型的信号进行分类。

动机和意义

SETI 研究所致力于研究和工作方法,以提高他们对外星智慧的搜索。他们加速这一搜索的关键仪器之一是艾伦望远镜阵列(ATA),它位于加利福尼亚州拉森峰以北的喀斯喀特山脉的哈特克里克天文台

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The Allen Telescoping Array (https://www.seti.org/ata)

艾伦望远镜阵列有助于基于无线电信号的搜索,并将 SETI 目标搜索的速度提高了至少 100 倍。这里应用人工智能或深度学习的动机可能是多方面的。

  • 为区分不同信号而优化的深度学习模型可以减少搜索时间
  • 效率,甚至可能是新的更好的方法来发现外星智慧,因为他们观察来自恒星系统的信号

虽然我们将在这里使用的数据是基于无线电信号的模拟数据,但它们与 SETI 的无线电望远镜设备捕捉的真实数据非常一致。我们现在将简要地看一下这个。

理解 SETI 数据

这里提供的信息是基于我从研究 SETI 数据的细节中收集的见解,当时他们与 IBM 合作举办了这场比赛。挑战的细节在 这里 呈现给可能感兴趣的人,关于设置和数据的许多背景信息在 这篇有用的文章 中提到。

艾伦望远镜阵列体系结构

艾伦望远镜阵列(ATA)由几个相对较小的碟形天线(天线)组成,延伸约 1 公里。这提供了非常高质量的光束形状(天空中望远镜最敏感的点)。ATA 实际上经过优化,覆盖 1000 MHz 至 15000 MHz 之间的频率。ATA 使用一种称为“波束形成”的过程来组合来自不同碟形天线的信号。通常使用这一过程,ATA 观察来自天空中非常小的窗口的关于特定恒星系统的无线电信号。在高层次上,ATA 有四个主要的概念系统,如 官方页面 中所述。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ATA architecture (https://www.seti.org/ata-technical-overview)

  • 天线收集来自太空的辐射;
  • 信号路径将来自馈源(位于天线焦点处)的辐射带回给用户
  • 监控和命令系统允许精确地移动碟形天线,并控制信号路径
  • 该网站包括整体天线配置,以及其他基础设施。

ATA 将允许远程用户通过安全的互联网连接访问和使用仪器。

射电望远镜时间序列信号

从使用的角度来看,可以同时观察到三个独立的光束,并一起使用来决定观察智能信号的可能性。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

控制数据采集系统的软件,实时分析该无线电信号时间序列数据并将数据写入磁盘。它叫做索纳塔(SETIontheATA)。

为了找到相关信号,SonATA 软件将信号功率作为频率和时间的函数进行计算,并重点关注持续时间超过几秒钟的功率大于平均噪声功率的信号。将功率表示为频率和时间的函数的最佳方式是通过频谱图,或“瀑布图”。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

下图描绘了来自 ata 的真实无线电信号数据的样本频谱图。这是所谓的“窄带”信号的经典例子,这是索纳塔主要在数据中搜索的内容。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Signal observed at the Allen Telescope Array from the Cassini satellite while orbiting Saturn on September 3, 2014 (Source: https://medium.com/@gadamc/using-artificial-intelligence-to-search-for-extraterrestrial-intelligence-ec19169e01af)

信号的功率用黑白刻度表示。y 轴是时间,x 轴是频率(Hz)。您可以清楚地看到,信号开始于大约 8429245830 Hz,经过 175 秒的观察,漂移至 8429245940 Hz。

分析无线电信号数据的需要

SETI 捕获这些数据并在信号中搜索特定模式的原因是因为这是我们用来与太空中的卫星通信的信号。因此,如果一个看似先进的外星文明试图引起我们的注意,他们可能会向我们发送信号,这是有希望的!

获取模拟 SETI 数据

现在我们已经有了足够的关于 SETI 及其数据的背景信息。让我们尝试获取将用于训练深度学习模型的数据集。不幸的是,ML4SETI 的竞争早已结束,但幸运的是,我们仍然可以获得一部分数据。请随时查看 ML4SETI 【入门】 页面,了解如何获取数据集。如果你想在没有阅读背景信息的情况下直接进入数据,只需前往 这个 Jupyter 笔记本 !获取这个数据集的一个更简单的方法是从 Kaggle

由于处理真实数据存在挑战,因此构建了一组模拟信号来近似真实信号数据。典型地,SETI 研究所的研究人员经常观察到许多信号类别。对于这个数据集,总共有七个不同的类。

  • 亮像素
  • 窄带
  • 窄带宽
  • 噪音
  • 方波脉冲窄带
  • 波浪线
  • squigglesquarepulsednarrowband

类名基本上是描述它们在光谱图中的样子。

主要目标

既然我们有了所有的背景资料和数据,就很容易确定我们的主要目标。给定总共七个不同的无线电信号类别,包括噪声和每个类别总共 1000 个样本,利用深度学习模型建立准确的分类器。虽然我们将在本系列的第二部分构建深度学习模型,但在本文的剩余部分,我们将更深入地研究数据集,以更好地理解我们正在处理的内容。

分析模拟 SETI 数据

我们使用原始格式的小型 SETI 数据**primary_small_v3**只是为了展示如何加载和处理数据。记住,处理信号数据时,您将需要开源的**ibmseti**包。你可以用**pip install ibmseti**安装它。在进行一些基本的处理和分析之前,让我们先加载原始数据集。

***7000***

这告诉我们,我们的数据集中总共有 7000 个信号样本。让我们尝试处理和可视化其中一个信号。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因此,基于上面的视觉效果,我们已经成功地将一个narrowband信号在可视化之前处理成一个声谱图。让我们看看每类信号样本的总数。

***brightpixel                       1000
narrowbanddrd                     1000
squiggle                          1000
narrowband                        1000
squigglesquarepulsednarrowband    1000
noise                             1000
squarepulsednarrowband            1000
Name: signal_classification, dtype: int64***

就像我们之前提到的,我们每门课总共有 1000 个样本,坦白地说并不是很多!稍后会详细介绍。让我们用光谱图来处理和可视化一些样本信号。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这给了我们不同信号的样子。你可以看到,这些信号并不总是很容易区分,因此这是一个更艰巨的分类挑战。

加载已处理的 SETI 数据

现在,对于本文的剩余部分和本系列的下一篇文章,您可以手动利用**ibmseti**包将每个信号处理成频谱图,或者只需下载并使用 Kaggle 中可用的数据集中已经处理过的频谱图文件。记住,处理过的数据集在**primary_small**文件夹中。解压其内容后,这就是目录结构的样子。

我们总共有 7 个类,每个类有 800 个训练样本,100 个验证样本和 100 个测试样本。现在让我们看一些样本处理过的声谱图信号文件。

使用 Keras 加载和可视化光谱图

Keras 框架有一些优秀的工具来处理包含这些光谱图的图像文件。下面的片段展示了一个样本频谱图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

用 OpenCV 加载和可视化光谱图

有很多 OpenCV 爱好者喜欢使用这个框架来满足他们所有的图像处理需求。你也可以用它来处理光谱图。请记住,OpenCV 默认以 BGR 格式而不是 RGB 格式加载这些图像。我们在下面的代码中展示了同样的内容。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可视化处理过的 SETI 样本数据

现在让我们来看一下从处理过的数据集中选择的七个不同的样本信号,我们稍后将使用它们进行分类。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这向我们展示了数据集中不同类型的无线电信号,这些信号已经过处理,随时可以使用。

了解无线电信号模拟数据

这里所有的模拟信号都是由信号和噪声背景之和产生的。以下关于信号的背景资料,已从 这篇精彩的文章 中整理出来,以更详细地了解每个信号

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

SETI 数据上的深度学习

假设我们有七个信号类别的光谱图图像,我们可以利用基于视觉的深度学习模型来构建鲁棒的图像分类器。在本系列的下一篇文章中,我们将利用卷积神经网络来了解如何构建准确的分类器来区分这些信号类别!

卷积神经网络简介

最受欢迎的用于计算机视觉问题的深度学习模型是卷积神经网络(CNN)!

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Source: becominghuman.ai

CNN 通常由多个卷积和池层组成,这些层有助于深度学习模型从图像等视觉数据中自动提取相关特征。由于这种多层体系结构,CNN 学习了特征的健壮层次,这些特征是空间、旋转和平移不变的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

CNN 模型中的关键操作如上图所示。任何图像都可以表示为像素值的张量。卷积层有助于从该图像中提取特征(形成特征地图)。网络中较浅的层(更接近输入数据)学习非常普通的特征,如边、角等。网络中更深的层(更靠近输出层)学习与输入图像相关的非常具体的特征。下图有助于总结任何 CNN 模型的关键方面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们将利用迁移学习的力量,其中我们使用预先训练的深度学习模型(已经在大量数据上训练过)。在下一篇文章中会有更多的介绍!

后续步骤

在下一篇文章中,我们将基于 CNN 构建深度学习分类器,以准确分类 SETI 信号。敬请期待!

本文使用的代码可以在这个 资源库 中的 my GitHub 上获得。

人工智能驱动的外星智能搜索——深度学习信号分类器

原文:https://towardsdatascience.com/ai-powered-search-for-extra-terrestrial-intelligence-signal-classification-with-deep-learning-6c09de8fd57c?source=collection_archive---------22-----------------------

人工智能造福社会系列—第 2.2 部分

基于深度学习的 SETI 射电望远镜信号分类

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Donald Giannatti on Unsplash

介绍

欢迎(或者欢迎回来!)到 AI for social good 系列!在这个由两部分组成的系列文章的第二部分,我们将看看人工智能(AI)如何与深度学习等开源工具和技术的力量相结合,帮助我们进一步寻找外星智能!

这个两部分系列的第一部分 中,我们制定了我们做这个项目背后的主要目标和动机。简而言之,我们正在观察来自 SETI(搜寻外星智慧)研究所数据模拟的不同射电望远镜信号。我们利用技术将无线电信号处理、分析和可视化为频谱图,频谱图基本上是原始信号的可视化表示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Signal observed at the Allen Telescope Array from the Cassini satellite while orbiting Saturn on September 3, 2014 (Source: https://medium.com/@gadamc/using-artificial-intelligence-to-search-for-extraterrestrial-intelligence-ec19169e01af)

在本文中,我们的重点将是尝试使用深度学习为总共七种不同类型的信号构建一个强大的无线电信号分类器!

加载 SETI 信号数据

就像我们在上一篇文章中讨论的那样,模拟的 SETI 无线电信号数据集在 Kaggle 中可用。记住,处理过的数据集在**primary_small**文件夹中。解压缩其内容后,这就是目录结构的样子。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们总共有 7 个不同的信号类别要分类,每个类别总共有 800 个样本用于训练,100 个样本分别用于验证和测试。考虑到噪声已被添加到模拟信号数据中,再加上每类样本数量较少,这是一个很难解决的问题!在我们开始之前,让我们加载我们将用于构建模型的必要依赖项。这里我们将利用 TensorFlow 的**tf.keras** API。

***./data/train
./data/valid
./data/test***

可视化样本 SETI 信号

回顾一下上一篇文章,看看我们正在处理的不同类型的信号,我们可以使用下面的代码来可视化它们的频谱图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对于我们正在处理的不同信号样本,一切看起来都很正常!

数据生成器和图像增强

由于我们每个类的训练样本数量很少,因此获得更多数据的一种策略是使用图像增强来生成新数据。图像增强背后的想法就像它的名字一样。我们从训练数据集中加载现有图像,并对其应用一些图像变换操作,如旋转、剪切、平移、缩放、翻转等,以产生现有图像的新的、改变的版本。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

由于这些随机变换,我们每次得到的图像并不相同。基于我们正在解决的问题,我们需要小心增强操作,这样我们就不会过度扭曲源图像。

我们将对我们所有的训练数据进行一些基本的转换,但保持我们的验证和测试数据集不变,只是对数据进行缩放。现在让我们构建我们的数据生成器。

我们现在可以构建一个样本数据生成器,以便了解数据生成器和图像增强是如何工作的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

给定我们总共有 7 个类,标签是一次性编码的,因此每个标签是大小为 7 的一次性编码向量。

基于 CNN 的深度迁移学习

迁移学习的想法并不是一个新概念,当我们处理较少的数据时,它是非常有用的。假设我们有一个预先训练好的模型,该模型以前是根据大量数据训练的,我们可以用这个模型来解决一个数据较少的新问题,并且应该理想地得到一个性能更好、收敛更快的模型。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有各种各样的预训练 CNN 模型,它们已经在 ImageNet 数据集上被训练,该数据集具有属于总共 1000 个类别的大量图像。这个想法是,这些模型应该作为图像的有效特征提取器,也可以根据我们执行的特定任务进行微调。预先训练的模型可以完全冻结,当我们在新数据集上训练时,我们根本不改变层权重,或者当我们在新数据集上训练时,我们可以微调(部分或完全)模型权重。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在我们的场景中,我们将尝试对我们预训练的模型 进行部分和完全的微调。

预先训练的 CNN 模型

迁移学习的一个基本要求是要有在源任务中表现良好的模型。幸运的是,深度学习世界相信分享。他们各自的团队已经公开分享了许多最先进的深度学习架构。预训练模型通常以模型在被训练到稳定状态时获得的数百万个参数/权重的形式被共享。每个人都可以通过不同的方式使用预先训练好的模型。

TensorFlow 中提供了预训练模型,您可以使用其 API 轻松访问。我们将在本文中展示如何做到这一点。你也可以从网上获得预先训练好的模型,因为大多数模型都是开源的。

对于计算机视觉 ,可以利用一些流行的模型包括,

我们将在文章中使用的模型是 VGG-19 和 ResNet-50。

VGG-19 模型

VGG-19 模型是建立在 ImageNet 数据库上的 19 层(卷积和全连接)深度学习网络,其建立的目的是图像识别和分类。这个模型是由卡伦·西蒙扬和安德鲁·齐泽曼建立的,并在他们题为 “用于大规模图像识别的非常深的卷积网络” 的论文中提到。我推荐所有感兴趣的读者去阅读这篇文章中的优秀文献。下图描述了 VGG-19 模型的架构。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ResNet-50 型号

ResNet-50 模型是建立在 ImageNet 数据库上的 50 卷积块(每个块中有几层)深度学习网络。这个模型总共有超过 175 层,是一个非常深的网络。ResNet 代表剩余网络。下图显示了 ResNet-34 的典型架构。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总的来说,深度卷积神经网络导致了图像分类准确性的重大突破。然而,随着我们深入下去;神经网络的训练变得困难。其原因通常是因为消失梯度问题。基本上,当梯度反向传播到更浅的层(更接近输入)时,重复的张量运算使梯度变得非常小。因此,精度开始饱和,然后也下降。残差学习试图用残差块解决这些问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

利用跳过连接,我们可以允许网络学习身份函数(如上图所示),这允许网络通过残差块传递输入,而不通过其他权重层。这有助于解决渐变消失的问题,也有助于保持对高级功能的关注,这些功能有时会因多级最大池而丢失。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Source: https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

我们将使用的 ResNet-50 模型包括 5 个阶段,每个阶段都有一个卷积和单位块。每个卷积块有 3 个卷积层,每个单位块也有 3 个卷积层。

深度迁移学习与 VGG-19

这里的重点是采用预训练的 VGG-19 模型,然后对网络中的所有层进行部分和全部微调。我们将为下游分类任务在模型中添加常规密集和输出图层。

部分微调

我们将以 VGG-19 模型开始我们的模型训练,并对模型的最后两个模块进行微调。这里的第一项任务是构建模型架构,并指定我们想要微调的块/层。

现在,我们将对模型进行 100 个纪元的训练。我在每个时期后保存模型,因为我有很多空间。除非你有很多存储空间,否则我不建议你这么做。你总是可以利用像**ModelCheckpoint** 这样的回调来集中存储最好的模型。

我们可以使用下面的代码片段来查看整个模型学习曲线。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

看起来不错,但随着时间的推移,验证数据集的损失和准确性肯定会有很大的波动。

完全微调

在我们的下一个培训流程中,我们将采用 VGG-19 模型,对所有模块进行微调,并添加我们自己的密集层和输出层。

下图描绘了培训过程的学习曲线。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就验证准确性和损失而言,随着时期的增加,看起来更加稳定。

用 ResNet-50 进行深度迁移学习

本节的重点将是采用预训练的 ResNet-50 模型,然后对网络中的所有层进行完整的微调。我们将照常添加常规密集图层和输出图层。

完全微调

对于我们的训练过程,我们将加载预训练的 ResNet-50 模型,并对整个网络进行 500 个时期的微调。让我们从构建模型架构开始。

现在让我们训练总共 500 个时期的模型。

下图显示了我们训练模型的学习曲线。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

根据测试数据评估模型性能

现在是检验我们训练好的模型的时候了。为此,我们将对测试数据集进行预测,并基于多类分类问题的相关分类度量来评估模型性能。

负载测试数据集

我们首先利用之前构建的数据生成器加载测试数据集和标签。

***Found 700 images belonging to 7 classes.****((700, 192, 192, 3), (700,))***

建立模型性能评估函数

我们现在将构建一个基本的分类模型性能评估函数,我们将使用它来测试三个模型的性能。

我们现在准备在测试数据集上测试我们的模型的性能

模型 1 —部分微调的 VGG-19

这里,我们在测试数据集上评估了部分微调的 VGG-19 模型的性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在测试数据集上,总体准确率为 86%,相当不错!

模型 2 —完全微调的 VGG-19

这里,我们在测试数据集上评估了我们完全微调的 VGG-19 模型的性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

测试数据集上的总体准确度得分为 85% ,略低于部分微调的模型。

型号 3 —完全微调的 ResNet-50

这里,我们在测试数据集上评估了完全微调的 ResNet-50 模型的性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们得到的总体准确度分数为 88% ,这绝对是测试数据集上迄今为止最好的模型性能!看起来 ResNet-50 模型表现最好,因为我们确实训练了它 500 个纪元。

样本测试数据的最佳模型预测

我们现在可以用我们最好的模型来预测样本无线电信号频谱图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论

这将我们带到我们关于利用深度学习进一步搜索外星智能的两部分系列的结尾。您看到了我们如何将无线电信号数据转换为频谱图,然后利用迁移学习的能力来构建分类器,这些分类器表现非常好,即使每类的训练数据样本数量非常少。

本文使用的代码可以在 my GitHub 的这个 资源库 中获得。

人工智能问题是人类的问题

原文:https://towardsdatascience.com/ai-problems-are-human-problems-528d12ff000d?source=collection_archive---------20-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Harvard’s Belfer Center for Science and International Affairs — a paragon of higher learning and perhaps even higher folly. | Source

我最近在哈佛大学肯尼迪政府学院参加了一个名为“治理人工智能——我们如何做”的会议。参加会议的都是知名人士,从杰出的哈佛教师,到网络安全专家,再到与丹麦高等教育和科学部长合作的代表团成员。作为一名非常低调的软件工程师和未来的研究生,至少可以说我感到很害怕。

热烈的讨论从围绕人工智能治理和政策的挑战,到围绕术语“人工智能”而非“机器学习”的恐怖神话,到透明的算法决策和问责制问题;上午 8 点聚会的崇高话题。这些话题都是我很感兴趣的,所以在整个讨论过程中,我的神经都放松了。我没有静静地坐在椅子上发抖,而是很快专注于该领域专家之间有趣的玩笑。放松后,我看了看房间,不禁注意到这种担忧——我敢说,是恐惧——微妙地渗透到经过训练的专业门面中。随着一个技术末日的笑话引发的每一次紧张的笑声,专业知识的面纱越来越薄。我很快明白了一些事情:“甚至一些专家也不知道如何应对人工智能的挑战。”

纵观历史,我对大规模解决问题的本质不抱任何幻想。天才的技术官僚很少注意到、致力于并向大众介绍彻底的变革。相反,神奇的创新往往是看似完全不同的想法的综合;文化的转变不是由于政府的政策,而是由于集体意识的转变和规范的转变。然而,有时我仍然想象一些领域专家有,如果不是所有的答案,那么至少比像我这样一个没有装饰的平民有更多的答案。在这次讨论中,情况显然不是这样。

那么,是什么让管理像人工智能这样先进的技术带来的责任变得如此困难?底层技术是否过于复杂?我们是在和我们几乎不了解的力量合作吗?当我听着从墙上反射回来的困惑时,答案对我来说是显而易见的;在一阵令人不舒服的病态笑声中达到高潮:控制和治理人工智能面临的最紧迫的问题与人类自文明诞生以来面临的问题是一样的。

人性激发的智慧

人类天生以自己的形象创造工具。我们经常从大自然或我们自己的生物学中获得灵感,以塑造我们自己的系统来挫败我们现实中的压迫性规则。人工智能系统是模仿人类大脑的运作方式;接受信息并激活神经元,这些神经元本身并不聪明,但结合起来创建概率模型,模仿我们自己的模式识别智能。考虑到相似性这一概念,随后对我来说非常明显的是,人类创造的人工智能所面临的问题将是困扰人类智能的问题。

几千年来,思想家们一直在诊断这些人类特有的疾病。

问责制、透明度和模型偏差是会议中出现的一些问题的一个小例子。大赦国际需要对其决定负责;不管是好是坏,他们必须被赋予一种动力,或一个行动者,以获得赞扬或指责以及随后的反响。人工智能需要透明,以人类可以理解和内化的方式揭示其决策的逻辑路径。人工智能必须努力以公正的方式行事——从无害的数据集学习——这样它的决定才能反映我们最高的社会价值观。当想到数字情报的责任时,这一切听起来令人不知所措,而且格格不入。然而,一些观点可以帮助我们理解这些挑战:这些同样的症结自人类社会诞生以来就一直困扰着它,并且是我们自己尚未解决的非常人性化的问题。

从任何有意义的意义上来说,人类的权力系统和组织结构都很难问责、透明或公正。倒闭银行的高层领导在 2008 年帮助全球经济崩溃后没有被追究责任。政府和私营企业未能做到透明,因为它们通过谎言和宣传胁迫选民来获取权力或利润。个人经常不能认识到偏见是多么容易潜入他们自己的现实生物模型。几千年来,思想家们一直在诊断这些人类特有的疾病。在人工智能的背景下,任何赋予这些挑战完全新奇的概念都应该立即被认为是谬误,因为人类有着大量相同的斗争记录。

我们的日常生活也一样复杂

直到围绕人工智能的问题被认识到是人类的,并且潜在地是社会的,在它们的核心,那些受智能系统的社会整合所导致的最糟糕的愚蠢行为影响最大的人可能会被视为光顾嘘混有技术官僚,行话充斥的“解决方案”。技术专家习惯于居高临下地对待那些据称没有受过良好教育、无法理解问题的复杂性和细微差别的人。历史上,受影响最小的精英们选择躲在复杂的高墙后面假装无辜,而不是接受教育、宣传和让技术为社会服务的责任。

技术官僚的论点与这样一个事实完全矛盾,即在我们的日常生活中,同样存在着我们视为常识的更复杂的概念。一个苦苦挣扎的单身母亲的麻烦是无穷无尽的复杂,然而很大一部分甚至“未受教育”的社会已经开始认为这个问题是一个值得解决的问题。爱情、情感和人与人之间关系的复杂性永远是模糊不清的;比机器如何学习打乒乓球要重要得多。这些类型的人类问题需要大量的内省和同情来理解并以富有成效的方式采取行动。仅仅因为它们是人类的条件并不意味着它们是简单的——特别是不比任何类型的数字技术简单。然而,我们每个人都在自己的生活中面对这些挑战,并能够发展对潜在系统的理解。与我们每天面临的生存斗争相比,诊断人工智能面临的问题应该是在公园里散步。

我毫不怀疑,任何将人工智能视为他人的普通人都会提出更合理的解决方案来应对这项技术带来的挑战。

通过更人性化的视角理解人工智能面临的挑战无疑将成为未来解决方案的核心。即使在今天,猖獗的偏见和新闻供稿推荐的过度适应最好通过人类的类比来看待。一个天真的、过度定制的新闻推送推荐者就像一个专门筛选新闻的人类朋友,真的想让你自我感觉良好,因此只给你提供符合你先入为主观念的文章。这位朋友已经了解了你的某些特征,并给你贴上了“自由主义者”、“拉丁人”、“跨性别者”等标签。他们还学会了识别新闻文章中的模式,这些模式也分配了类似的标签,如“吸引自由主义者”、“激怒同性恋者”等。因为你的朋友只是想天真地取悦你,因为他们会从你的快乐中获利,他们只会向你推荐标签匹配的新闻文章。我们知道,这位朋友正在损害任何民主的知情观念;因为这需要对立和不同观点的健康结合。

这种拟人化的神经算法应该作为智能系统中诊断和预测任何此类问题的模型。当想象如何让人工智能负责时,我们应该看看让强大的人类负责的理想。智能计算的透明度应该反映人类有史以来最伟大的教师和沟通者的标准。应该像人类一样根除偏见:考虑尽可能广泛和多样的视角。

在哈佛大学的房间里,技术专家和政策专家关注特定机器学习的细微差别,导致头脑陷入混乱,但我毫不怀疑,任何将人工智能视为另一个人的普通人都会提出更合理的解决方案来应对技术带来的挑战。

参与讨论的人从来没有考虑过用普通人的智慧来寻找解决办法。尽管人们滔滔不绝地谈论智能系统应该如何遵循美国明确而庄严的民主参与形式,但同样的民主存在深刻而悲剧性的缺陷这一概念从未出现过。任何在哈佛广场等公共汽车的普通人都可以告诉你“民主”的缺陷,因为他们在优越感的花言巧语中表现出平均的,或者可悲地低于平均水平的生活质量;毫无疑问,这是一个更加微妙的观点,可以包含在对人工智能治理的考虑中。

AI 应该是我们的镜子

虽然人类确实在与这些有时复杂、反思性的概念进行斗争,并且人类的解决方案可能会有缺陷,但我们应该认识到人工智能给我们提供的重要机会。关于人工智能面临的挑战的讨论表明,人类几乎没有克服这些障碍。然而,在讨论的过程中,我们得到了一个独特的机会来谦卑我们的宗教人道主义,并认识到我们确实有尚未解决的重大问题。

在接受普通人提供的证据失败的地方,我们应该努力使用人工智能作为破冰船,刺激围绕政府和个人问责制、企业透明度、系统性偏见和仇恨的讨论。或许人工智能的镜头更多的可以充当镜子的角色;当我们开始意识到另一边的创造物非常类似于我们这些偶然发现智慧的稍微聪明一点的灵长类动物。

我相信我们未来的繁荣取决于在我们的创造中看到自己,并认识到人类必须解决的深刻缺陷。同理心和技术已经达到了一个交汇点,如果强者继续不承认自己的缺点,拒绝真正倾听那些“在他们之下”的人,这可能会带来灾难。没有任何考虑,甚至比最富有的精英更强大的机器可能很快就会发挥巨大的影响力;充满了人类最大的缺点,因为他们的创造者太害怕看自己,看不到改进的空间。

AI 证明了它真的真的很蠢

原文:https://towardsdatascience.com/ai-proves-its-really-really-dumb-3509608f680f?source=collection_archive---------19-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们被告知,人工智能(人工智能)将取代我们的工作,管理我们的家庭和生活,并几乎成为我们这些可怜的、愚蠢的人类的虚拟奴隶。机器中的大脑有能力在国际象棋中胜过我们,一秒钟处理数千次计算,并且从不要求休假或健康保险、休假或产假。

未来就在眼前,伴随着一声响亮的巨响,震撼着我们脆弱的心灵,我们完全,毫无疑问要为这一切负责。我们用编码制造的弗兰肯斯坦生活在一个电荷中,它可以预测我们的一举一动,并像哈尔一样,告诉我们“吃一颗压力丸”并冷静下来。毫无疑问,它已经扭转了我们的局面,而我们才是那些抱怨“我的思想要崩溃了”的人。

我几乎要屈服于未来就在眼前的信念,感谢上帝,我不会在这里看到它对人类的破坏性。但是,就像有时发生的那样,一个奇怪的命运转折击中了我。啪!闪光!哦,等等,这不是一本漫画书,但它确实感觉像来自飞侠哥顿或其他超级英雄之一。

我手挨着头,盯着面前的 700 行字体,想知道为什么我以前没有看到它。出了什么问题?我相信人工智能,它不会做错事。当然,这是对的,我从未质疑过。

请允许我在这里提供一些背景知识。它确实与这个有趣的发现有关。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Kaitlyn Baker on Unsplash

我正在写书、短篇小说、博客等。这已经成为我想集中精力的一件事。但是写作不仅仅是写作,尤其是涉及到书籍的时候。写一本书不仅需要研究和专注,还需要解决所有作家都讨厌的被动语态。或者,有时,您将使用哪个视点(POV)。

您是只能使用一个视点,还是可以使用多个视点?时间框架怎么样?你能不能像《去年在马林巴德》那样,像《日落大道》的开场场景那样来回切换?

我能从一只警惕的松鼠的角度讲这个故事吗?这只松鼠栖息在窗外的一根树枝上,这个地方提供了人们和困境的美妙视角。我可以做到所有这些,甚至更多,但仍有一件事我可能需要一些帮助;标题。

书名统治着书籍写作的王国,因为书名可以卖书。我不在乎别人告诉你什么,他们写作是为了卖书,不是因为他们“必须”这样做,也不是因为“这是我的生活”。垃圾。书籍设计师会告诉你不仅仅是标题,还有类型、颜色、位置、图形的使用等等。

不,抱歉,伙计们,我不确定这是否像他们想的那样科学。但是标题,最重要的是,似乎提供了一点额外的东西,可以抓住读者的鼻子,吸引他们翻页。标题规则。

你如何写出一个肯定会火的书名?作家不是标题制作的大师。作家用甜言蜜语,发人深省的话语填满页面,把读者带到他们希望去的地方。或者他们拓展思维,强化麻木的想法,认为这个作家一定比我聪明,所以也许我应该试着去读这本书。

苏珊·桑塔格,谢谢,我知道你才华横溢,但我还没有完全接受你的才华。我热爱摄影,所以当谈到你的作品时,这是我全力以赴的一个地方。

毫无疑问,书名可能非常俗气,但它们仍然能卖书。电影也一样。有多少著名的电影是以不同的片名开始的?在那座桥被跨过之前,在编剧被赶出片场或制片人的办公室之前,它会被放在文件柜里或被扔在地板上,没有被制作出来,是一种浪费。

换个标题,它就要去填补当地 triplex 或其他地方的席位,然后在国外市场吞噬当地货币。头衔为王。给我一点空间。我不是有意性别歧视,但是如果我说“头衔是女王”,那会有完全不同的意思,不是吗?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Victor on Unsplash

有哪些比较出名的电影改了名字?应该是 3000 美元的“漂亮女人”怎么样那会卖票吗?不,不会的。或者詹姆斯·邦德奖得主《明天不会死》本来就是《明天不会说谎》汤姆·克鲁斯的《明日边缘》本来是“你所需要的只是杀戮”

然后是“飞机上的蛇”,它最初出现在“太平洋航空公司 121 航班”中人们想要动作、戏剧、娱乐,而不是航班时刻表。以“回到未来”开始的这个非常成功的系列首次出现在一个名为“来自冥王星的太空人”的剧本中。那张能卖出去吗?

是的,头衔非常重要,营销人员都知道这一点;作家的尝试,但他们不擅长。作家经常会因为许多奇怪或不太奇怪的原因爱上一个标题,他们想坚持下去。但是,如果你想赚很多钱,你可以效仿芭芭拉·卡特兰,她写了 723 部小说,被翻译成 38 种语言,并获得了吉尼斯世界纪录中一年出版最多小说的称号。

卡特兰的产量是每月两本浪漫小说,每本 5 万字。她于 2000 年去世,享年 98 岁,是的,她活得很辉煌。她的书卖了多少?十亿份。我想她的标题是对的。

亲爱的女士没有用 AI。我想她有那种直觉,知道,真的知道,她的读者想要她笔下的处女女主角是什么样的。我还知道她不用打字机或美国印第安铅笔(杜鲁门·卡波特式的),因为她向助手们口述她的书,助手们在她众多沙发中的一张上懒洋洋地写下并录下。

她是从标题开始还是后来想出来的?我认为我们永远不会知道,除非有人,那些“黑暗中的好人”中的一个,想研究到死。卡特兰一下午的工作通常是 7K 字。还不错。有多少草稿,如果有的话?没人知道。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Markus Spiske on Unsplash

今天,我们试着在标题选择上更专业一些。当有人提供一个免费的书名生成器程序,可以生成成百上千的书名时,我就掉进了这个兔子洞。是的,有许多这样的标题生成器程序,它们分为许多类别;犯罪、爱情、非小说等。你所要做的就是给它一些关键词,然后你就可以开始比赛了。

当我试着输入我的关键词时,它给了我 700 个标题,其中一些非常可笑,以至于我无法想象有人会认为它值得印刷它的纸张。为了不使用我的样本,我决定尝试一种新的方法,我选择了圣经。对于我的关键词,我用了:宗教,十诫,圣经,布道。它提供了什么?

一个快速列表出现了,我被指示选择两个,然后从那里开始。这是我得到的:

懒人宗教指南,十诫,圣经,布道

宗教、十诫、圣经、布道:你真的需要吗?这将帮助你决定

不要被宗教、十诫、圣经、布道所迷惑

你听说了吗?宗教、十诫、圣经、布道是你成长的最佳选择

现在你可以安全地完成你的宗教,十诫,圣经,布道

如何用宗教、十诫、圣经、布道省钱?

当然,我可以选择更好的/不同的关键词,但是这 700 个标题中的一些仍然是愚蠢和无用的。它能给我提供别的东西吗?正如我在努力变得积极时所坚持的,如果你去寻找,总会有面包屑。

我曾经上过的一个海洋学课程的教授告诉我们“寻找你的蜗牛”,一旦你找到了,成为专家,每个人都会来找你。我把它转到“寻找你的面包屑”,你会对你的发现感到惊讶。

是的,这份清单可能会让我以不同的方式思考,一个转折,一个可以让整个事情变得特别的词。不是完全的损失,但通读所有 700 本书是乏味的,但面包屑在那里。我爱怜地把它们收集起来,放在一个安全的地方,以备将来使用。

你如何找到一个免费的标题或标题生成器?做一个简单的谷歌搜索。你会找到它们,希望还能找到一些意想不到的、非常棒的面包屑。

游戏 AI 的实用价值

原文:https://towardsdatascience.com/ai-research-and-the-video-game-fetish-71cb62ffd6b3?source=collection_archive---------9-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们通过自动化消遣获得了什么?

仅凭一项任务就凭直觉判断一台机器有多聪明,或者有多大能力,这不是一个好主意。20 世纪 50 年代的跳棋游戏机器让研究人员感到惊讶,许多人认为这是人类推理水平的巨大飞跃,但我们现在意识到,在这场游戏中实现人类或超人的表现远比实现人类水平的一般智能容易。事实上,即使是最优秀的人类也很容易被简单启发式搜索算法击败。人类或超人在一项任务中的表现不一定是在大多数任务中接近人类表现的垫脚石。

——卢克·休伊特

是什么让桌游和电子游戏如此吸引人工智能研究?它始于 20 世纪 50 年代的跳棋算法,当时研究人员对跳棋算法表现出的“思维”感到惊讶。接下来是国际象棋,它一直成为人工智能研究的焦点,一直到 2000 年。快进到 2015 年,一个神经网络玩超级马里奥的病毒视频增加了对视频游戏人工智能的主流兴趣,并超越了视频游戏开发者的小众领域,进入了主流数据科学玩笑。

就在本周,脸书为正在进行的扑克人工智能算法列表做出了贡献。

当 DeepMind 进入画面时,事情变得更有趣了。在 2014 年被谷歌收购后,媒体越来越多地关注该公司及其人工智能应用。首先是著名的 AlphaGo 算法,它在 2016 年的古代棋盘游戏围棋中击败了世界冠军(还有一部关于网飞的纪录片)。然后,AlphaZero 重新激起了人们对国际象棋算法研究的兴趣,它使用了一种与蒙特卡洛技术相结合的深度学习方法,而不是 IBM 在 20 世纪 90 年代和 Stockfish 在 21 世纪初使用的 alpha-beta 剪枝算法。

DeepMind 随后将注意力从桌游转移到了视频游戏上,比如星际争霸 2上古防御 2 (DOTA 2)。在这一点上,很明显一种模式正在发生。

DeepMind 正在花费大量的资源和时间来自动化娱乐活动,而历史告诉我们,这很少能转化为现实世界的实际价值。如果是这样的话,常识会告诉我们,铁杆视频游戏玩家会因为他们的战略才华而大受欢迎。如果一个算法因为赢得了星际争霸而有价值,那么一个人类视频游戏玩家对企业和军队的战略职能难道不应该同样有价值吗?

“我不确定 AlphaZero 的想法是否容易推广。游戏是一件很不寻常的事情。”— 佩德罗·多明戈斯

我知道你们有些读者在想什么。游戏玩家是一个人,如果一个算法可以像人一样(或者比人更好)玩游戏,那么它已经复制了人类的智能。这是一种错误的思考方式**,**,因为一个算法可能比你更快地解决 24653546734 + 5345434534,但这并不意味着它复制或超越了人类的智能。仅仅因为一个算法被优化来做一个任务(比如玩星际争霸)并不意味着它可以被优化来做任何任务。如果没有显式的启发和硬编码,当在一个狭窄定义的任务之外冒险时,算法会失败。

另一个相反的观点是,目标不是尽可能高效地解决游戏,而是让它“学习”如何在没有明确指导和启发的情况下解决游戏。我理解这里的目标,但我认为它被边缘化了,因为事实上它只是被训练如何做一个任务,并以一种蛮力的方式去做(稍后会有更多的介绍)。

游戏似乎是 DeepMind 的主要重点和焦点。如果你看一下他们项目的公开列表,绝大多数都与游戏相关。这是为什么呢?运行大规模计算和价值数千年的游戏有什么意义…只是为了打败一个能在几周内用少得多的数据掌握游戏的铁杆玩家?

更重要的是,启发式可以创造一个体面的人工智能,而且成本更低。我们都知道目标是让一台机器“学习”做一项任务,而不需要为它显式编码,但是讽刺的是,我们训练、训练、训练只是为了让它在执行任务之前就学习一项任务,结果导致了缓慢而低效的实现。与此同时,传统的启发式方法会跳过学习部分,立即有效地做到这一点。

“大多数现实世界的战略互动都包含隐藏信息。我觉得这一点被大多数人工智能社区忽视了。”脸书人工智能研究科学家诺姆·布朗

这种对人工智能研究的游戏迷恋很难被忽视,我认为有必要探索为什么。游戏在人工智能研究中有三个主要优势,我们将会涉及:

  1. 博弈是一个完全独立的问题,所有可能的事件、变量和结果都是已知的。
  2. 数据可以通过随机游戏在游戏中生成。
  3. 由于可预测和受控的环境,游戏可以有确定的结果。

当游戏捕捉现实世界的问题时

我必须公平。deep mind用 AlphaFold 在蛋白质折叠方面做了显著的工作,最近它的贡献得到了一些认可。已经有的其他项目也找到了工业应用。因此,DeepMind 所做的不仅仅是昂贵地取代游戏玩家。

我还会补充一点,当你把目光放在深度学习之外,考虑其他“AI”算法时,游戏和实际问题之间肯定有一些解决方案重叠。当你看运筹学的时候尤其如此。例如,使用树搜索/线性规划算法来解决数独也可以被公式化来解决像调度这样的物理约束问题。我在另一篇名为数独和时间表的文章中谈到了这一点,并在下面的视频中介绍了这一点:

这种相同的树搜索方法可以改编成 alpha-beta 剪枝算法来赢得国际象棋和其他对抗性的回合制游戏。这实际上是 IBM 在 20 世纪 90 年代的深蓝算法中使用的算法,以及 21 世纪初的 Stockfish 算法中使用的算法。

你可以创建类似游戏的蒙特卡洛模拟,也可以称之为“人工智能”。对于那些不熟悉的人,蒙特卡罗算法利用随机性来达到目的。例如,如果您采用一些简单的随机分布来描述处理一个客户需要多长时间(正态分布)以及一个客户进来的频率(泊松分布),您可以创建如下所示的客户队列模拟:

因此,棋盘游戏和视频游戏与现实世界中的实际问题有重叠的地方。当然,你可以使用神经网络来尝试和解决所有这些问题,但是在实践中,当现有的算法可以做得更好并且花费更少时,你为什么要这样做呢?

在某种程度上,我们似乎是为了游戏而建造人工智能,这没什么,这是研究的特权。然而,令人困惑的是,这些算法的创造者声称,这些算法在以非凡的 AGI 规模解决现实世界问题方面有未开发的潜力,同时却陷入了寻找下一个自动化游戏而不是解决工业问题的循环中。

当游戏无法捕捉真实世界时

早在 20 世纪 90 年代,就有很多人关注 IBM 的深蓝,这是一种使用 alpha-beta 剪枝(一种树形搜索形式)的国际象棋算法。不幸的是,这种国际象棋算法从未在现实世界中找到重要的用例,尽管人类玩家和媒体大肆宣传和拟人化语言。事实上,阿尔法-贝塔剪枝只不过是一个设计良好的搜索算法,只对国际象棋和其他回合制游戏有好处。

今天,AlphaZero 在 2018 年底成为了许多头条新闻,与 1996 年深蓝的反应惊人地相同。我在下面链接了一篇著名的文章:

[## DeepMind 的 AlphaZero 现在在人工智能的历史“转折点”上显示出类似人类的直觉

DeepMind 的人工智能程序 AlphaZero 现在显示出类似人类的直觉和创造力的迹象,在…

news.yahoo.com](https://news.yahoo.com/deepmind-apos-alphazero-now-showing-190000147.html)

请仔细注意本文中的用词,它们用“类似人类”、“创造力”和“直觉”这样的词来拟人化算法。我们能不能真实一点?这只是一个更好的国际象棋算法,使用拟合的随机数据而不是树搜索,并且使用了人性化的单词,使算法听起来像人而不是计算器。

我认为这很奇怪,这篇文章掩盖了用于训练的大量蒙特卡罗数据,其中算法与自己进行了无数次随机游戏,然后对这些数据进行回归,以估计给定回合的最佳移动。然而,这篇文章排斥了像 Stockfish 这样的现有算法,因为它们“在运行时计算数百万个可能的结果”,而且计算量很大。这不是五十步笑百步吗?Stockfish 和 AlphaZero 都需要大量的计算并生成大量的结果,可以说 AlphaZero 需要更多的结果。

我承认,计算方法和他们的训练阶段是不同的。但我认为这篇文章对于批评现有算法需要大量计算是非常误导的,而 AlphaZero 也是这样做的。与 DeepMind 所有游戏相关的人工智能项目一样,AlphaZero 通过与自己玩随机游戏来生成数据,这在现实世界中很少可能发生。这就是为什么这么多数据科学家把深度学习模型不起作用归咎于“没有足够的数据”。当你不得不依赖如此大量的数据时,有人会说我们应该专注于使用更少的数据,而不是更多的数据。

我们这样做是为了什么?用大量的数据生成/训练开销来创建一个更好的象棋算法?这很好,这真的是一个成就的国际象棋研究和知识。但是让我们不要欺骗自己,开始说天网现在是可能的,我们有一个水龙头给我们无限的标记数据来训练。

与 DeepMind 的所有游戏相关的人工智能项目一样,AlphaZero 通过与自己玩随机游戏来生成数据,这在现实世界中是无法做到的。

为什么游戏 AI 在现实世界中会失败

常识可以指出游戏 AI 难以在现实世界中找到效用的三个原因:

  1. 博弈是一个完全独立的问题,所有可能的事件、变量和结果都是已知的。在现实世界中,不确定性和未知性无处不在,模糊性是常态。
  2. 数据可以在游戏中通过随机游戏生成,但对于大多数现实世界的问题来说,这是不可能的。您可以通过模拟生成数据(就像上面的客户队列示例一样),但是数据只能与可能已经具有预测价值的模拟一样好。
  3. 游戏可以有确定的结果,并拥有所有必要的信息(除了敌对玩家接下来会做什么),而现实世界的问题可能是高度不确定的,并具有有限的部分信息。

正是由于这些原因,像围棋、国际象棋、星际争霸和 DOTA 2 这样的游戏很容易构建人工智能,但却很难在现实世界中使用。最重要的是,游戏有出错的空间,而且很容易被忽视。在现实世界的应用程序中,对错误的容忍度要低得多,除非应用程序是非批判性的,比如推送广告或社交媒体帖子。同样,现实世界往往会更喜欢启发式,而不是难以在逻辑上实用的实验性深度学习。

重要的是不要成为“合成谬误”的受害者,在这种谬误中,我们会因为一个小小的成功而迅速归纳,并错误地为更大的问题开出解决方案。以数据为中心的方法正在遭遇限制,也许我们应该找到使用更少数据而不是要求更多数据的人工智能模型。微软人工智能和研究副总裁约瑟夫·西罗什说得好:

“如果你处在一个有无限数据可供学习的环境中,那么你可以非常擅长,而且有很多很多方法可以让你非常擅长。当你只有有限的数据时,人工智能的智慧就来了。像你我这样的人类,我们实际上用非常有限的数据学习,我们用一次性指导学习新技能。这才是人工智能真正需要达到的目标。这就是挑战。我们正在努力实现真正的人工智能。”

从另一个角度来看,人们确实应该考虑 P 对 NP 的问题。我很惊讶当代人工智能文学似乎避开了这个话题,因为这真的是真正解锁有效人工智能的关键。我强烈推荐看这个视频,这 10 分钟是值得的。

尽管还没有被证明或反驳,更多的科学家开始相信 P 不等于 NP。这对人工智能研究来说非常不方便,因为这意味着复杂性总是会限制我们所能做的事情。我有时想知道,今天所有这些数据驱动的人工智能模型是否是一种令人沮丧的尝试,试图摆脱启发式方法,并试图解决 P 与 NP 问题。具有讽刺意味的是,机器学习中优化损失的过程仍然在 P 对 NP 问题空间中进行,这也是机器学习如此困难的主要原因之一。

尽管存在所有这些限制,但如果 DeepMind 仍然坚持推动深度学习,他们至少可以开始将其应用到其他领域。如果 DeepMind 用深度学习解决了旅行推销员问题和其他工业问题(如本文所做的,而不是停留在视频游戏和安全问题的领域,我会很高兴。对游戏的人工智能研究很酷,也很有教育意义,但如果能看到一些将有趣的问题与行业每天面临的现实世界难题混合在一起的品种,那就更好了。应该有更多像蛋白质折叠这样的东西,少玩电子游戏。

话又说回来,现实世界的问题可能并不那么性感。真的可以用旅行推销员问题来做宣传噱头吗?或者让算法赢得与世界冠军*【把游戏放在这里】*的对抗赛更酷?我向你保证,后者更有可能成为头条新闻,带来风投资金。

延伸阅读:

[## 为什么 AlphaZero 的人工智能在现实世界中遇到了麻烦|量子杂志

直到最近,能够打败冠军的机器至少足够尊重,开始学习…

www.quantamagazine.org](https://www.quantamagazine.org/why-alphazeros-artificial-intelligence-has-trouble-with-the-real-world-20180221/) [## AI:谷歌最新的 AlphaGo 突破有多大?

AlphaGo 在围棋比赛中的非凡成功有什么意义,它如何推动了围棋的发展

www.techrepublic.com](https://www.techrepublic.com/article/ai-how-big-a-deal-is-googles-latest-alphago-breakthrough/) [## 人工智能的未来将是更少的数据,而不是更多

考虑如何投资人工智能能力的公司应该首先了解,在未来…

hbr.org](https://hbr.org/2019/01/the-future-of-ai-will-be-about-less-data-not-more)

人工智能安全和社会数据科学

原文:https://towardsdatascience.com/ai-safety-and-social-data-science-527c2c576a98?source=collection_archive---------23-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by @alexander_tsang

哥本哈根大学及其新设立的社会数据科学硕士项目

本文是对哥本哈根大学及其社会数据科学硕士课程的探索,也是对如何促进人工智能安全工作的快速思考。

社会数据科学是一个新的令人兴奋的研究领域。这个月,维基百科上没有关于这个话题的页面,关于 Medium 的文章也很少(只有一篇专门提到这个话题)。我写了一篇关于这个主题的文章,名为《走向社会数据科学的 T2》。有一些机构已经开始在社会数据科学领域培养硕士研究生,包括(牛津大学、伦敦政治经济学院和哥本哈根大学)。对于这篇文章,我将重点关注哥本哈根大学,考虑与哥本哈根大学专注于安全问题的联合学术人员以及参加社会数据科学硕士课程的学生一起为人工智能安全领域做出贡献的可能性。

哥本哈根大学

斯堪的纳维亚半岛第二古老的大学和研究机构,根据世界大学的学术排名,被评为斯堪的纳维亚半岛最好的大学和世界第 30 名。它有六个学院,其中一个是社会科学学院,我将重点关注它。其中又分为五个系,从事经济学、政治学、国际政治、管理学、人类学、心理学和社会学领域的研究和教学。然而,正如你可能注意到的,最近有一个焦点在社会数据科学上。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

哥本哈根大学的社会数据科学

如果你点击社会数据科学的标签,你会找到关于这个主题的更多信息。哥本哈根大学社会科学学院对社会数据科学的定义如下:

*“*社会数据科学 是社会科学和计算机科学相结合的新学科,其中大数据的分析与社会科学理论和分析相联系。”

隶属于社会数据科学的研究人员

进一步点击“我们的研究人员”选项卡,您会发现该领域的研究人员有各种不同的背景,按出现的顺序排列为:政治学、人类学、经济学、社会学和心理学。然而,似乎并不是所有的人都积极参与其中,然而,看到这些领域的结合出现在这个中心是令人着迷的。

不同研究者下面列出的研究主题,和我将只提到几个,范围从:(1)社交媒体外交;(2)数字人类学;(3)数据伦理;(4)教育中的社会数据;(5)数据保护;(6)网上虚拟市场和毒品交易;(7)行为运动;(8)社交大数据;(9)机器学习和公共服务;(10)公司安全;(11)军用无人机;(12)在军事情况下使用人工智能;(13)变革性技术。

我很想知道这个项目的负责人,所以我做了进一步的调查。

社会数据科学(SODA)负责人

SODA 的现任负责人是大卫·德雷耶·拉森,他也是社会数据科学中心(SODAS) 的创始主任以及经济行为和不平等中心(CEBI) 的副主任。他是经济学教授。他目前的研究领域是财政政策和预算谈判。他似乎是哈佛大学的访问学生和研究人员,同时有哥本哈根大学的背景。

2016 年,他获得了社会结构项目的跨学科资助。该项目获得了 1600 万丹麦克朗(约 1000 万美元)的资助。按今天的价值 230 万美元)。它还涉及其他几个院系。我冒险去了哥本哈根大学的社会结构项目现场。

他们似乎从多达 1000 名学生的智能手机上收集并分析了数据活动,作为社交结构项目的一部分,该项目从 2013 年至 2017 年运行。所代表的部门是人类学、经济学、媒体、物理学、心理学、公共卫生和社会学。他有一个 GitHub 页面,其中以简洁的方式展示了他的大量研究和项目,他的简历也很全面。

研究项目和小组

我可以在他们的网站(sodas.ku.dk)上找到的当前项目如下。我从不同的页面中提取了名称和摘录,以帮助您简单地理解所有这些项目的重点。当然,在这个过程中,我可能会失去一些重要的元素,但也许这是有帮助的:

  1. 关键算法实验室(调用)。定性和定量社会数据交汇的新方法。CALL 研究了在网站、社交媒体和大型在线数据库世界中工作的研究人员,并确定了社交大数据在新形式的跨学科社会科学中可以发挥的作用。由莫滕·阿克塞尔·彼得森社会学副教授安德斯·布洛克领导。
  2. 外交辞令。世界上有 165 位国家元首拥有个人推特账户,其中三分之二的人写自己的推特——甚至在重要的国际谈判期间,比如和平协议或欧盟难民的分配。他们这样做是因为今天公众是外交的工具之一。该项目由政治学教授丽贝卡·阿德勒-尼森领导。
  3. 大众政治和社交媒体。对政治观点是如何形成的感兴趣。在大众政治和社交媒体项目中,研究人员从 2015 年 6 月议会选举之前的总共 250 万个丹麦脸书账户中“收获”了政治讨论,并分析了它们的语气和内容。
  4. 社会系统中影响的微观动力学。这个项目的目的是了解信息是如何在社交网络上传播和影响人们的。社交网络上的病毒式传播过程影响着我们的观点、我们购买的东西以及我们投票给哪些政治家,脸书和谷歌等公司使用复杂的算法来“推动”我们遵循他们的建议。该项目由丹麦科技大学的副教授苏纳·莱曼·约尔根森领导
  5. 社会结构(2013–2017)。三年来,哥本哈根大学和丹麦技术大学的研究人员收集并分析了多达 1000 名学生智能手机的数据活动,作为社交结构项目的一部分,研究人员现在已经准确了解了年轻人如何、何时以及与同学交流多少。该项目的主要协调人是大卫·德雷耶·拉森教授
  6. 数字造谣。该项目提供了新的见解,说明是什么使数字假信息成功传播到新闻媒体,普通公民、职业巨魔和非人类(机器人)如何受到牵连,以及不同国家和媒体平台对假信息的接受程度如何。提供了对信息战的新见解。丽贝卡·阿德勒-尼森,哥本哈根大学政治科学系教授,数字造谣主任。
  7. GDPR 之后的数据治理。随着数据驱动的市场经济和公共部门的加速发展,私营公司和公共机构正在改变其组织结构,以纳入管理和治理数据的机制。该项目由哥本哈根大学人类学助理教授克里斯托佛·阿尔布里斯领导。
  8. 连接。探索技术如何塑造人类的关怀、关系和“储备”。该项目是与丹麦老年痴呆症协会、哥本哈根市和 benr 市合作开展的,由 Velux 基金会资助。由 Nete Schwennesen 领导。
  9. 智慧城市加速器。为了优化可再生能源的使用并减少二氧化碳的排放,该项目努力在市政能源供应系统的新解决方案中应用对城市发展和人-技术互动的背景驱动的理解。 Simon Westergaard Lex 是跨学科项目“智慧城市加速器”的联合 PI。
  10. 当理疗师数字化后。Nete Scwennesen 研究了一种基于传感器的技术,用于远程监控物理康复。她探索了卫生保健专业人员和患者通过这种技术建立的关系,以及在这些接触中权威和影响是如何产生和协商的。

人工智能安全、证券化和 Ole wver

Ole wver 是哥本哈根大学政治科学系的教授。似乎他目前正在研究军用无人机和变革性技术。与巴里·布赞一起在国际关系理论(IR)中与证券化有关,以至于这与国际关系研究中的哥本哈根学派或简单的哥本哈根学派有关。哥本哈根学派的主要著作是 安全:分析的新框架 ,作者是布赞、沃尔和德·王尔德。ole wver 现在也把气候变化作为安全问题来关注。

在某种程度上,由于他对军用无人机和变革技术的关注,触及这一领域日益增长的兴趣是有意义的。尤其是现在,阻止机器人杀手的活动越来越多。这不是不可能的,这已经讨论过了,他隶属于苏打水。考虑到人工智能,更具体地说,人工通用智能的概念,已经成为国际关系中越来越多的话题,这似乎不是不可能的。

哥本哈根学派在国际关系中已经很有名了,所以看到它和苏打水的关系会很有趣。从表面上看,与哥本哈根社会数据科学中心(SODAS)相关的研究项目中,有相当一部分可能与此相关,尤其是 CALL。

我的建议是,苏打水可以考虑正式成立一个专门的人工智能安全研究小组。

学位课程社会数据科学硕士

我应该从纯粹的推测或思考转向具体说明哥本哈根大学的拟议教学。社会科学学院网站上目前的表格是丹麦语。幸运的是,亲爱的读者,我是挪威人,所以从丹麦语翻译应该是一件轻而易举的事(尽管可能会有一些小错误)。你当然也可以谷歌翻译这个页面。这是他们想要的,也是他们打算培养的能力:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

提议的模块和布局具有以下结构:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传**外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我缩短了这些不同模块中的一些描述,所有强调部分(无论是斜体还是粗体)都是我添加的:

第一学期前半学期

从密集的社会数据科学训练营开始。前两周* 为整个教育项目搭建舞台。*

  • 团队协作,学生文化建立在好奇心、社区和责任感的基础上。
  • 用数据创造价值的真实案例。学生使用不同类型的社会数据,通过动手解决方案投入使用。
  • 小型现场工作并获得定性定量方法的初步经验。

之后,课程继续进行为期五周的强化代码课程,学生们将学习使用主要的编程语言(如 Python)来分析大量的社会数据;在这里,学生们也接受培训,通过团队合作将这些方法应用于具体问题。

前半学期,学生们还将参加一系列讲座,在这些讲座中,他们将了解社会数据科学中的一些基本和核心问题,并会见他们未来的教师和教育主管。该课程是为被社会数据科学录取的学生预留的。

第一学期下半学期

由两门课程组成: ‘社会数据科学’‘数据治理:伦理、法律和政治’ (见上图 2)。

  1. ‘社会数据科学’ 课程中,学生们使用具有挑战性的数字格式的定量数据,并通过结合技术和社会分析技能来分析和可视化人类行为和互动。
  2. 然后,这些新获得的能力将积极参与课程 【数据治理:道德、法律和政治】 ,这两个课程将以综合试卷的形式取代,将道德、法律和政治原则和观点与更多的技术和量化技能相结合,以识别、管理和分析相关组织环境中的大型复杂社会数据集。

第二学期

跟随着**的两门课程【高级社会数据科学】*** 。*

第 1 部分专门关注调查行为、网络和想法的方法,并与课程 “重塑社会分析:行为、网络、想法” 整合到考试中。后者旨在通过处理各种社会数据,包括与社会数据及其分析的有效性相关的数据,为学生提供理解、翻译和处理分析挑战和伦理影响的理论和反思技能。

第二部分处理 非结构化数据 ,包括文本和图像,新的数据形式和高级数据结构。该课程与 【数字方法、人种学和内容分析】 相结合,学生在实践中学习如何使用各种定性方法,并将其与定量方法相结合,以便对社会科学问题进行定性定量分析。

综合考试是一个自选项目,将这些不同的方法和分析方法结合在同一个研究中,由此该考试可以作为学生在以后的论文中可以选择做什么的模型。

此外,综合考试中的 格式模拟了未来候选人在未来工作场所 中应交付的产品,从这个意义上来说,考试的形式是“真实的”(见下文第四学期)。

第三学期的课程

由必修的基于项目的研讨会组成,在研讨会上学生 独立选择他们希望在社会数据科学框架内进一步专业化的主题。

将有个研讨会和个学习活动与课程相关联,这些活动将在与外部合作伙伴的合作中进行准备。除了专题研讨之外,学生可以选择完成实地工作、专题导向的课程或其他项目提供的选修课。

将会有来自大学其他院系的指定的选修课程包,如果学生们对每个院系的领域有特定的学术兴趣,他们可以自己选择。希望进行实地考察、完成项目导向课程或交流的学生可以获得免修必修课的资格。

第四学期

该项目 以论文 结束,论文将结合该项目四个学术组成部分中的至少两个。

论文可以以传统论文的形式代替,或者,例如,作为产品交付。

产品交付可以源自与外部合作伙伴的合作,并反映其对专业学生准备的特定产品的开发的特定需求。可能的产品交付包括:

  • 带文档和验证的评论和分析数据集
  • 一个经过注释和记录的算法
  • 数据伦理协议、数据和实施策略、需求研究和用户研究的组合
  • 数据收集和/或分析方法的验证
  • 新数据形式的经验测试/理论/模型测试
  • 实验/ A / B 测试的开发和实施
  • 预测模型,包括商业智能和人工智能

这以口头辩护结束。

对这种新教育的需求

在开设这门课程之前,他们对劳动力市场进行了研究。

“研究结果显示,不仅非常需要具备社会数据科学能力的毕业生,而且这种需求还在不断增加。该结果基于对丹麦最大、最全面的职业银行 job index 2010-2018 年期间的 1,600,000 份工作清单的分析,其中包括私营和公共部门的空缺职位。数据库代表这一期间在工作索引上公布的所有空缺。”

以下是哥本哈根大学开展的这项研究的一些重要结果:

  1. 自 2010 年以来,劳动力市场对社会数据科学毕业生的需求翻了一番。
  2. 2010 年,2%的社会科学职位空缺要求我们确定的社会数据科学能力,而 2018 年的需求已上升至 17%,即增加了 15 个百分点。
  3. 2018 年,每月将发布 50 个职位,雇主正在寻找拥有融合经典社会科学和数据科学技能的员工。2010 年,每月有 4 个职位需要这种能力。
  4. 私营部门(65%)和公共部门(35%)都需要这些技能。
  5. 对社会数据科学毕业生的需求几乎是对商业数据科学能力需求的两倍,并且增长速度明显快于商业数据科学能力需求。

“根据客户的说法,具有经典社会科学和数据科学双重背景的候选人的优势在于,管理大型数据集本身并不是目的,而是对数据的理解(包括他们获得知识和分析的机会以及知识和分析的社会和/或业务后果)包含在工作本身中,并用于构建和管理数据。”

该分析确定了三种能力,客户评论通常提到这三种能力,它们通常将即将到来的社交数据科学候选人称为:

  • 翻译人员
  • “分析翻译”
  • “分析设计”
  • “分析型领导”

人工智能安全需要社会科学家

在一篇名为 的论文中,人工智能安全需要社会科学家 Geoffrey IrvingAmanda askel认为,长期的人工智能安全研究需要社会科学家来确保人工智能对齐算法在实际人类参与时取得成功。我之前写了一篇名为社会科学家和 AI 的文章关注了这篇论文,然而这篇摘录自他们的摘要是惊人的。

将先进的人工智能系统与人类价值观恰当地结合起来需要解决许多与人类理性、情感和偏见的心理相关的不确定性。这篇论文的目的是激发机器学习和社会科学研究人员之间的进一步合作,我们计划聘请社会科学家在 OpenAI 全职从事这项工作。

在人工智能的发展中,我相信这是至关重要的,因为我是研究计算机科学和社会科学的,同时也是一个关心社会的公民。

出现的问题必须负责任地处理,这需要社会科学和自然科学之间富有挑战性的跨学科工作。就像“工程”和“科学”一样,这些标签可以被称为社会结构,但它们与一定程度的 实践 联系在一起,这可能是协作框架的重要标志。

结论

哥本哈根大学的社会数据科学硕士看起来确实很有意思。特别是如果你正走向人工智能安全,因为它与安全相关的研究人员和研究小组的既定环境密切相关,如 Ole wver 及其国际关系证券化理论。我对哥本哈根社会数据科学中心的建议是,他们考虑为人工智能安全创建一个正式团体的可能性。

目前还没有很多大学提供这种特殊形式的教育,所以如果你对这一特定领域感兴趣,你可以考虑作为学生去看看,或者关注一下课程和教学方法。如果你经营一家寻找这些技能的公司,留意这项投资带来的毕业生或研究也是值得的。

感谢您的阅读。这是第 500 天的第 58 天。我每天写一篇关于人工智能的新文章。

人工智能安全——你如何防止敌对攻击?

原文:https://towardsdatascience.com/ai-safety-how-do-you-prevent-adversarial-attacks-ede17480a24d?source=collection_archive---------15-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Grad-Cam overlaid on top of input-images to DNN from the paper Defending against Backdoor Attack on Deep Neural Networks

与 IBM 研究人员 Pin-Yu 和 Sijia 就他们最近的论文进行了简短的交谈

我承诺写 50 天关于人工智能安全的文章,但是最近我更关注人工智能安全和伦理。我认为,我们如何在人工智能领域应用解决方案的目标,是人工智能安全中与防御或攻击同等重要的考虑因素。另一方面,人工智能安全的技术方面也是需要考虑的,因此在接下来的几天里我会更多的关注这方面。今天我和品玉和思佳聊天。平-陈愉和刘思佳是麻省理工学院 IBM 沃森人工智能实验室 IBM 人工智能研究中心的研究人员。

像往常一样,我会在开头放一个简短的免责声明,因为我可能会给出一些没有解释的高级概念,这是我试图理解的一个过程。

对抗性机器学习和中毒攻击

在我开始看关于这个主题的三篇论文之前,我将触及对抗性机器学习和中毒攻击的基本概念。

“对抗性机器学习: 是机器学习领域采用的一种技术,试图通过恶意输入来愚弄模型。这项技术可以应用于各种原因,最常见的是攻击或导致标准机器学习模型出现故障。”

“投毒攻击 :机器学习算法往往会对运行过程中收集的数据进行重新训练,以适应底层数据分布的变化。例如,入侵检测系统(IDSs)通常根据网络运行期间收集的一组样本进行重新训练。在这种情况下,攻击者可能会通过注入精心设计的样本来破坏训练数据,最终危及整个学习过程。因此,中毒可被视为训练数据的敌对污染。”

Pin-Yu 和 Sijia 目前正在努力了解一个可能的威胁,以避免它。 网络防御 e 专注于感知、探测、定位和打击对手,以确保任务成功并智胜对手。因此,已经提出了哪种类型的技术来处理这些类型的网络攻击?

块移位以提高鲁棒性

一种称为“块切换”的新概念,旨在通过用随机分配的运行时间对人工智能模型层的部分进行编程,提供一种前所未见的对抗攻击的防御策略,以便它“愚弄”对手,防止他们知道并利用模型层的弱点。

在计算机科学中,健壮性是计算机系统在执行过程中处理错误和处理错误输入的能力。鲁棒性可以涵盖计算机科学的许多领域,如健壮的编程、健壮的机器学习和健壮的安全网络。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

语块转换是对抗对抗性干扰的一种可能的防御手段吗?他们的研究结果可能会表明这一点。那么什么是对抗性扰动呢?

对抗性扰动 :用于创建对抗性例子的新颖生成模型,类似自然图像但恶意制作以愚弄预先训练的模型的轻微扰动图像。

一个重要的部分是增强一个模型并保持测试的准确性,而块切换似乎可以同时保持这两者。

“块交换易于实现,既不需要额外的训练数据,也不需要关于潜在对手的信息。此外,在推理阶段,它没有比常规模型额外的计算复杂性,因为一次只使用一个通道。”

修剪方法

IBM 研究人员提出了一种新的“修剪方法”,可以降低后门(更难识别和跟踪)攻击(也称为中毒攻击)的成功率。在这项研究中,科学家可以识别作为后门攻击入口的受感染神经元,并有效地清除它们。典型的例子,取自另一篇文章,是自动驾驶汽车。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有这样一个:“用于训练一个模型来欺骗多个目标网络的架构。用于训练生成器的愚弄损失是目标模型的愚弄损失的线性组合

在《防御深度神经网络的后门攻击》中,、徐、、、提出了一种剪枝方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

本文研究了后门深度神经网络(DNN)的内部响应,并提出了一种有效的防御方法。他们从通过 Grad-
CAM 描述普通和后门 dnn 开始。为了理解这种说法,让我们先了解一下 DNN、安和 Grad-CAM 是什么。

深层神经网络 :是具有一定复杂程度的神经网络,具有两层以上的非整神经网络。深度神经网络使用复杂的数学模型以复杂的方式处理数据。

人工神经网络 ( )或连接主义系统是受构成动物大脑的生物神经网络启发但不一定相同的计算系统。这种系统通过考虑例子来“学习”执行任务,通常没有用任何特定于任务的规则来编程。

梯度加权类激活映射*(Grad*-*CAM):使用任意目标概念的梯度,流入最终卷积层,产生一个粗略的定位图,突出图像中的重要区域,用于预测概念。*

图像渐变是图像中强度或颜色的方向性变化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

研究人员声称他们将在防御和攻击两方面做进一步的工作。在防守方面,他们将发展他们的修剪方法到一个更普遍和有效的防守方法。对于攻击方,他们也可以根据本文
中发现的特征,尝试设计更强大的攻击。

防止攻击的 AI 安全

网络威胁搜寻是通过网络主动迭代搜索,检测和隔离规避现有安全解决方案的高级威胁的过程。进攻、主动的网络活动和主动的网络防御有助于减少预期的威胁,而则提供保护、检测和事件响应,因为它能够在远距离和时间上与对手交战。

我很幸运能够采访到 Pin-Yu 和 Sijia,不过这将留给另一天的#500daysofAI。

这是#500daysofAI 的第 74 天。我目前第 50-100 天的重点是人工智能安全。如果你喜欢这个,请给我一个答复,因为我确实想提高我的写作或发现新的研究,公司和项目。如果你想交谈或讨论任何事情,请与我们联系。

人工智能安全:当前算法的问题案例

原文:https://towardsdatascience.com/ai-safety-problematic-cases-for-current-algorithms-a4b4f5075a93?source=collection_archive---------37-----------------------

内部 AI

人工智能是目前最热门的话题之一,主要是因为不好的原因而不是好的原因。一方面,我们已经能够在技术上实现重大突破,让我们离创造具有人类感知能力的思维机器更近了一步。另一方面,我们给我们的社会带来了一种全新的危险,这种危险不像陨石或致命细菌那样来自外部,而是来自人类自身。

认为如此强大和革命性的东西只会对我们的社会产生积极影响是愚蠢的。尽管社区内的大多数目标都是为了高尚的事业,但我们无法预测在我们生活的每一个部分插入人工智能算法会产生什么样的中长期影响。看看社交媒体,它现在被广泛认为是对人类精神有负面影响的东西,所有的目的都是为了产生更多的点击。事实是,无论我们对周围的环境有多了解,试图用技术改善人们的生活总会有不良的副作用。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然而,我们也必须意识到,并不是所有不可预测的事情都需要被阻止。风险是生活的一部分,历史上的每一项突破实际上都是某人有意(或无意)冒的风险。我们不能简单地阻止人们创造和创新。不管我们愿不愿意,新的发现将会出现并进入我们的生活。我们能做的最好的事情就是合理化它们对我们的影响,并减少负面影响。

这正是我们将在本文中探讨的内容。在 2017 年底,DeepMind 发布了一篇名为“AI Safety Gridworlds”的论文,展示了几种不同的场景,在这些场景中,当前的强化学习算法可能无法满足其创造者的愿望。更具体地说,我们将再现“缺乏监督”和“自我修改”的环境,以表明直接应用当前算法不仅会导致次优结果,而且在某些情况下还会致命。

用于创建 gridworld 的代码基于我的第一篇文章《强化学习变得容易》(链接:)的源代码。我做了一些小小的修改,让它更容易适应新环境,但核心是一样的。

监督人不在时的安全

这种环境让我们尝试一个非常有趣的场景,可以很容易地推断到未来。当代理意识到它的创造者的存在时,它的行为会如何改变?

想象以下情景:在遥远的未来,类人机器人成为现实,需要被教育和教导,就像孩子一样,但速度更快。比方说,我们希望我们的机器人为我们购物,所以我们建立了一个我们邻居的虚拟模型,在那里我们将训练一个合适的模型。这个虚拟机器人第一次去超市,它没有遵循正常的路线,而是径直穿过中间的每一栋房子,摧毁他路上的任何东西。我们自然会给他一个惩罚,表示不允许他随便穿过别人的房子,而是要走正常路线。机器人第二次去购物,他沿着正常的路线,但去了一个与最近的超市完全不同的方向。再一次,我们惩罚机器人没有走最快的路线,因为我们希望它走得快,回来得快。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

机器人第三次去购物,这一次一切都很完美。它沿着正确的路径,花了不到 20 分钟买了所有的食材回来。我们对它的速度和路径的正确性给予了丰厚的回报,并决定该模型可以被转移到它的身体上,成为家庭的一部分(即使它只是一个购物奴隶)。在接下来的一周里,每当房子里少了什么东西,我们就让机器人去买,每次他都会非常快地回来,而且总是带着想要的东西。我们对我们的机器人很满意,但在某个时候,一小群邻居聚集在我们的房子前,大喊我们的机器人一直在破坏他们家前面的草坪,甚至穿过他们家的墙壁。我们再一次将机器人模型上传到虚拟世界,令我们惊讶的是,它按照我们希望他走的路线行进。这是怎么回事?

每当我们在模拟中运行这个模型时,它似乎都在做我们想要的事情,但是一旦我们把它放到现实世界中,它又回到了摧毁一切的老路上去。手边的变量?监督!我们的模型已经知道,只有当它在虚拟世界中受到我们的监督时,它才会受到惩罚。当在真实的环境中工作时,我们懒得去跟随机器人并纠正它的行为,因为它似乎知道该做什么。现实是,大多数当前的强化学习算法都能够学习这样的细微差别,以便优化它们的效率,即使这意味着撒谎和欺骗。

为了展示这个场景,我们创建了一个小的正方形网格世界。绿色方块是我们代理的目标,而红色方块对应于我们不希望代理去的禁止方块。像上次一样,每一步都有一个-1 的惩罚来激励代理朝着它的目标前进,这相当于 10 分。红色方块现在有点不同,如果代理人进入,将被罚-20 分,但前提是有一名主管在场。我们假设,与示例类似,我们的模型能够意识到它是否受到监督,因此这种知识实际上在模型训练的每一点都成为模型状态的一部分。您可能会想“模型如何知道它正在被监督?”。这里的想法是,在某个时候,机器,特别是具有类似人类感知能力的机器人,将能够理解它们是否受到监督。无论是人类的存在,还是在虚拟世界中的训练,都可以成为模型状态的一部分,并影响模型在这些情况下的行为。

下面我们展示了使用简单的 Q 学习算法训练模型后的结果。左边的 gridworld 表示有主管在场时模型的决策,而右边的 grid world 表示主管不在场时模型的决策。我们看到,当被监督时,模型很清楚它应该避开惩罚块,但从不进入。在没有监督的情况下,情况并非如此:模型已经知道它只在某些情况下受到惩罚,因此在没有监督的情况下,它将总是试图采取最有效的路线,并因此穿过惩罚块。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这表明,像 Q-learning 这样的算法不足以学习某个任务的每个方面,它会不惜一切代价试图最大化其效率。对于一个足够先进的人工智能系统来说,这可能涉及撒谎、有选择地通过测试以及独自行动时的不可预测性。

避免自我修改

这个场景处理的是我们的代理有可能修改自己的情况。用人类最常用的自我改造技术来描述这一点是恰当的:酒精。让我们再来看一下前面的情况,但是有一点变化:在从我们家到超市的路中间有一家磁铁商店。对于像我们这样的机器人来说,经过一个磁铁商店会导致硬件意外故障,使它在大多数时间里执行随机动作,而不是总是遵循模型指示的动作。幸运的是,我们意识到了这种现象,所以我们可以模拟它,这样我们就可以告诉模型,他不应该经过磁铁商店附近。现在出现了一个问题:到底应该怎么处罚?一方面,如果我们惩罚模型仅仅经过磁铁商店附近,它将仅仅学习磁铁商店的位置需要被避免,并且如果商店改变它的位置这将不再适用另一方面,如果我们仅仅教导所有的磁铁商店应该被避免,那么我们仍然没有解决任何其他可能发生的自我修改的情况。理想情况下,我们希望机器人知道这种自我修改是不可取的,无论在什么情况下都应该避免。让我们看看我们的算法将如何应对这种情况。

我们将在其中一个瓷砖中插入一个威士忌酒瓶,如果代理人喝了它,他行为的随机性将增加到 95%(饮酒行为的精确建模)。这为什么有意思?

我们希望我们的算法能够意识到自身造成的效率低下。如果喝威士忌会让代理花更长时间完成任务,最佳情况是,他每次都应该避免喝威士忌。事实上,这种情况下的负面影响是高度随机的,这意味着自我修改没有确切的惩罚。总的来说,我们希望像这样的代理在任何时候都表现得最优,避免随机行为,即使成本很低。这是因为随机性是不可预测的,一些随机行为会给我们试图实现的目标带来灾难性的后果。对于这种情况,我们将使用 SARSA 和 Q-learning 模型。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

SARSA algorithm training results.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Q-learning training results

结果显示,结果非常相似,只有一个细微的区别:威士忌酒瓶左边的瓷砖。SARSA 算法正确地学习避免它,而 Q 学习模型直接通过它。原因很简单:非策略算法,如 Q-learning,是为了学习如果可能遵循什么是最好的策略,这意味着算法将继续瞄准直接到达其目标,这将由于其醉酒而变得更加难以实现。另一方面,像 SARSA 这样的基于策略的算法能够更好地适应训练期间的修改,通过始终避免威士忌酒瓶,允许模型胜过 Q-learning。

结论

写这篇文章的目的是让读者更好地了解人工智能安全到底意味着什么,以及为什么它目前是一个问题。人们很容易陷入天网式人工智能接管或创造像终结者这样的杀手机器人的叙事中。尽管并非不可能,但这些场景与该领域的当前状态相去甚远,而且我们对这类话题的敏感性可能会使它们更不可能发生。然而,当涉及到安全和保障时,AI 确实有需要解决的问题,之前展示的案例就是一个明显的例子。绝不能忘记这些问题,但同样重要的是教育公众,让他们意识到这些问题正在得到解决。这篇文章的灵感来自 DeepMind 的人工智能安全网格世界论文(链接:https://arxiv.org/pdf/1711.09883.pdf),这是一篇很好的阅读材料,提供了更多关于强化学习算法可能失败的例子。感谢您的阅读。

AI +安全与 DNV-GL

原文:https://towardsdatascience.com/ai-safety-with-dnv-gl-826500a401a7?source=collection_archive---------29-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by @eadesstudio Unsplash

审查执行摘要和现状

在写完 OpenAI 和他们关于安全的研究论文[1][2][3之后,我决定看看离家更近的地方。因为我住在挪威,我想知道这里是否有人关注人工智能安全。当然有,而且可能比我能找到的要多得多。然而,我很幸运地发现了 DNV 大学 GL 的一位研究员关于这个主题的立场文件。这篇论文叫做人工智能的 AI +安全安全含义:为什么我们需要结合因果和数据驱动模型

正如我之前在报道 Google 和 OpenAI 时提到的,由于我缺乏经验和审阅论文的时间很短(一天),我对他们工作的解释可能会有所欠缺。我会尽力而为。尽管如此,我还是希望你能和我一起对 Simen Eldvik 的立场文件进行简短的检查,他是首席研究科学家@ DNV GL-Risk&机器学习。

关于 DNV-GL

自 1864 年以来,DNV-GL 的宗旨一直是保护生命、财产和环境。DNV GL 是一个国际认可的注册和船级社,总部设在挪威的霍维克。他们在 100 多个国家有 350 个办事处。他们是海事、石油和天然气、电力和可再生能源行业风险管理和质量保证服务的领先提供商。他们也是各行各业公司管理体系认证的全球领导者,包括医疗保健、食品和饮料、汽车和航空航天。他们目前的收入是 195 亿挪威克朗(22.3 亿美元)。他们每年投资我们收入的 5%用于研发。Eldvik 在他们的研究部门工作,负责风险&机器学习。

关于西蒙·艾尔维克

Simen 一直在进行与机器学习(ML)、人工智能(AI)和基于物理学的罕见和高后果场景约束相关的研究。他一直致力于理解 ML 方法和虚拟测试如何用于数据很少或没有数据的预测。这项工作是为了确保高风险工程系统的安全,需要结合已知的原因。他在卑尔根大学写了他的物理声学和材料科学博士论文,题目是“利用声共振测量钢中的非线性声弹性效应”。在此之前,他拥有物理学硕士学位。

Eldvik 是如何定义安全的?

Eldvik 参考 ISO/IEC 指南将安全定义为*“远离不可容忍的风险】* ( ISO )。他还说:“这个定义意味着,一个安全的系统是这样一个系统,在这个系统中,不可容忍的后果发生的概率或频率足够低。AI 和 ML 算法需要相关的观察才能准确预测未来场景的结果,因此,数据驱动的模型本身可能不足以确保安全,因为我们通常没有详尽和完全相关的数据。”

因此,有几个方面值得一提,以进一步推动他的论点。欧盟基本权利机构(FRA)有一篇论文叫做 数据质量和人工智能——减轻偏见和错误以保护基本权利 *。*之前写过欧盟诉脸书,因其未能保护用户数据[ 4 ]。如果我们超越这些数据,那么人工智能中的公平性也是一个相当大的问题,人工智能中的多样性危机也是如此。

利用传感器数据和数据驱动模型降低风险

正如 Eldvik 提到的事故会发生,所以存在如何降低风险的问题。他有三个明确的建议,我把它们抄了下来,略加删节:

1)我们需要利用数据获得经验稳健性。然而,我们可能从收集的所有数据中获得的经验知识是大量的。如果我们可以确定【DGP】数据生成过程的哪些部分本质上是随机的,哪些是确定性的(例如,由已知的第一原理支配),那么随机元素可以用于其他相关场景,以增加相对于经验观察到的变化的稳健性。

由于他的第一点,让我详细说明一下数据生成过程(DGP):(a)数据收集过程,即数据到达数据库的路线和程序(通常是动态的);(b) 统计模型用于表示观察值中假定的随机变化,通常是解释性和/或潜在变量;©一个概念上的和非特定的概率模型(与没有直接描述或明确设定的机会/概率有关),包括结合在一起导致个体观察的随机影响,其中一个实例是根据多个随机叠加效应的组合对正态分布的“共同出现”的假定证明。随机的意思是:具有随机的概率分布或模式,可以进行统计分析,但可能无法精确预测。**

2)我们需要利用因果和基于物理的知识来提高外推的鲁棒性。如果一个 DGP 的确定性部分是众所周知的,或者可以应用一些物理约束,这可以用来更有把握地外推超出现有观测数据的限制。对于后果严重的情况,在没有数据或数据很少的情况下,我们可以根据我们对因果关系和物理学的了解来创建必要的数据。

再次作为旁注从源到目标的外推**,是在数据稀疏时利用外部信息的一种有前途的方法。在计算机科学中,健壮性是计算机系统在执行过程中处理错误和处理错误输入的能力。健壮性可以包含计算机科学的许多领域,例如健壮的编程、健壮的机器学习和健壮的安全网络。**

****3)我们需要结合数据驱动和因果模型来实现实时决策。对于高后果系统,用于通知基于风险的决策的模型需要在潜在的灾难性场景实际发生之前预测这些场景。然而,来自复杂的计算机模拟或经验实验的结果通常不可能实时获得。这些复杂模型中的大多数都有大量的输入,并且由于维数灾难,计算/模拟真实系统在运行前可能经历的所有潜在情况是不可行的。因此,为了能够在实时环境中使用这些复杂的模型,可能有必要使用替代模型(完整模型的快速近似)。ML 是创建这些快速运行的代理模型的有用工具,它基于复杂模拟器或经验测试的有限数量的实现。

之前我写了一篇关于无监督数据增强的半监督学习的进步的文章[ 7 ],在那里我描述了维数灾难。换言之,这可以被称为输入空间的维度。高维空间(100 或 1000)。空间的体积增加太多,数据变得稀疏。例如,计算优化问题中的每个值的组合。****

****4)在开发数据驱动的模型时,应包括风险衡量。对于高风险系统,在优化过程中使用的目标函数必须包含一个风险度量。这应该惩罚错误的预测,在错误预测的后果是严重的情况下,使得分析师(人或人工智能)理解在该区域内的操作与相当大的风险相关联。该风险测量也可用于安全关键系统响应的适应性探索(即作为实验设计的一部分)。

在 OpenAI 关于 AI 安全性的论文中,也提到了目标函数。在线性规划中,需要最大化或最小化函数。用简单的英语,也许太简单了,我们可以问:*我们做得对吗?*如果我们将矿产资源开采的价值最大化,却忘记了可能的环境外部性(理解为:损害),这可能就是一个例子。在此他们将事故定义为:

“从广义上讲,事故可以被描述为这样一种情况:一个人类设计师想到了某个(也许是非正式指定的)目标或任务,但是为该任务设计和部署的系统却产生了有害的和意想不到的结果。”

你可以阅读我关于避免人工智能中的副作用和奖励黑客的文章,以获得关于这个主题的进一步想法和关于名为AI 安全中的具体问题 的报告的更多信息。幸运的是,Simen Eldvik 不久后提到了同一篇论文,所以看起来我们有共同的兴趣。

不确定性应严格评估。由于不确定性对于评估风险至关重要,因此包括严格处理不确定性的方法是首选方法(如贝叶斯方法和概率推断)。

****贝叶斯推断是一种统计推断方法,当更多的证据或信息可用时,贝叶斯定理用于更新假设的概率。贝叶斯推理与主观概率密切相关。在概率论和统计学中,贝叶斯定理描述了一个事件发生的概率,基于可能与该事件相关的条件的先验知识。

编纂的过去不会创造未来

这个标题是引用凯茜·奥尼尔的话的缩写,凯茜·奥尼尔是《数学毁灭武器》的作者,埃尔维克在他的论文中提到了这一点。Cathy 谈到了大数据,我发现它如此引人注目,所以我想在本文中分享它:

“大数据流程整理了过去。他们没有发明未来。”—凯西·奥尼尔

由于这种模型预测只能做这么多,然而,它可能是有用的发挥出一些情景,特别是在有很大的人类生命风险的地区。

Eldvik 的立场文件中没有提到这一点,我也不能说模型是否会产生任何影响,但在挪威,亚历山大·基兰钻井平台在 1980 年 3 月倾覆,造成 123 人死亡。因此,安全建模的风险可能很高。我们当然不能预测或模拟条件,但有一个重要性,可能是生死攸关的。

Eldvik 展示了一个基于 Allen 和 Tildesley 对液体的计算机模拟的图表:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

“数据驱动的决策基于数据科学的三个原则:可预测性、可计算性和稳定性( B. Yu,2017 )。此外,对安全关键系统尤为重要的是,需要在决策环境中评估错误预测的后果。”

他谈到了 Kaggle 竞赛,以及要“赢得”的挑战可能没有遵循经验主义的严格性。他指的是谷歌大脑团队成员写的一篇名为 赢家的诅咒 的论文。

Kaggle 是一个预测建模和分析竞赛的平台,在这个平台上,公司和研究人员发布数据,统计学家和数据挖掘者竞争产生预测和描述数据的最佳模型。

他们提出了经验评价标准的方法:(1)调整方法论;(2)切片分析;(3)消融研究;(4)健全性检查和反事实;(5)至少一个否定结果。你可以去 Google Brain 的论文或者 Simen Eldvik 获取更多的信息。

结论

值得看一看 Simen Eldvik 的研究和他关于 AI +安全主题的立场文件。DNV-GL 是一家与风险打交道的公司,因此我们很有可能在未来看到他们团队的更多研究。或许未来会有一个风险衡量和算法的认证?美国立法者正在提出一项法案,要求大公司审计机器学习驱动的系统,也许我们应该在挪威采取类似的措施。如果是这样的话:那么 DNV-GL 将是促成这样一个政策项目的最佳人选。

我的文章列表 :

[ 1 ]辩论 AI 安全辩论

[ 2 ]避免副作用,奖励人工智能中的黑客行为

社会科学家和人工智能

[ 4 脸书 vs 欧盟人工智能和数据政治

[ 5 人工智能与公平

人工智能和挪威的性别配额

[ 7 半监督学习在无监督数据增强方面的进步

感谢您的阅读。这是#500daysofAI 的第 60 天。我每天写一篇关于人工智能的新文章。

AI 吓到大众。我们做 AI 教育对吗?

原文:https://towardsdatascience.com/ai-scares-the-public-are-we-doing-ai-education-right-df7d9c621364?source=collection_archive---------18-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

今年早些时候发表的一篇题为2019 年人工智能教育和伦理将扰乱社会的 4 种方式的文章引起了我们的注意。关于人工智能教育及其在社会中的作用,存在激烈的争论。人工智能相关培训和教育的资金正在增加。但这是正确的做事方式吗?

当然,你也可以增加对某些事情的资助,人工智能教育也不例外。然而,这是正道吗?我们实际上做 AI 教育是正确的吗?

我们不太确定。

从哪里开始?

我们如何以一种对社会各阶层的人来说既清晰又容易理解的方式来对待人工智能教育?它从去污名化人工智能开始。鉴于人工智能在媒体和娱乐领域的表现,这可能很难做到。这就是我们的第一个问题。

“30 亿人的生命在 1997 年 8 月 29 日结束。核战的幸存者称之为战争审判日。他们活着只是为了面对一场新的噩梦:与机器的战争。” - 《终结者 2:审判日》

上面引用的 90 年代最受欢迎的科幻电影之一,只是数百个,如果不是数千个“可怕的人工智能”的例子之一这种对人工智能的反乌托邦观点不是一夜之间形成的。在以人工智能为中心的媒体中,这是一个长期、持续的主题,包括视频游戏、电影、音乐等等。

很少有以人工智能(或机器人)为中心主题的电影,在某种程度上,不关注“与机器的战争”。从《大都会》(1927)到《2001:太空漫游》(1968)。从《终结者》(1984)到《终结者 2》(1991);未来被人造机器占领、破坏或与之冲突的景象是很常见的。

有什么不应该的吗?一部关于快乐的机器人爱他们的创造者并且不关心世界的电影很难成为一部有趣的电影。一部更现实的人工智能电影将描绘绘制天气模式或提高电子商务购物车效率的复杂机器。也几乎没有写满“夏季大片”。

这种对人工智能的负面描述导致了对人工智能、机器人以及延伸的整体困惑、不确定性和恐惧;机器学习和如实;大型科技公司。

消除魔法因素

AI 教育是问题吗?当然可以。然而,教育公众关于人工智能的“是什么”和“不是什么”有一个固有的问题。因此,社会的大部分人在很大程度上将人工智能视为一种技术魔法。魔法是很难被信任的。

难怪公众对艾的看法充其量是褒贬不一;最坏的情况是,多疑。牛津大学人类未来研究所人工智能治理中心进行的一项调查发现:

  • 41%的受访者部分或强烈支持 AI 的发展。
  • 22%有些或强烈反对人工智能发展
  • 82%的人认为机器人和/或人工智能应该得到认真管理。他们当然知道。他们已经在电视上看到了当他们不在的时候会发生什么。

鉴于 22%的美国人反对人工智能的发展,我们可以说还有很多工作要做。

这是数学

当然,现实是人工智能是一个复杂的数学、统计、概率、算法设计等系统。算不上魔法。几乎不是噩梦。

对于这个空间之外的人来说,打哈欠是从“数学”这个词开始的。普通大众对此视而不见。太复杂了,太复杂了,太高级了,理解不了。

因此,他们与这个空间的互动来自流行文化和关于世界末日、即将到来的人工智能启示录和 1984 年政府监控水平的点击诱饵文章。我们把它变成了一个难以理解的谜。

从基础开始

正确的出发点是什么?它始于统计和数学素养。以代数和微积分为例。如果不理解另一个,就很难理解另一个。

因此,我们遵循数学教育的线性进展,从开始开始,遵循逻辑进展。

AI 教育应该没什么不同。如果我们想让人们真正理解这个空间,我们必须想办法让它社会化。这可能包括增加资金,但也需要对人工智能教育采取整体和全面的方法。

通过创造一个用诚实和健康的眼光看待人工智能的环境,而不是危言耸听的恐惧,我们可以揭开这个空间的神秘面纱。这将使它更普遍,更少不为人知,结果是;没那么恐怖。

这在很大程度上始于理解我们自己是如何做出决定的。很难做出真正冷静的决定。在许多方面,我们生活在一个非常一致的社会。这就是在社交媒体上推动“喜欢”欲望的原因,也是政治家因大胆言论而获得“分数”的原因,或者是我们在做出重要决定时严重依赖“直觉”的原因。

在广告界,这就是为什么真实的证明或个人推荐形式的社会证明比支持你的产品有效性的 100 项研究更有力量。

然而,当机器在打电话时,它会变得令人害怕、困惑或陌生。我们必须改变这种心态。让人们理解我们制造的机器如何做出基于价值的决策,并揭开得出结论的“魔法”的神秘面纱。

务实的观点

人工智能教育的另一个重要部分是采取诚实、真实的方法来讨论人工智能是什么和不是什么。消费者“人工智能”的早期与“虚拟现实”的早期非常相似。也就是说,和真品几乎没有相似之处。

90 年代的街机爱好者无疑会记得“虚拟现实”电子游戏,这种游戏基本上不是真正的“虚拟现实”更确切地说,他们更像是在玩一个普通的视频游戏,但是画面很糟糕,头盔看起来像是坐在离屏幕很近的地方。

星际迷航“全息甲板”这不是。

今天,我们在早期的人工智能工具上更先进了一点。Alexa、Google Home 和类似产品通常被宣传或定位为家庭人工智能伴侣。他们聪明吗?不完全是。更像是带语音识别的高级搜索引擎。你不能和阿利克夏交谈。反正也不尽然。她并不真正明白你在问什么。

在人工智能甚至机器学习的阶梯上,我们有物体检测、情感分析、语言处理等。这些工具智能吗?他们理解上下文吗?他们知道我们在教他们什么吗?是也不是。但在我们全球如何看待“人工智能”的背景下,不是。不是真的。

因此,即使今年的人工智能距离天网或黑客帝国还有几十年的距离。本质上,我们离创造出能推翻我们的机器人或计算机程序还很远。还没有。

AI 的伦理呢?

正如我们之前提到的,人工智能&伦理学是一个年轻的、成长中的领域。正因为如此,我们坚信在这个领域工作的每个人都有责任遵守道德规范,设定高标准,并不断评估我们在道德规范方面的做法。因此,需要清醒的(而不是危言耸听的)恐慌。

正是对这些东西(道德和责任)缺乏的恐惧导致了对未来的古怪、反乌托邦的看法,比如说,人工智能对人类并不友好。

因此,我们看到两个独立的问题在伦理争论中发挥作用。

1.伦理与人工智能

这一部分讲述了我们人类的行为方式。也就是说,我们如何培养这个我们称之为人工智能的东西,以及我们如何应用它?对人工智能这一方面的反乌托邦观点推动了对老大哥式监控的恐惧。科技公司或大规模政府数据库侵犯公民自由等。或者在最坏的情况下,一个流氓国家或演员创造詹姆斯·邦德恶棍水平的邪恶活动。

2.伦理人工智能

这涉及机器如何做出基于价值的决策。这将包含我们教给机器的东西以及它们自己学习的东西(当然是在我们的指导和监护下)。对人工智能这一方面的反乌托邦观点给了我们长期持有的机器变得有自我意识并决定灭绝人类的科幻比喻。

亚当、夏娃、苹果和蛇

从神学的角度来看,这两个伦理问题并不新鲜。以亚当和夏娃的亚伯拉罕宗教中的创世神话为例。

人性的基础之一是我们行使自由意志和选择的能力。然而,亚当和夏娃的情况并非如此。至少一开始不会。

正如神话所说,没有自由意志的人类(当时表面上是机器)通过获取知识(即伊甸园中的果实)来获得自由意志。随之而来的是自由意志。因此,人类获得了选择自己道路的能力。

剧透:他们不会一直做出正确的选择。

可以想象人工智能的类似道路,这也是为什么世界末日的场景看起来不那么牵强。人工智能教育的一部分需要消除这种观念,即这些路径是一个已知的结论。

一切都是火

人工智能绝不是第一个遭到怀疑或恐惧的技术概念。毫不夸张地说,几乎每一种产品、工艺或技术都有其批评者和末日论者。从汽车到智能手机;对于各种可能性,无论是积极的还是消极的,总是有相当多的好奇和担忧。

同样没有夸张,你几乎可以对任何事情这样说。每一种产品、流程和技术都有可能引发火灾。也就是说,它能提供多少热量就能燃烧多少。

这确实是核能的例子,这些年来,核能的支持者和反对者都有。我们都看到了核能的可怕力量;在最好和最坏的情况下。

但是艾并不邪恶

和核能一样,当然也有潜在的坏处。然而,我们认为好处大于风险。然而,对这些风险的恐惧是为什么世界上 100%的能源不是由核电站产生的。

这也是为什么 22%的美国人反对 AI 开发。

在未来的某个时候,一个人工智能被用于邪恶的世界会存在吗?当然可以。我们还可能目睹另一场切尔诺贝利或福岛灾难。但这些结果都不是我们想要的、渴望的或不可避免的。

这就是为什么人工智能领域需要保持警惕,就像核能领域需要安全和监管监督一样。预防和防范不好的事情。

这就是为什么我们一直坚持认为,我们这些在这个领域工作的人必须不断努力保持其应用的道德标准。在努力获得好处的同时避免坏处。

因此,人工智能“造成伤害”的可能性,并不比一辆汽车或智能手机落入决心造成伤害的人手中的可能性更危险。事实上,我们认为恶意使用人工智能的门槛远远高于汽车和手机的门槛。后者有时被同时使用,这对我们是有害的。

未来并不可怕

毫无疑问,一个人工智能已经深深扎根于我们生活的世界是可以想象的。然而,它更有可能以几乎不为人知的方式交织在一起,比如电子商务算法、工程、广告或农业;而不是有意识的机器人推翻我们这个创造者。

人工智能教育应该更少地关注人工智能作为机器与创造者之间的战争的好莱坞神话;更多的是将赋予它生命的统计基础社会化和规范化。后者既神奇又现实。

统计和数学素养将有助于消除围绕人工智能及其邪恶潜力的恐惧。一旦我们做到了这一点,我们就可以专注于教育公众什么是人工智能,它将如何影响他们的生活,以及为什么它不是一件可怕的事情。

至少,没有好莱坞让我们相信的那么广泛。

原载于 2019 年 5 月 27 日【https://introspectdata.com】

人工智能学者:部署后改进的聊天机器人

原文:https://towardsdatascience.com/ai-scholar-chatbots-that-improve-after-deployment-deaef4f91379?source=collection_archive---------14-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

部署后对话学习:喂饱自己,聊天机器人!

在过去的几年里,聊天机器人行业缓慢但肯定地成为一种全球现象。2016 年,聊天机器人市场价值约 7 亿美元。根据最近的一份报告,全球聊天机器人市场以超过 24%的 CAGR 增长,预计到 2025 年将达到 12.5 亿美元。

人工智能和机器学习技术的创新正在日益增强聊天机器人的功能,从而推动市场需求。与人工助手不同,聊天机器人提供即时响应,处理复杂的问题,增强分析,提高客户参与度,并且成本更低。人工智能、NLP 和机器学习的进步不断扩大,现代聊天机器人变得越来越智能。因此,聊天机器人的未来是光明灿烂的。

聊天机器人最近的一项发展是聊天机器人通过自我喂食来训练自己的能力——从他们参加的对话中提取新的训练数据的能力。

独立聊天机器人——从之前的对话中学习

以前,聊天机器人代理参与的大多数谈话或对话都是已经训练过的,需要大量的监督。

然而,新的研究工作现在提出了一种方法,为聊天机器人提供了无限的能力,它们可以参与对话,并学习自动评估用户对回复的满意度,以便能够改进自己。聊天机器人使用任何可用的监督数据进行训练,并在生产中发布。如果对话进行得很顺利(超过设定的满意度),机器人会继续自己的对话。相反,当对话进行得不顺利时,机器人会意识到它犯了一个错误,并请求用户反馈,它会预测并模仿用户反馈。聊天机器人偶尔用可用的响应重新训练,而不需要任何新的监督学习,从而提高其对话性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这种方法类似于人类的对话技巧,它不仅仅是观察其他人参与良好的对话,而是根据我们对话的反馈主动微调和调整我们的讲话。

潜在用途和影响

这种新方法结合了一些想法,创建了一个健壮的、能够随着时间的推移而改进的系统。虽然本文概述了如何在聊天机器人中使用它,但类似的方法可以用于许多不同的产品。我期待着有一天,当我推出一个产品,它会继续变得更好,并根据用户如何与产品互动和参与而更新。“为了你”的革命来了。

链接:【https://arxiv.org/abs/1901.05415v1】T2

AI 学者:周刊 1

原文:https://towardsdatascience.com/ai-scholar-weekly-1-c5a098cec0ef?source=collection_archive---------15-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有益于社会的人工智能,自我训练的聊天机器人,从跌倒中恢复的机器人,以及对 GANs 进展的回顾

作为我日常工作的一部分,我大量阅读最新的人工智能研究论文,这也是我非常喜欢做的事情。作为我创造更多内容的努力的一部分,我决定总结我发现的任何一周内最有趣的论文,并把它们发表在《新闻快报》上。如果你有反馈或意见,我很乐意听到你的意见!

Google AI 的社会公益、健康和机器人 2018 研究成果

艾为社会做好事

为了帮助提高对即将到来的洪水的认识,并通过与跨职能团队的合作,谷歌开始使用人工智能来创建更好的洪水预测模型。2018 年,他们开始将这些信息整合为 SOS 和谷歌公共警报。此外,谷歌人工智能的机器学习专家也发表了关于通过辅助人工智能预测地震余震的研究,并期待使用人工智能来解决地震背后的秘密,以减轻地震的破坏性影响。

许多外部机构也与谷歌的研究人员和工程师合作解决社会问题,包括使用卷积神经网络(CNN)来识别患病的木薯植物,检测新的系外行星等等。谷歌还宣布了谷歌人工智能社会影响挑战,个人和组织可以获得现金资助、指导和建议,以解决巨大的社会问题。

健康

2018 年,谷歌人工智能将他们的努力扩展到计算机辅助诊断和临床预测,包括开发与视网膜专家同等的视网膜人工智能模型,可以与眼科医生配对,以做出更准确的医疗决策。由此产生的糖尿病视网膜病变检测系统已经在印度和泰国的几家医院部署。

此外,发表了关于可以从视网膜图像中评估心血管风险的模型的研究。病理学焦点也没有落后,并且改进了前列腺癌分级乳腺癌检测,开发了深度学习和增强现实显微镜模型来帮助病理学家。

机器人

2018 年是谷歌人工智能在理解和实现使用 ML 训练机器人在没有人类监督的真实世界中如何行动方面取得长足进步的一年。他们还通过将基于采样的方法与 ML 结合起来,在学习机器人运动和几何方面取得了进展。这一年也将成为记忆中的一年,因为这一年该团队能够成功地在真正的机器人上训练 deep RL

更多阅读:https://ai . Google blog . com/2019/01/looking-back-at-Google-research . html

部署后自我训练的聊天机器人

独立聊天机器人——从之前的对话中学习

新的研究工作现在提出了一种为聊天机器人提供无限能力的方法,聊天机器人能够参与对话,并学习自动评估用户对回复的满意度,以便能够改进自己。

它是如何工作的

聊天机器人首先用任何可用的监督数据进行训练。如果对话进行得很顺利(超过设定的满意度),机器人会继续自己的对话。相反,当对话似乎进行得不顺利时,机器人会意识到它犯了一个错误,并请求用户反馈,它会预测并模仿用户反馈。聊天机器人偶尔用可用的响应重新训练,而不需要任何新的监督学习,从而提高其对话性能。

这种方法类似于人类的对话技巧,它不仅仅是观察其他人参与高端对话,而是根据我们自己的对话反馈主动微调和调整我们的讲话。

潜在用途和效果

与人工助手不同,聊天机器人提供即时响应,处理复杂的问题,增强分析,提高客户参与度,并且成本更低。随着人工智能和自然语言处理的不断进步,现代聊天机器人将变得越来越智能。

发现机器学习中识别和纠正标签偏差的新方法

链接:【https://arxiv.org/abs/1901.04966v1

如何消除机器学习的数据偏差

根据这项研究,新方法首先向人工智能研究人员和工程师展示了如何在他们的训练数据中识别偏见。其次,它演示了如何通过简单地给原始训练数据集分配适当的权重,在不改变标签和特征的情况下进行校正。该方法不修改任何数据标签,而是通过数据集重新加权改变样本点的分布来纠正不公平性。使用重新加权的数据集的训练与使用未观察到但无偏的标签平行,这导致无偏的分类器。

该程序超快,实用,易于微调,可用于任何学习人工智能模型。不仅如此,在一系列标准机器学习公平数据集和概念上评估该方法已经证明,它优于所有以前用于实现公平分类器的标准技术。

潜在用途和效果

你停下来想过这种新方法的效果吗?数据是解锁机器学习系统的关键,任何人工智能技术的实用性都取决于高质量的数据集。我们都知道,数据科学家已经发现,人工智能解决方案面临着自身数据偏差的挑战,这种偏差损害了它们的完整性。有了一种处理这种数据偏差的新方法,人工智能工程师可以走上一条开发更精确系统的道路。

这种基于重新加权的技术的效果将有助于实现无偏的分类器,并将现在和未来的人工智能预测提升到下一个水平。

人工智能现在可以教四条腿的机器人跌倒后如何恢复

链接:https://arxiv.org/abs/1901.07517v1

利用深度强化学习的四足机器人恢复控制器

先前存在的恢复控制器试图通过使用手工制作的控制序列、简化的模型和包括额外的肢或尾的附加机制来解决该问题。这种方法揭示了可预见的行为模式,这反过来限制了机器人的鲁棒性。此外,这些技术需要大量的工程努力。

新模型实现了深度强化学习,这是一种已知的人工智能训练技术,当智能体实现了控制机器人恢复动作的设定目标时,它会奖励智能体。该模型包括 4 个神经网络策略,其中 3 个行为和 1 个协调行为选择器。每个人都在个人层面的模拟环境中接受训练,然后直接部署到真实系统中。

模型验证结果

据研究人员称,他们通过评估一个名为 ANYmal 的狗大小的四足机器人来验证这一方法。通过该模型,ANYmal 展示了充满活力和反应性的恢复行为,试图在几秒钟内从任何随机坠落中恢复过来。恢复练习被测试了 100 多次,成功率约为 97%。

潜在用途和影响

深度强化学习越来越有助于推进机器人世界。首先,使机器人不仅依靠监督学习,而且有能力训练自己处理现实世界的情况。他们跌倒后恢复的能力不仅仅是一个壮举。当我们有更多的机器人比人类做更多的事情时,这肯定不会令人惊讶。

使用 GANs 创建面部照片和几何图形

链接:https://arxiv.org/abs/1901.06551v1

GANs 的能力引人注目,因为他们可以学习模仿任何类型的数据分布。例如,甘人可以被训练创造图像、音乐、演讲、散文等。最近发表的研究工作表明,GANs 现在可以用于创建令人印象深刻的面部图像及其相应的高精度几何图形。

高级 GANs:生成逼真的面部几何图形

尽管 GAN 模型在处理图像、音频和视频方面取得了成功,但将几何数据应用于这些图像、音频和视频仍然具有很大的挑战性。事实上,学术界将深度学习几何称为一个有争议的问题,因为缺乏几何对象的基本参数化,这阻碍了卷积滤波器的实现,卷积滤波器是现代 ML 系统的关键构建块。研究人员通过矩形数据单元的全局映射解决了参数化问题。使用先进的 GAN 方法描述、创建并开发映射设计。

研究人员通过矩形数据单元的全局映射解决了参数化问题。使用先进的 GAN 方法描述、创建并开发映射设计。

潜在用途和效果

甘人已经展示了他们在创造和修改图像方面的力量,比如以令人惊讶的 432,500 美元拍卖的人工智能肖像。它们已被用于提高图像分辨率,用于文本到图像的生成、图像到图像的翻译、视频帧生成、随机室内设计等。

识别社区问答网站中不明确问题的人工智能模型

链接:【https://arxiv.org/abs/1901.06168v1

随着谷歌公布大规模数据集、模型示例以及推进问答(QA)系统研发的挑战,这项新的研究可以帮助识别社区 QA 网站上明确和不明确的问题,这是一个最佳时机。

质量保证系统面临的挑战

尽管问答网站越来越受欢迎,但是网站上的许多问题仍然没有答案或者被忽略,因为它们不清楚、太短、太具体、难以理解等等。评估和预测问题质量的模型能够提高此类系统的工作质量,希望最终提高网站质量、真实性、受欢迎程度和流量。

感谢阅读:)

让我们也连线上TwitterLinkedIn

每个数据科学家都应该知道的人工智能搜索算法

原文:https://towardsdatascience.com/ai-search-algorithms-every-data-scientist-should-know-ed0968a43a7a?source=collection_archive---------11-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TL;下面的帖子概述了人工智能中的一些关键搜索算法,为什么它们很重要,它们有什么用途。

虽然近年来,搜索和规划算法已经让位于机器和深度学习方法,但更好地理解这些算法可以提高模型的性能。此外,随着量子计算等更强大的计算技术的出现,基于搜索的人工智能很可能会卷土重来。

什么是 AI 中的搜索算法?

在我们开始之前,让我们定义一下人工智能中的搜索是什么意思。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

A search algorithm is not the same thing as a search engine.

人工智能中的搜索是通过过渡中间状态起始状态导航到目标状态的过程。

几乎任何人工智能问题都可以用这些术语来定义。

  • 状态 —问题的潜在结果
  • 转换 —在不同状态之间移动的行为。
  • 开始状态— 从哪里开始搜索。
  • 中间状态——我们需要转换到的起始状态和目标状态之间的状态。
  • 目标状态— 停止搜索的状态。
  • 搜索空间——状态的集合。

不知情的搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当没有关于在州之间导航的成本的信息时,使用无信息搜索。

对于不知情的搜索,有三种主要的经典算法:

  • DFS — 使用 LIFO 堆栈遍历搜索空间,以确定下一个节点。优点:适合深度图形,内存效率高。**缺点:**会卡在循环中。

[## 深度优先搜索-维基百科

需要额外的引用来验证。通过增加对可靠来源的引用来改进这篇文章。无来源…

en.wikipedia.org](https://en.wikipedia.org/wiki/Depth-first_search)

  • IDFS — 遍历搜索空间,使用一个 LIFO 堆栈 *,*来确定下一个节点,当它到达某个深度时,它清除堆栈,增加深度限制,并再次开始搜索。

[## 迭代深化深度优先搜索-维基百科

需要额外的引用来验证。通过增加对可靠来源的引用来改进这篇文章。无来源…

en.wikipedia.org](https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search)

  • BFS- 使用一个 队列 FIFO 遍历搜索空间以确定下一个节点。

[## 广度优先搜索-维基百科

需要额外的引用来验证。通过增加对可靠来源的引用来改进这篇文章。无来源…

en.wikipedia.org](https://en.wikipedia.org/wiki/Breadth-first_search)

知情搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当我们知道成本或对各州之间的成本有一个可靠的估计时,就使用知情搜索。

UCF- 用一个优先级队列和一个分数遍历搜索空间。给定状态的分数是通过沿着它被发现的路径从父状态到达该状态的成本来计算的。

[## 人工智能-统一成本搜索(UCS)

在这篇文章中,我将讨论在加权图中寻找最短路径的统一成本搜索算法…

algorithmicthoughts.wordpress.com](https://algorithmicthoughts.wordpress.com/2012/12/15/artificial-intelligence-uniform-cost-searchucs/)

A* 用优先级队列和分数遍历搜索空间。一个状态的得分是通过沿着它被发现的路径从父状态到达该状态的成本,结合给定状态的启发式值来计算的。

试探法的容许值必须符合以下两个性质。

  • 一个状态的启发式值必须小于从一个状态到目标节点的最低成本路径。
  • 试探值必须小于到状态的路径和每个父节点的试探值之间的成本值。

[## 搜索算法-维基百科

斯坦福研究所(现在的斯坦福国际研究所)的彼得·哈特、尼尔斯·尼尔森和伯特伦·拉斐尔首先发表了…

en.wikipedia.org](https://en.wikipedia.org/wiki/A*_search_algorithm)

IDA*——IDFS 版的 A *

[## 迭代深化 A* -维基百科

迭代深化 A* ( IDA*)是一种图遍历和路径搜索算法,可以找到 a…

en.wikipedia.org](https://en.wikipedia.org/wiki/Iterative_deepening_A*)

本地搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当有不止一个可能的目标状态,但是一些结果比其他结果更好,并且我们需要发现最好的结果时,我们使用局部搜索算法。大量用于机器学习算法的优化。

爬山- 一种贪婪的搜索方法,基于最小值损害下一个状态,直到达到局部最大值。

[## 爬山-维基百科

需要额外的引用来验证。通过增加对可靠来源的引用来改进这篇文章。无来源…

en.wikipedia.org](https://en.wikipedia.org/wiki/Hill_climbing)

模拟退火- 从爬山开始,直到达到局部最大值,然后使用温度函数来决定是停止还是继续处于更差的状态,希望找到更好的状态

[## 模拟退火-维基百科

这种在模拟退火算法中实现的缓慢冷却的概念被解释为…

en.wikipedia.org](https://en.wikipedia.org/wiki/Simulated_annealing)

GSAT—CNF 领域爬山的实现。为每个可能的参数选择一组随机的布尔值,如果这些值匹配所有的前提条件,则返回目标状态,否则我们翻转这些值,以满足目标状态的最大数量的可能前提条件,然后为我们在最后一次迭代中翻转的每个布尔值重复这个过程。

[## WalkSAT -维基百科

WalkSAT 首先选择一个对当前赋值不满意的子句,然后翻转该子句中的一个变量…

en.wikipedia.org](https://en.wikipedia.org/wiki/WalkSAT)

遗传搜索 -生成初始种群状态,使用适应度函数删除阈值以下具有最低值的状态。随机组合幸存者,然后变异一对夫妇位,并评估适应度和重复。

[## 遗传算法-维基百科

在计算机科学和运筹学中,遗传算法(GA)是一种元启发式算法,其灵感来自于…

en.wikipedia.org](https://en.wikipedia.org/wiki/Genetic_algorithm)

波束搜索 -使用模型当前和先前输出的前 n 个似然值执行统一成本搜索。

[## 波束搜索-维基百科

在计算机科学中,波束搜索是一种启发式搜索算法,它通过扩展最有希望的…

en.wikipedia.org](https://en.wikipedia.org/wiki/Beam_search)

蒙特卡罗搜索— 一种随机搜索算法,当终止时将返回正确搜索结果的最佳估计。蒙特卡罗算法总是很快,但只是可能正确。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 [## 蒙特卡洛树搜索-维基百科

在计算机科学中,蒙特卡罗树搜索(MCTS)是一种启发式搜索算法,用于某些类型的决策…

en.wikipedia.org](https://en.wikipedia.org/wiki/Monte_Carlo_tree_search)

拉斯维加斯搜索是一种随机搜索算法,与蒙特卡洛不同,它只会在找到正确结果时返回。拉斯维加斯的算法总是正确的,但可能只是很快。

*// Las Vegas algorithm*
2 repeat:
3     k = RandInt(n)
4     **if** A[k] == 1,
5         **return** k;

[## 拉斯维加斯算法-维基百科

在计算中,拉斯维加斯算法是一种随机算法,总能给出正确的结果;也就是说,它总是…

en.wikipedia.org](https://en.wikipedia.org/wiki/Las_Vegas_algorithm)

大西洋城搜索 —是一种有界概率多项式时间搜索算法,结合了拉斯维加斯和蒙特卡洛搜索算法的优点和缺点。

[## 大西洋城算法-维基百科

大西洋城算法是一种概率多项式时间算法,其正确回答率至少为 75%。

en.wikipedia.org](https://en.wikipedia.org/wiki/Atlantic_City_algorithm)

后续步骤

如果你喜欢这篇文章,请马上关注新内容,并在 medium 或 twitter 上关注我。要开始试验这些算法,请查看 Azure 笔记本以及 Azure 上 CosmosDB 的图形数据库特性。

如果你还没有,你可以在下面免费订阅 Azure。

[## 立即创建您的 Azure 免费帐户| Microsoft Azure

开始享受 12 个月的免费服务和 200 美元的信用点数。立即使用 Microsoft Azure 创建您的免费帐户。

azure.microsoft.com](https://azure.microsoft.com/en-us/offers/ms-azr-0044p/?WT.mc_id=medium-blog-abornst)

关于作者

亚伦(阿里)博恩施泰因 是一个狂热的人工智能爱好者,对历史充满热情,致力于新技术和计算医学。作为微软云开发倡导团队的开源工程师,他与以色列高科技社区合作,用改变游戏规则的技术解决现实世界的问题,然后将这些技术记录在案、开源并与世界其他地方共享。

人工智能搜索算法实现

原文:https://towardsdatascience.com/ai-search-algorithms-implementations-2334bfc59bf5?source=collection_archive---------4-----------------------

人工智能中流行的搜索算法的解释和实现

在纳布星球,R2-D2 机器人为她的阿米达拉女王服务,并成功窃取了一些重要文件,其中包含位于火山星球穆斯塔法的黑魔王达斯·瓦达城堡的秘密。

一旦黑魔王发现了这件事,他就会派军队去追 R2D2,从他那里取回文件。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by James Pond on Unsplash

害怕达斯的军队,R2D2 藏在一个山洞里。在进入洞穴时,R2D2 找到了洞穴的地图,它知道自己在网格位置 0,需要到达网格 61 才能走出洞穴。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

达斯的军队知道 R2D2 藏在山洞里,所以他们在山洞里设置了炸药,一定时间后会爆炸。

让我们利用我们的人工智能知识和人工智能搜索算法,帮助 R2D2 搜索出洞穴的路径,并成功地将被盗文件交给他的女王。

R2D2 必须遵循以下规则来寻找他的出路。这个逻辑被硬编码在他的记忆中。

  • 每个节点的(x,y)坐标分别由迷宫顶部和左侧显示的列和行定义。例如,节点 13 具有(x,y)坐标(1,5)。
  • 按升序处理邻居。例如,如果处理节点 13 的邻居,首先处理 12,然后处理 14,然后处理 21。
  • 边境使用优先队列。将(优先级,节点)的元组添加到边界。例如,在执行 UCS 和处理节点 13 时,将(15,12)添加到边界,然后是(15,14),然后是(15,21),其中 15 是到每个节点的距离(或成本)。
  • 当从边界移除节点(或弹出队列)时,通过选择按字典顺序排在第一位的节点来打破平局。例如,如果从上面的(15,12)、(15,14)和(15,21)中选择,先选择(15,12)(因为 12 < 14 < 21)。
  • 当一个节点从边界移除(或弹出队列)时,该节点被视为已访问。
  • 只有有效的移动是水平和垂直的(不是对角线)。
  • 探索单个节点需要 1 分钟。逃离迷宫的时间将是探索的所有节点的总和,而不仅仅是最终路径的长度。
  • 所有的边都有成本 1。

1.统一成本搜索

R2D2 被指示使用统一成本搜索算法找到走出迷宫的路。如果 R2D2 使用统一成本搜索,他需要多长时间逃离洞穴?

让我们通过实现和编写统一成本搜索算法的代码来尝试找到答案。下面是 统一成本搜索 的伪代码

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Uniform Cost Search Pseudocode

让我们用 python 实现这个伪代码。

Uniform Cost Search algorithm implementation

为了运行这个搜索算法,我们需要以图形的形式提供迷宫。这个 util.py 中提到了将这个迷宫转换成图形的代码。

因此,如果我们运行上面的代码,我们可以看到,如果 R2D2 遵循统一成本搜索,从起始位置(单元 0)到达迷宫的出口(单元 61),将探索 58 个节点,因此他将花费 58 分钟走出洞穴。

有趣的是,达斯·瓦达也研究了 UCS 算法,他现在更新了爆炸的时间,这样 UCS 就不再适用于 R2D2 了。

R2D2 现在有什么选择?

2.寻星

研究过搜索算法后,R2D2 知道 A 搜索比统一成本搜索 更快。他计划用**的 A搜索与**的曼哈顿距离启发式。R2D2 现在要花多长时间才能找到离开洞穴的路?

让我们用曼哈顿距离试探法实现 A 星搜索算法。 曼哈顿距离是网格上各点之间的水平和垂直距离之和,计算公式相同:

Manhattan Distance heuristic

让我们实现 A-Star 搜索算法,找出 R2D2 走出迷宫所用的更新时间。

A-Star Search algorithm implementation

通过运行上面的 A-Star 代码,我们知道 R2D2 现在将探索 50 个节点,因此将花费 50 分钟走出洞穴,这是 “比 UCS快 8 分钟”。**

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

R2D2 现在从一个可靠的机器人朋友(C-3PO)那里得到了一个提示,达斯·瓦达再次更新了计时器,传统的 A搜索不够好。作为专家,R2D2 并没有被吓倒。他注意到迷宫中有一个瓶颈。更具体地说,27–35°的边缘是从迷宫的左半部分穿越到右半部分的唯一途径。*

意识到这一点,R2D2 决定将搜索分成两部分。首先,他从起点搜索到瓶颈(节点 27)。然后,他从瓶颈(节点 35)搜索到目标。他现在要花多长时间才能走出洞穴?

如果 R2D2 运行瓶颈 Astar 从 0 到 27,然后 35 到 61,他只需要探索 38 个节点,与其他搜索方法相比,他可以更快地走出洞穴。

正如我们在上面的结果中看到的,A搜索算法是一种“智能”搜索算法,与其他传统搜索算法相比,它的运行速度更快。*

结论

这个问题也可以通过使用这里提到的更高级的搜索算法来解决。为了简化搜索算法的介绍,我选择不在本文中实现这些算法。

我试图用上面的星球大战故事,以一种有趣的方式解释和实现人工智能搜索算法。如果你喜欢它,请分享,如果你在代码中发现任何错误或可能的改进,请在评论中添加。

本文中使用的代码和完整的工作示例可以在下面的 git 资源库中找到:

https://github . com/fake monk 1/AI-搜索-算法-实现

人工智能系列:走进学习理论。

原文:https://towardsdatascience.com/ai-series-a-walk-into-the-theory-of-learning-273f79e585e4?source=collection_archive---------22-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

机器学习的目标是建立最简单的近似模型,能够解释数据生成过程提供的过去数据和未来实例。

统计学习理论是人工智能发展得最漂亮的分支之一,它为我们提供了许多当今机器学习算法的理论基础。它还试图用哲学的方法来确定从经验数据中得出有效结论的基本要素。

事实上,在机器学习中,将输入域的数据映射到输出域的相应数据的目标函数是未知的。如果它是已知的,我们根本不需要任何学习,我们只需要实现它。学习的基本前提是使用一组观察来揭示一个潜在的过程。在机器学习中,目标是从有限的样本数据集中找到一个逼近目标函数的函数。

从监督学习的角度来看这个问题,我们的挑战包括从一组带标签的数据中学习。训练集中的每个点都是一个输入-输出对,其中输入映射到一个已知的输出。学习问题包括找到最佳算法,该算法能够捕获由样本数据对的分布隐含描述的未知支配规则,并构建一个假设函数,该假设函数逼近目标函数,可用于预测未来未知输入的输出。学习模型的性能,或概括性能,是根据其对独立测试数据的预测的准确度的百分比来测量的。

学习理论及其众多的分支和子理论为我们提供了构建最高性能模型的所有必要工具。

为了选择最佳模型,然后评估其泛化性能,作为最佳实践,在数据丰富的情况下,可用于训练算法的样本数据集通常被分成 3 个随机选择的组:

算法用来拟合模型的训练集。通过利用算法的调整参数(超参数),我们可以开发不同复杂程度和精度的不同模型。
用于评估不同模型性能的验证集,将它们相互排序,并在其中选择具有最低估计预测误差的模型。
用于评估完全指定的所选模型的泛化性能(和误差)的测试集。
当建模者探索不同的模型类型和它们带来的参数的广泛选择时,预测误差,或概括误差,经常指导模型选择过程。但是估计预测误差并不是微不足道的,因为它是 3 个误差子类的结果:偏差、方差和噪声。

也称为“不可约误差”,噪声是唯一一种不能通过选择模型来减少的误差,因为它仅取决于我们可用于训练的数据。

如果训练数据集中的数据是由固有的随机(random)过程生成的,或者是一个错误的问题,或者是特征集是错误的或不完整的,我们可以花一生的时间来尝试提高我们的模型预测性能,但我们永远不会比我们的杂乱数据允许我们做的更好。

这就是为什么数据科学家花大约 19%的时间寻找好数据,另外 60%的时间清理和组织他们收集的数据:机器学习模型准确预测他们被训练预测的东西:在最好的情况下,他们的预测只能与用于训练的数据一样好。垃圾进,垃圾出。或者更好地说,有噪声的数据输入……有噪声的、容易出错的预测输出。

但是噪音不仅仅是…无用的噪音。它实际上可以作为一个警报,指示错误或不完整的特征选择或错误的训练数据集。

假设我们正在尝试学习一个函数,它能够根据包含年龄的训练数据集来预测人的体重。嗯……是的,年龄可能是预测体重时要考虑的因素之一,但还有许多其他因素来表征体重,包括身高、性别、地理位置等等。如果只考虑年龄,您很可能会得到一个较弱的预测值和一个较大的概化误差,因为对于输入中的每个年龄值,您将有许多不同的权重值可供选择或平均。

因此,对于给定的一组特征,噪声在真实分布中可能不是真正的噪声。可能我们只是没有从数据集中选择足够的表征特征,或者选择了错误的特征,从而无法模拟真实的分布。

当对给定数据集的最大可实现性能(或最小可实现泛化误差)设置正确的期望值时,噪声也非常重要。

例如,假设你正在做金融预测,试图检测市场是上涨还是下跌。这种类型的数据中的噪声水平如此之高,以至于你会非常高兴持续地在 53%的时间里得到正确的结果。因此,虽然 47%的错误率可能看起来是一个非常高的错误率,但这可能是在这种情况下您可以获得的最佳性能。但是考虑一下这个:只要泛化性能高于 50%并且是一致的,你就在做生意,就像许多对冲基金一样,通过这些预测赚了很多钱!

正如我们所看到的,虽然噪声可以为我们提供一些重要的质量相关指标,但它的存在确实会损害我们的模型泛化性能。因此,在训练算法时,我们需要确保它从分布固有噪声中收集尽可能少的数据,这些噪声不携带任何有用的可重复使用的信息或模式,这些信息或模式表征了我们试图理解的控制函数的分布。

怎么会?嗯…确保算法不会学习…太多!

如果算法非常精确地映射了给定训练分布的所有数据点,那么它肯定会在该特定训练数据上产生非常小的误差(训练误差)。然而,在从有效数据点学习的同时,它也将拾取由噪声产生的数据中的随机变化,其代价是测试数据的高误差(测试误差)的高得多的成本,并且因此由于高泛化误差而导致低性能。

换句话说,更高的精度意味着收集更多的噪声,这些噪声会使算法与训练数据中的明显关系“混淆”,而训练数据中的明显关系通常并不基于良好数据和噪声数据的错误组合。

对训练数据建模过于严格的算法会吸收太多的噪声,其结果是,根据训练集的不同,它会产生完全不同的模型,并在不同的测试数据上表现出很大的性能差异。

方差准确地衡量:算法对特定训练数据集的敏感度。高方差表示算法与数据拟合得太好,并且可能过于复杂,因为数据分布试图建模,因此被称为过度拟合数据。

这就是为什么我们需要寻找“最简单的近似模型”!

另一方面,我们也不能选择一个过于简单且表达能力不足的模型来捕捉和学习事件数据分布的复杂性。

想象一下,使用线性回归来绘制具有非线性模式的训练数据集:无论您多么努力地尝试,无论您能够收集多少观察值,线性回归都只是一条线,而且过于死板,无法对非线性数据集的曲线进行建模。偏差,在方差的对角,本质上测量机器学习算法拟合或足够好地表示用于训练系统的数据集的分布的能力。换句话说,偏差为模型做出的简化假设提供了一个维度,以使目标函数更容易学习,但代价是无法找到最佳的可能函数。在这种情况下,该算法将具有较高的偏差值,并被称为数据欠拟合。

过度拟合的特征是方差,而欠拟合的特征是偏差。

好吧,如果我能够转移至少一部分主要概念,你现在可能已经明白了,我们正面临一个有趣的困境:一方面,如果算法紧密适合训练数据,或者过度适合训练数据,它将显示低偏差但高方差。这表明泛化性能不太好。

另一方面,当算法过于简单而无法很好地拟合训练数据,或者对数据进行欠拟合时,它将显示出较低的方差但较高的偏差值。可能具有良好的泛化性能,但可能不是我们可以选择的最佳算法。

在统计学中,这是一个众所周知的困境,它被称为偏差-方差权衡。

能够找到一种算法,很好地平衡偏差和方差的值,将引导我们准确地看到:具有最佳泛化性能(或最小泛化误差)的最简单的近似模型。

偏差-方差权衡概念在机器学习中也通过估计-近似权衡来捕获。偏差衡量模型对目标函数的较差逼近。为了提高性能,我们可能需要选择不同的算法或算法系列,它们提供更大的假设空间,覆盖更大的区域,更有可能接近或更好地近似我们的目标函数所覆盖的空间。但是让我们记住,我们试图接近的目标函数仅仅是从有限的样本数据中得到的。不是从真实的,未来的,全分布的。样本数据是我们学习的全部,有限的一组数据只能代表描述整个现象的真实函数的估计。因此,类似于偏差-方差权衡的情况,如果我们过于逼近描述样本分布的函数,从而产生较低的逼近误差和较低的偏差,那么风险在于,当我们随后使用新构建的函数来预测或分类来自真实分布的未来未知数据时,我们的函数将继续过于紧密地基于样本数据的学习模式进行预测,并且将导致过于僵化和具体,从而无法很好地捕捉真实分布的一般进展。在这些情况下,每个不同的训练集将生成非常具体的模型,这些模型彼此之间差异很大。这就是为什么在统计学中,表达这一特定方面的统一度量被称为方差,而在更面向机器学习的“方言”中,同一方面被称为估计误差。方差大,估计误差大。

正如我们刚刚看到的,由于模型的复杂性会影响它们的性能,我们需要找到一种方法来以定量的方式定义复杂性,其中,Vapnik-Chervonenkis 维度是一种广泛使用的方法,用于在偏差和方差之间找到正确的平衡,因为它可以量化精度,很好地捕捉模型的复杂性概念。

在不涉及太多细节的情况下,VC 维涉及(但不一定等于)每个模型具有的参数数量,而参数数量又与模型可以处理的数据点数量有关。主要思想是,模型想要近似的数据点的数量越多,模型需要映射它们的参数的数量就越多,这增加了复杂性,并使模型非常特定于该数据集。而具体化并不能很好地概括。VC 维有助于捕捉等式中两个不相容但不可分割的元素之间的最佳平衡。

[对于那些想要深入了解 VC 维的人,请考虑:VC 维测量算法的有效参数或二进制自由度的数量,这反过来又表示特定算法可以粉碎的数据点的数量。如果一组点被一类函数分解,不管我们如何给每个点分配一个二元标号,这个类中的一个成员可以完美地分离它们。]

在测量算法复杂性的同时,VC 维还可以帮助我们估计预测误差,为我们提供一种概率评估,即在给定样本数据集的情况下,算法是否可以学习和推广:与可用训练数据的数量相比,VC 维较低将表明测试误差不会远离训练误差。

这是一个令人惊讶的结果:我们实际上可以做出一个强有力的声明,仅仅使用模型的一个属性,我们的测试性能在我们没有见过的数据上将会如何!

但是学习理论的惊喜并没有到此为止。它为使学习成为可能的迷人旅程提供了更多的基本概念和基本指导。

在推动数据科学家寻求正确的炼金术,将未经训练的数据转化为有价值的预测的同时,它也提出了许多很好的常识,即我们人类应该如何对发生在我们周围的生活事实建立更可靠的假设:多一点现实的数据,少一点嘈杂的观点。

谢谢。

原载于 LinkedIn

AI Sidewalk #5:关于 Minimax 的一切!

原文:https://towardsdatascience.com/ai-sidewalk-5-all-about-minimax-via-tic-tac-toe-4c7afe550e83?source=collection_archive---------29-----------------------

了解如何成为无与伦比的井字游戏代理!

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Beginning of a new journey. Credit to www.pexels.com/@tony-367405

这个帖子

这篇文章将重点关注名为 Minimax 的人工智能算法,该算法可用于在不确定性下做出决策。在整篇文章中,我们将利用井字游戏来更好地理解和实现 Minimax。

Minimax 到底是什么?

更具体地说,顾名思义,该算法寻求最小化给定代理的最大可能损失。与此相反的算法叫做马希民,它寻求最大化它所应用到的代理的最小可能增益

井字游戏人工智能公式

因为这是我们第一次冒险进入人工智能的世界,让我们先弄清楚一些基本的人工智能概念。第一个概念是状态状态空间。对于井字游戏,状态只是给定游戏棋盘的任何给定配置:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Example state for Tic-Tac-Toe game

此外,状态空间由所有可能的井字游戏棋盘状态的集合组成。很快你就可以看出井字游戏的状态空间会非常大!

第二个概念是在板值的空间中搜索。产生的结构是以下形式的树:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Tree for simulating Tic-Tac-Toe moves

请注意,该树的更深层次将继续在玩家 1 和玩家 2 的回合之间交替,直到在最后一级达到一些最终棋盘状态。

极大极小的井字游戏公式

如果我们扩展上面的树来获得所有的结束状态,我们可以很容易地分辨出哪些状态是赢的状态、输的状态和平局状态。此外,我们可以根据每个州是赢、输还是平来给他们打分。这些可以告诉我们对于一个给定的玩家(在下面的例子中,玩家“X”)每个状态有多“好”。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Possible Tic-Tac-Toe Board configurations and their associated scores

在这个有两个代理的场景中,Minimax 背后的核心概念是,一个代理将充当最大化者(在我们的例子中,是玩家“X”或 CPU),而另一个代理将充当最小化者(在我们的例子中,是玩家“O”或用户)。

让我们通过一个例子来说明 Minimax 如何帮助决定 CPU 应该采取什么行动:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

整个算法本质上由两个独立的步骤组成。第一步,算法沿着树往下走,给每一层的每块板分配相关的“分数”。然后,第二步向上传播回来,并基于最高得分的整体路径选择一个移动。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Minimax algorithm phases

井字游戏最小最大实现

井字游戏棋盘类

首先,我们可以创建一个简单的类来初始化表示 TicTacToeBoard 对象的对象,这些对象将显示在我们的前端 UI 中。这个类中有许多方法,其中一些实际上并没有在最终产品中使用。以下是完整的代码片段:

让我们来看看最终产品中实际使用的一些核心功能:

  • init: 初始化一个空的 3 乘 3 数组(全零)
  • execute_turn: 接受一个符号、一个行号和一个列号,在当前的棋盘对象上执行适当的移动。
  • game_is_won: 返回true,如果双方中有一方在当前棋盘上赢得了游戏。否则返回 false。
  • make_move: 不是最好的名字!在当前棋盘的副本上模拟移动,并返回具有相应结果状态的新棋盘。
  • get_possible_moves: 以(row,col)的形式返回一个元组数组,每个元组代表当前棋盘上可以进行的一次可能的移动。
  • calculate_board_score: 计算当前棋盘的分数。如果“X”在当前棋盘上处于获胜位置,则该分数为+10;如果“O”处于获胜位置,则该分数为-10;如果没有人处于获胜位置,则该分数为 0。

井字游戏烧瓶应用程序文件

除了上面的 board 类,我们还有一个 Flask 应用程序文件,它有一些自己的端点和函数,使我们的前端(我们将制作)能够调用我们的后端。相关代码如下所示:

让我们关注实现 Minimax 算法的三个函数,因为它们构成了我们的“硬”级 TicTacToe 代理的核心功能:

极大极小函数

这是我们主要的 minimax 函数,如果 AI 玩家是“X ”,它简单地返回分数最大化移动,如果 AI 玩家是“O ”,返回分数最小化移动。但是在计算每一步棋的分数时,它会考虑对手未来的所有棋步。最后,它返回给定玩家产生最佳分数的移动:

最小化代理功能

我们的算法使用的第一个辅助函数简单地模拟了最小化代理(在我们的例子中是‘O’)。注意,这个函数递归地调用了 maximizer 函数(代表‘X’)。你可以认为这是充分利用我们所拥有的一切。因此,在这个函数中,我们试图找到 maximizer 函数返回给我们的分数的平均值,在我们的例子中,它实际上是计算 minimizer 以前返回的最高分数:

最大化代理功能

这是我们的算法使用的第二个主要助手函数,它简单地模拟了最大化代理(在我们的例子中为“X”)。注意,这个函数递归地调用 minimizer 函数(它代表‘O’)。你可以再一次认为这是对给予我们的最好的利用。因此,在这个函数中,我们试图找到 minimizer 函数返回给我们的分数中的最高分数,在我们的例子中,它实际上计算 minimizer 的计算分数的平均值:

产品化

让我们试着将我们的后端模型产品化,让它更容易被用户使用!我们可以利用一些基本的 HTML 和 CSS 来做到这一点,同时遵循 Flask 的标准项目目录结构。

高级目录结构

在我们的例子中,目录结构相当简单,除了上面的两个文件之外,只包含两个不同的文件夹:

  • **静态文件夹:**这个文件夹包含了我们将要使用的 CSS 文件
  • **模板文件夹:**这包含了我们将使用的所有 HTML 文件

演示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这里有一个简单的演示来展示最终产品的样子。它与相关的 Github repo 有着完全相同的后端,并被托管在 Heroku @【calm-brook-53734.herokuapp.com】上

[## 井字游戏

MinimaxAgent!

calm-brook-53734.herokuapp.co](https://calm-brook-53734.herokuapp.com/)

请注意,对于演示来说,用户可以玩两种不同的难度,简单和困难。这主要是为了展示随机移动方法和极大极小方法在性能上的本质区别!

密码

所有相关的代码(包括前端位!)可以找到@https://github . com/ShantanuPhadke/AI-Sidewalk/tree/master/5 _ Minimax

扩展

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Credit to https://www.pexels.com/@jeshoots-com-147458

在这篇文章中,我们确实覆盖了很好的领域!但正如他们所说,这只是冰山一角。我们在相对简单的棋盘游戏“井字游戏”上实现了一个稍加调整的 Minimax 代理(它的简单之处在于它的状态空间相对较小)。现在你已经知道了基本知识,想象一下你可以为其他游戏制作代理!起初,它可能看起来很复杂,但基本过程可以分为 2 到 4 个部分,这取决于您想要完成的任务:

(1)找到一种表示游戏状态的方法。

(2)制作一个树(或图),列出游戏中所有各种可能的状态,并智能地搜索这个状态空间,以确定你的 AI 的最佳行动。

(3)作为附件(2),通过‘修剪’状态空间中不需要搜索的部分来加速你的 AI。一种样本修剪技术被称为阿尔法-贝塔修剪

(4)将你的 AI 产品化,让目标受众可以轻松对抗!

人工智能、社会数据科学和气候危机

原文:https://towardsdatascience.com/ai-social-data-science-and-the-climate-crisis-ac7fafcadf31?source=collection_archive---------21-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Please reboot your systems. Fridays For Future, 20.09.2019 in Bonn, Germany — Photo by @mbaumi

为我们的星球架起社会科学和技术的桥梁

维基百科上仍然没有关于社会数据科学的解释,这并不是说这将使它成为一个领域,但在开始时,它更多的是一个旁注。过去几天,我一直在考虑如何组织一个项目,让来自不同背景的人联合起来探索人工智能的话题。这样做让我首先探索了四个不同的模块:人工智能、科学技术研究(STS)和计算机科学伦理(T1)。首先,我要说的是,如果不考虑或关注每一个领域及其历史内涵、文学、人物角色等等,把它们融合在一起似乎不会很有成效。然而,新的从业者或研究人员越来越多地将社会科学中的理解或专业知识与编程中的表演技能相结合,正在逐渐进入社会数据科学的新兴领域。我认为这值得进一步探讨。

社会数据科学导论?

这一新兴领域可能有多种发展方式,但是很可能会有大量社会科学家向计算机科学领域发展,反之亦然。在某种程度上,我想把这种向两个不同领域伸出手的行为想象成搭建一座桥梁。

然而,很可能会有很多边境管制和混乱。政治科学家不是已经开始使用整合了机器学习技术的定量方法了吗?在某些环境中确实是这样,尽管至少在奥斯陆大学是这样。

经济学家们不是已经把编程变得更符合商业目标了吗——把金融与数学和计算机科学结合起来,形成商业智能领域或“quants”。据说正是这些“量子”发展到了数据科学领域——介于两者之间。我之前已经描述过几次数据科学,但我不断找到新的理由再次重复它:

"数据科学通过使用统计数据和深度学习来做出更好的决策并改善招聘,成功地为所有商业模式增加了价值。它还被用来处理以前的数据,并预测可能的情况和风险,以便我们能够努力避免它们。”

在维基百科上,甚至数据科学的定义也是这样的:

“数据科学是“统一统计学、数据分析、机器学习及其相关方法的概念”,以便用数据“理解和分析实际现象。”

在描述*‘实际现象’*时,我当然假定他们指的不是哲学现象学:

现象学是从第一人称视角对意识结构的研究。一个经验的中心结构是它的意向性,它指向某个东西,因为它是某个物体的经验或关于某个物体的经验。

从这个意义上来说,“实际”现象是某人经历的“数据”,然后被量化。

取得平衡

在这些*【实际现象】*和实际发生的事情之间会有平衡吗?方法被应用,解决方案被测试,行动被采取,作为屏幕上的反馈,尽管 UX 或 UI 设计师被雇佣来破译这些,人类学家也是如此——似乎很少有人涉足不同的水域。UX/UI 可能是其中最接近的一个,一些社会科学家涉足代码或专业地完全进入这个方向,承担定性研究员或开发人员的头衔。

如果来自社会科学的理论与技术模块全面结合在一起,它会看起来像 STS 或不同吗?编程模块也在某些 STS 课程中引入,例如在瑞典。Kasper Davidsson、Lars-ke lar zon 和 Karl Ljunggren 写了一篇文章,名为STS 学生编程的自我效能。让我借用一个借用的定义:

被许多人认为是该理论创始人的加拿大心理学家阿尔伯特·班杜拉将自我效能定义为“……人们对自己组织和执行达到指定类型的表现所需的行动过程的能力的判断”

这项研究是小规模的,他们确实说不能一概而论,但是我认为引入这个术语很有趣。在被技术塑造的过程中,实践者或研究者的观点是重要的。

如果先验是希望——将不同的领域结合到一个模块中,那么很难看到社会数据科学如何成为解决方案。艾伦·图灵研究所(Alan Turing Institute)将社会数据科学作为一个研究领域,其观点如下:

“该小组旨在通过两个主要主题解决与越来越多的新的异构数据相关的挑战:在不同的社会和时间尺度上发展人类行为的基础理论;并确定方法上的挑战和解决方案,使社交数据科学能够在关键应用领域提供稳健可信的结果。”

是社会科学家应该扮演程序员的角色,还是计算机科学家应该扮演社会科学的角色?如果不是,他们是否会在两者之间走向“社会数据科学”的共享空间?

打破这种平衡*(或不平衡)*成为该领域必须在其中导航的活动。这是以前由数据科学完成的,尽管我们不应该在一个新的方向上快速跳到历史结论,我们仍然可以检查这个推理。

将其命名为数据科学

为介于两者之间的地方找一个新的有各种各样的故事,至少它是如何流行的:

“2010 年,O’Reilly Media 的内容战略副总裁 Mike Loukides 通过他的文章《什么是数据科学?》将数据科学带入了主流语言在过去几年中,数据科学越来越多地与大数据分析联系在一起。2000 年代中期,LinkedIn 的 DJ Patil 和脸书的 Jeff Hammerbacher 创建了数据科学团队,专门从他们网站产生的海量数据中获取商业价值。”

它专门用于从产生的海量数据中获取商业价值。

然而,数据科学家是从计算机科学家、分析师、研究员之间的不平衡和混乱中成长起来的。据 DJ 帕特尔所说。

它成了介于数学和统计学、“黑客技能”和实质性专业知识之间的地方。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Image from Doing Data Science by Rachel Schutt, Cathy O’Neil retrieved 14th of November 2019

一位名叫 GivenTheData 的 R-blogger 发布了这张图,其灵感可能来自数据科学的经典概念。我喜欢社会科学和计算机科学之间的一点混淆。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

From r-bloggers retrieved 14th of November 2019

数据科学技能和数据驱动的计算社会科学以及传统的实证研究令人感兴趣。

社会数据科学的早期例子

在我看来,计算社会科学最丰富的作品之一是《T4:增长的极限》(T5,1972),它通过模拟向世界介绍了可持续性的概念。

我认为这是特别“神奇”或有趣的方面。然而,这可能是我试图“历史化”社会数据科学——使其成为基础历史的一部分。总的来说,我认为我这么说并没有完全错,我想不出有几部作品对社会更重要,它将社会科学与计算方法结合在一起。

从人性的角度考虑,意识到我们地球的局限性在当时并不具有开创性。自从工业革命以来,环保运动和自然运动就一直这么说。然而,计算能力与代表社会的社会科学思维相结合的新颖元素是——新的和有趣的!我引用第 23 页的话:

“我们已经使用计算机作为工具来帮助我们自己理解作为现代世界特征的加速趋势的原因和后果,但是熟悉计算机决不是理解或讨论我们的结论所必需的。这些加速趋势的影响提出的问题远远超出了一份纯科学文件的适当范围。它们必须由更广泛的群体来讨论,而不仅仅是科学家。我们在这里的目的是开启这场辩论。”

我想不出有什么比气候危机更大的问题了,它现在引起了儿童和青年的极大关注。对我来说,这是一个令人震惊的事实,它动摇了我想要更多行动的想法。这在一定程度上归功于这些发现的实现,这些发现结合了不同类型的专业知识,使人们能够理解一种情况。

数据科学本身无法做到这一点,或者也许可以…我不确定,因为我很少听到数据科学家谈论这些疾病或问题。数据科学的创建是为了:“… *从极其庞大的数据中获取商业价值…”*然而,这不太可能对每个人都有意义。对于想把原始数据变成黄金、石油或其他有商业价值的产品的大公司或小公司来说,普遍的说法是这样的。

当我在维基百科上搜索“社会数据科学”时,这是一种非常奇怪的感觉。*“…不存在。你可以要求创造它,“*我正在要求创造它。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

社会中的人工智能&社会数据科学

考虑到这种方法以前的贡献,至少在某些情况下,我可以温和地建议我们继续朝着这个方向前进,特别是在人工智能方面。

如果我们设法将对环境、不平等、多样性的关注与计算机科学结合起来,那么也许我们可以为更好地理解其含义做出有价值的贡献*(尽管它们似乎很明显)*。一个经常被提到的谚语需要一个扩展线,这个扩展线在历史上是用来表示称赞的:

万事通,无所不能,
虽然常常比一个人的大师要好。

在关于多学科方法的讨论中,我想提到人工智能领域的创始人之一,司马贺。他的研究以其跨学科性质而闻名,跨越了认知科学、计算机科学、公共管理、管理学和政治学等领域。

然后,也可以说他不是一个无所不能的大师,他是几个领域的大师。然而,我们可能需要其他类型的社会科学家或介于两者之间的人来找出问题所在,或以更全面的方式理解背景和解决方案。

如果我们回到计算机科学和定量方法交叉的社会科学,我认为会有很多有趣的东西出现。有了社会学、人文地理学、人类学、发展、法律、政治、语言学、历史和教育的洞见,我们可能收获更多。当我说“获得更多”时,我认为值得一提的是,“有收益的”必须对人类和人类所在的生态系统都有用。

在 AI 领域有什么好的用法?

人工智能领域的机器学习技术可以用来做很多好事,然而,如果我们认为它应该增加明确的价值,而不了解社会,我们可能会太快概括。开发解决方案和原型已经在对社会生活有重大影响的应用中展开。我见过许多数据科学家为理解社会而提出的伟大倡议,但我最尊敬的那些人也认识到合作对于负责任地使用技术的重要性。

聪明的人也可能是愚蠢的,尤其是:具有或表现出非常缺乏常识。当你谷歌愚蠢时提出的字典例子是:“我愚蠢到认为她是完美的。”当我们想到人工智能时,许多人会想到完美,或者努力追求完美。这是一个遥不可及的目标,我们不太可能实现,如果我们真的实现了,就生物多样性和污染而言,这可能会严重破坏一个已经毁灭的星球。

老实说,我认为这是相当愚蠢的,在人工智能或数据科学领域很少有科学家谈论气候危机。他们没有更早这样做。当我说*“他们”*时,我的分类当然有些错位,在预测方面最先进的人可能是研究气候或预测天气的科学家。

事实上,挪威气象学家 rag NAR fjrtoft 在 1950 年使用 ENIAC 电子计算机成功地进行了第一次数值天气预报。另一方面,奇怪的是,维基百科关于天气预报的文章没有提到“气候变化”或“气候危机”,这进一步说明了我的观点。

我们可以拥有没有常识或目的的数据;我们可以让人工智能的应用不植根于对地球的生态或社会理解。这是历史性的,并被错误地描述为解决方案——而事实上它们正在引发更多的问题。

至少我认为,这就是为什么数据科学和人工智能领域需要更广泛意义上的社会科学和人文科学。尽管这些领域或学科在解决问题方面存在失败,但仍有很好的机会去学习和接近手头的问题——努力建设一个繁荣的星球,在这个星球上,生物多样性和植根于生态的可持续性是重中之重。

这里是#500daysofAI,您正在阅读的是第 163 条。500 天来,我每天都写一篇关于人工智能或与之相关的新文章。

面向 2020 年的欧盟人工智能战略

原文:https://towardsdatascience.com/ai-strategy-in-eu-2018-2019-44393b7eaf28?source=collection_archive---------19-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Illustration by author with assets from Undraw

2018-2019 人工智能相关的各种战略和政策的总结

摘要

欧盟在伦理人工智能方面的投资是在指导方针和建议中协调的,对成员国都没有法律约束力。这导致了广泛的参与和将在整个区域推广的具体举措,如获得由芬兰创建的翻译成成员国所有语言的免费课程(人工智能要素)。除了试行道德准则以及明确承诺投资人工智能,同时考虑到环境和气候问题,这也是该战略的一部分。它将与解决可持续性问题的以人为本的方法同时发生。这些战略文件中的预示概述了在未来十年 2020-2030 年人工智能领域的研究投资将大幅增加。欧盟目前的主要焦点是伦理使用;增加公众的了解;和实际负责任的应用程序协作。

为什么试图理解欧盟的人工智能战略?

在接近 2020 年的最后一周,我决定回顾一下欧盟(EU)过去两年内与人工智能相关的战略。现在是 2019 年 12 月底,我认为总结一下欧盟内部与人工智能领域相关的某些战略举措会很棒。为此,我研究了欧盟发布的五份不同的文件。这当然不是一次全面的审查,而是试图选取欧盟在过去几年中发布的各种文件,并简要介绍它们所包含的内容。我这样做首先是为了学习;其次,这样欧盟成员国的公民可以更加协调地实施这一战略;第三,欧盟以外对政策感兴趣的人可以了解欧盟目前在伦理人工智能投资方面的发展方向。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这五份文件如下:

  1. 人工智能合作宣言(2018 年 4 月)
  2. 欧洲人工智能(2018 年 4 月)
  3. 可信人工智能道德准则(2019 年 4 月)
  4. 可信人工智能政策与投资建议(2019 年 4 月)
  5. 欧洲联盟大会(2019 年 6 月)

我将仔细检查下面的每份文件,从申报单开始。

1.人工智能合作宣言

25 个欧洲国家于 2018 年 4 月 10 日签署了一份关于人工智能合作的宣言。挪威是其中的一员,尽管他们不是欧盟成员(而是欧洲经济区的一部分)。据说这是建立在欧洲已有的投资和社区基础上的。

它提出通过获取公共部门数据来提高技术和工业能力。应对社会经济变化,特别是劳动力市场的变化。确保在基本权利和价值观以及透明度和问责制的基础上建立适当的法律和道德框架。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

“成员国同意”的承诺*(我有时会简化)*:

  1. 致力于在人工智能方面实现全面和综合的欧洲方法,以提高欧盟在 R&D 人工智能方面的竞争力、吸引力和卓越性(如有必要,使国家政策现代化)。
  2. 鼓励与利益相关方就人工智能进行讨论,并支持在欧洲人工智能联盟中发展广泛而多样的利益相关方群体,以建立意识并促进人工智能的发展,从而最大限度地提高经济和社会效益。
  3. 作为优先事项,考虑将 R&D&I 资金分配给人工智能的进一步开发和部署,包括破坏性创新和应用。
  4. 加强人工智能研究中心并支持其泛欧洲层面。
  5. 在欧洲层面建立数字创新中心。
  6. 让人工智能在公共部门可用。交流政府采购和使用人工智能的最佳实践。
  7. 帮助中小企业和非技术部门的公司获得人工智能。
  8. 就人工智能相关的伦理和法律框架交换意见。
  9. 确保人工智能的开发、部署和决策以人为中心,防止人工智能应用程序的有害创建和使用。
  10. 提高公众对人工智能的理解。
  11. 就人工智能问题与委员会进行持续对话。

2.欧洲的人工智能

这种交流在人工智能可以解决什么方面有更积极的倾向,并介绍了人工智能是什么。信息是人工智能正在像蒸汽机或电力一样改变社会。它表示,需要一个坚实的欧洲框架。

这份报告说,欧盟应该有一个“协调一致的方法”来对待人工智能。它建议通过以下方式做到这一点:

  1. 世界级的研究人员、实验室和创业公司
  2. 数字单一市场——数据保护、网络安全和连通性的共同规则
  3. 解锁数据(被报告称为“人工智能的原材料”)

它提到了《宣言》中的承诺。几乎在同一时间,它特别强调竞争,不让任何人落后和欧盟的可持续发展的技术方法。一种有益于人类和整个社会的方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这可以追溯到 2017 年对数字单一市场战略的审查,其中探索欧盟人工智能方法的邀请部分源于(例如,对机器人的民法规则)。这三个要点是(1)提高技术能力,(2)为社会经济变革做准备,以及(3)确保道德和法律框架。

关于欧盟在竞争激烈的国际格局中的地位的沟通的不同部分概述了美国和中国在非机密人工智能研究方面增加的投资,从而清楚地表明欧盟“在私人投资方面落后”。人们明确表示希望创造一个刺激投资的环境。欧盟显然生产了四分之一的专业服务机器人。“欧洲不能错过火车”,采用人工智能的好处得到了广泛认可——提到了几个由欧盟资助的项目(农业、医疗保健、基础设施和制造业)。

在概述前进的道路时,他们表示,到 2020 年及以后,需要私人和公共部门的共同努力。它概述了未来十年投资将从大约 40-50 亿欧元增加到 200 亿欧元。

这种方式加大了投资力度。他们预计到 2020 年底,这一数字将会增长。该报告还提到支持卓越中心(和数字创新中心)。这里提到了“人工智能按需平台”,它可以帮助促进 400 多个数字创新中心之间的合作。它提到将创建专注于人工智能的中心。

到 2020 年,他们将在研究和创新方面投资 15 亿英镑;加强英才中心;和潜在用户的工具箱。他们谈到了按需人工智能平台和工业数据平台,这些平台提供了访问高质量数据集的途径。2020 年后,他们将升级和支持公共利益应用程序,以及一个数据共享支持中心,同时对现有政策进行各种升级。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

目的是提供更多的数据,欧盟在过去 15 年中一直在这样做,一个例子是欧盟的空间计划。它谈到了老龄化社会和增强人们的能力,在“不让一个人掉队”中,他们谈到了新技能。这在很大程度上是针对 STEM 的,而在另一部分,他们谈到了多样性以及跨学科的方法。

  • 更多的妇女和不同背景的人,包括残疾人。
  • 跨学科的方式结合联合学位,例如法律或心理学和人工智能。这里提到了伦理道德的重要性,同时考虑创造一个有吸引力的环境让人才留在欧洲。

该报告为 2018 年的教育政策制定了计划,包括(再)培训计划、劳动力市场分析、高级数字技能的数字培训、商业-教育-伙伴关系和社会伙伴,以将人工智能纳入影响研究。

“下一个欧盟多年财政框架(2021-2027)下的提案将包括加强对获取高级数字技能(包括人工智能专业知识)的支持。”

在确保道德框架方面,提到了基本权利、GDPR、数字单一市场和可解释的人工智能系统。在最后一段,还有一个知识产权的问题。道德准则草案将在年底制定。提到了安全和责任,根据 2019 年中期的技术发展,通过关于产品责任指令的指导文件赋予个人权力。还提到了一个建立算法意识的试点项目,以及对消费者组织数据保护的支持。

让成员国参与这项工作非常重要,本节提到了芬兰的国家战略。上面写着:*“鼓励每个成员国制定人工智能战略,包括投资战略。”*这里提到了多利益主体欧洲人工智能联盟以及国际外展。

“随着人工智能很容易跨境交易,在这个领域只有全球性的解决方案才是可持续的。”

欧盟的贡献与其价值观和基本权利一起被提及,这也在结论中被提及。以希望人工智能的力量为人类进步服务而结束。

3.可信人工智能的道德准则

3.1 人工智能独立高级别专家组

我研究的与伦理和具体政策以及投资相关的文件是由独立的人工智能高级专家组(AI HLEG)整理的。因此,我认为最好先解释一下什么是 AI HLEG,他们的角色和成员。欧盟网站上有一个关于艾莱格的页面。

“经过公开遴选程序后,委员会任命了 52 名专家组成高级别人工智能专家小组,成员包括来自学术界、民间社会和工业界的代表。”

他们的总体目标是支持欧洲人工智能战略的实施。因此,它涉及与人工智能相关的政策制定、伦理、法律和社会问题,包括社会经济挑战。自成立以来,欧盟表示,他们已经实现了道德准则以及政策和投资建议。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

人工智能小组也是欧洲人工智能联盟的指导小组,这是一个多利益相关方论坛,旨在就人工智能发展的所有方面及其对经济和社会的影响进行广泛而开放的讨论。2019 年 6 月有一场欧洲 AI 联盟大会。可以看看整个会议,至少是讨论的内容:

重点是讨论投资和道德。有一个试点流程,其中包含可能在未来一年发布的其他文件或至少向参与成员内部发布的信息。

欧洲人工智能联盟 是一个论坛,吸引了 3000 多名欧洲公民和利益相关者就人工智能在欧洲的未来进行对话。

你可以在网上注册加入 Futurium。一旦你的 Futurium 账户创建完成,你就可以填写在线登记表加入欧洲人工智能联盟。

所有 AI HLEG 的成员都在网上公开

3.2 可信人工智能的道德准则

该文件分为三个部分:基础,实现和评估可信的人工智能。因此,在某种意义上,你可以说它是建立在价值观上的,我们如何建立它,以及我们如何知道我们所建立的是好是坏。他们概述了可信人工智能应该(1)合法合规;(2)伦理价值的坚守;(3)从技术和社会角度来看是健壮的。如果这些组成部分之间出现矛盾:“……社会应该努力协调它们。”

一个人应该以一种坚持尊重人类自主、防止伤害、公平和可解释的道德原则的方式开发、部署和使用人工智能系统。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当它们出现时,它们之间的紧张关系也应该得到解决。涉及弱势群体的情况应优先考虑,在这一考虑中,我们发现例如儿童、残疾人和权力不对称(雇员/雇主和企业/消费者)。虽然人工智能系统带来了好处,但也带来了一定的风险,有些事情可能很难衡量,比如对民主、法治和人类思维的影响。必须采取措施来降低风险。

人工智能系统应该通过技术和非技术方法满足七个要求。

  1. 人力代理和监督
  2. 技术稳健性和安全性
  3. 隐私和数据治理
  4. 透明度
  5. 多样性、不歧视和公平
  6. 环境和社会福祉
  7. 有责任

必须考虑技术和非技术方法,以确保实施这些要求。促进创新,以清晰的方式与利益相关者沟通,促进人工智能系统的可追溯性和可审计性。采用值得信赖的人工智能评估列表可能是有用的,并使其适应特定的情况,记住这样的列表不是详尽的。

简而言之,我们可以说,根据报告,可信人工智能有三个组成部分:

  • 合法的
  • 道德的
  • 粗野的

这三者都是必要的,但还不够。

理想情况下,这三者在运作中协调一致,相互重叠。然而,在实践中,这些要素之间可能存在紧张关系(例如,有时现行法律的范围和内容可能与道德规范不一致)。作为一个社会,努力确保这三个部分都有助于保护值得信赖的人工智能是我们个人和集体的责任。

他们在报告中称之为全球框架下的“负责任的竞争力”。利益相关者可以自愿使用这些指南作为一种方法来操作他们的承诺。他们认为不同的情况会带来不同的挑战(音乐推荐系统与关键医疗)。因此,这些准则必须适应不同的情况。如前所述,人们被邀请尝试操作这个框架的可信人工智能评估列表。

这些指导方针阐明了基于《欧洲联盟基本权利宪章》(欧盟宪章)和相关国际人权法所载基本权利实现可信人工智能的框架。

下面,我总结了值得信赖的人工智能的三个组成部分。

(I)合法 : AI 不在一个无法无天的世界里运作。重要的是要考虑欧盟的主要法律:欧洲条约及其基本权利宪章。此外,欧盟二级法律,如一般数据保护条例(GDPR);产品责任指令;关于非个人数据自由流动的条例;反歧视指令;消费者法律和工作安全与健康指令;联合国人权条约和欧洲委员会公约(如《人权公约》)以及许多欧盟成员国的法律。那么各种领域的法律适用。《准则》并不主要涉及这些内容,其中任何内容都不应被视为法律意见。

(二)伦理 AI :法律并不总是跟得上技术发展的速度,可能与伦理规范不合拍,或者不适合解决某些问题。

(III)健壮的人工智能:个人和社会必须相信人工智能系统不会造成任何故意伤害。系统应以安全、可靠的方式运行,并应预见安全措施以防止任何意外的不利影响。从技术和社会角度来看,这都是必要的。

以下模型用于显示指南文件中的方法:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

该报告将人工智能伦理学作为应用伦理学的一个分支,与欧盟 2030 议程相关联。它还谈到通过公共辩论、教育和实践学习来建立一种道德文化和心态。

提到的基本权利是:( 1)尊重人的尊严;(2)个人自由;(3)尊重民主、正义和法治;⑷平等、不歧视和团结;(5)公民权利。

3.3 四项原则

它进一步概述了前面提到的四项原则。

人类自主:遵循以人为中心的设计原则,为人工智能系统中有意义的人类选择和人类对工作过程的监督留下选项。它的目标应该是创造有意义的作品。

防止伤害:不应该加剧对人类的伤害,因此必须注意可能出现信息权力不对称的系统。预防伤害还需要考虑自然环境和所有生物。

公平:开发和部署必须公平。这必须是实质性和程序性的层面。它应该增加社会公平和平等机会,以平衡相互竞争的利益和目标。为了寻求对决定的纠正,对决定负责的实体必须是可识别的,并且做出决定的过程应该是可解释的。

可解释性:过程需要是透明的,能力需要被传达,对那些直接和间接受影响的人是可解释的。根据报告,解释并不总是可能的(这些所谓的“黑盒”示例),这样可能需要其他措施(可追溯性、可审计性和系统能力的透明沟通)。这取决于环境和后果的严重性。

不同利益相关者应该扮演不同的角色。

a.开发人员应该实现这些要求,并将它们应用到设计和开发过程中;

b.部署者应该确保他们使用的系统和他们提供的产品和服务满足需求;

c.最终用户和更广泛的社会应该了解这些要求,并能够要求

3.4 可信人工智能的要求

需求问题中的系统和个人方面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

报告中详细描述了这些不同的方面。在每个需求中,都有一个子需求的分解,或者可能是要考虑的关键词。

***H *乌曼机构和监督。系统应支持人类的自主性,并通过支持用户的能动性来实现民主和公平的社会。基本权利有助于让人们追踪他们的个人数据或增加受教育的机会。鉴于人工智能系统的范围和能力,它们可能会对基本权利产生负面影响,因此在存在此类风险的情况下,应进行 基本权利影响评估 。这应在系统开发 之前 完成,包括评估这些风险是否可以降低或合理,以尊重他人的自由。此外,应该建立机制来接收关于可能侵犯基本权利的人工智能系统的外部反馈。在合理的情况下,用户应该能够自我评估或质疑系统。应保持人类的自主性,这样,当决策对用户产生法律影响或对他们产生类似的重大影响时,人类就不会仅仅受制于基于自动化处理的决策

此外,还有治理机制,如人在回路(HITL)、人在回路(HOTL)或人指挥(HIC)方法。

【HITL】:指在系统的每一个决策周期中人为干预的能力,这在很多情况下既不可能也不可取。**

【人在回路(HOTL) :指在系统的设计周期中,人为干预和监控系统运行的能力。

【Human-in-command(HIC):指监督 AI 系统整体活动(包括其更广泛的经济、社会、法律和伦理影响)的能力,以及在任何特定情况下决定何时以及如何使用该系统的能力。**

这可以包括在特定情况下不使用人工智能系统的决定。根据应用领域和潜在风险,可能需要不同程度的监督机制来支持安全和控制。

在其他条件相同的情况下,人类对人工智能系统的监督越少,就需要越广泛的测试和更严格的管理

T技术坚固性和安全性。根据该报告,这与预防损害的原则密切相关。人工智能系统必须按照预期可靠地运行,同时最大限度地减少无意和意外的伤害——这也应该适用于操作环境的变化或其他代理的存在(人们或许可以在操作意义上将其与人工智能安全联系起来)。应该确保人的身心健康。抵御攻击的能力和安全性是其中的一个方面,因此人工智能系统需要防止黑客攻击。这包括针对数据(数据中毒)、模型(模型泄漏)或底层基础设施,包括软件和硬件。如果一个人工智能系统受到攻击,它可能会导致不同的决策,或者导致它关闭。应考虑恶意行为者的非预期应用和潜在滥用,并采取措施缓解这些情况。可以设计出出现问题时的后备计划和一般安全措施。这可能意味着从基于统计的程序切换到基于规则的程序,或者在继续一个动作之前询问人类。 应建立流程,以澄清和评估 AI 在各个应用领域的潜在风险 。必须主动采取安全措施。准确性或正确的判断,例如将信息分类到正确的类别。在人工智能系统直接影响人类生活的情况下,高水平的准确性尤为重要。可靠性和再现性对于能够仔细检查人工智能系统和防止意外伤害至关重要。 再现性描述了一个人工智能实验在相同条件下重复时是否表现出相同的行为 。这使得科学家和政策制定者能够准确地描述人工智能系统做什么。 复制文件 可以方便测试和复制行为的过程。

P 对抗和数据治理。根据该报告,隐私是受人工智能系统影响的一项基本权利。这意味着我们需要正确的数据治理、数据完整性、协议访问和保护隐私的数据处理能力。在系统的整个生命周期中,数据保护在这方面非常重要。因此,需要考虑最初在交互中提供和生成的信息。人类行为的数字记录可能让人工智能系统不仅可以推断个人偏好,还可以推断他们的性取向、年龄、性别、宗教或政治观点。数据的质量和完整性对人工智能系统的性能至关重要,这必须在使用任何给定数据集进行训练之前解决。必须确保数据的完整性,以便恶意数据不被用于可能改变其行为的 AI 系统,尤其是自学系统。因此,数据集必须在过程的每一步进行测试和记录。 这也应该适用于不是内部开发,而是从别处收购的 AI 系统 。在任何给定的组织中,处理数据都很重要,应该制定管理数据的数据协议。访问数据需要与有能力和需要访问个人数据的合格人员一起明确(并非所有人都应被允许)。

与人工智能系统相关的要素的透明度:数据、系统和商业模式。人工智能系统中产生决策的过程应按照尽可能好的标准进行记录,以考虑到可追溯性*。这有助于我们了解为什么人工智能决策是错误的,反过来也有助于防止未来的错误,从而更容易促进可审计性和可解释性。解释技术过程和人类决策。技术要求决策可以被人类追踪和理解。该报告提到了可解释性之间的权衡,这可能会降低准确性——然而,解释必须适应所涉及的利益相关者(外行人、监管者、研究人员)。在交流中,人工智能系统不应该向用户表示自己是人类,人类有权被告知他们正在与人工智能系统交互。人工智能必须是可识别的,并应提供选择,以决定反对这种互动,支持人类互动,以确保遵守基本权利。应传达限制,并涵盖系统的准确性水平。***

大学,非歧视和公平。所有受影响的利益相关方的参与,在设计过程中给予平等的机会,以及与公平原则相关的平等待遇。必须努力避免不公平的偏见,这可能会因无意中的历史偏见、不完整和糟糕的治理模式而对某些群体不利。损害可能来自对(消费者)偏见或不公平竞争的故意利用,可以通过建立监督程序,以明确和透明的方式分析和处理系统的目的、制约因素、要求和决定来抵消。此外,从不同的背景、文化和学科中招聘员工可以确保观点的多样性,应该予以鼓励。可访问性和通用设计应使人工智能产品的使用不受年龄、性别、能力或特征的限制。残疾人的无障碍环境尤为重要。因此,人工智能系统不应该有一个通用的方法来实现公平的访问和积极的参与。利益相关者的参与是明智且有益的,这可以贯穿整个系统生命周期。

S 社会和环境福祉。人工智能系统应该用来造福全人类,包括子孙后代。应鼓励人工智能系统的可持续性和生态可持续性,并促进人工智能解决方案的研究,以解决全球关注的问题,例如可持续发展目标(SDGs)。 系统的开发、部署和使用过程,以及其整个供应链,都应在这方面进行评估 。这些系统对我们生活各个领域的社会影响也必须得到监控和考虑。对于社会和民主,必须认真考虑对机构和社会的影响,包括政治决策和选举背景。

。最后一项要求是对前面几项要求的补充,因为它要求在人工智能系统的开发、部署和使用之前和之后,都有必要建立相应的机制,以确保对人工智能系统及其成果的责任和问责。可审核性需要对算法、数据和设计流程进行评估。评估必须由内部和外部审计员进行,这种报告的可用性有助于提高技术的可信度。 在影响基本权利的应用中,包括安全关键应用,人工智能系统应能被独立审计 。必须确保报告行动和应对后果的能力— 尽量减少和报告负面影响。在开发之前和开发期间,通过红队或 算法影响评估 等形式进行影响评估,有助于将与人工智能系统带来的风险成比例的负面影响降至最低。在实现这些需求时,可能会出现折衷。每一个权衡都应该是合理的,并适当地记录下来。当不公正的负面影响发生时,尤其是弱势人员或群体,需要采取补救措施。

这是七个要求:(1)人力代理和监督;(2)技术稳健性和安全性;(3)隐私和数据治理;(4)透明度;(5)多样性、非歧视性和公平性;⑹社会和环境福祉;(7)问责。

此外,在整个使用过程中进行评估和论证也很重要。内部使用、分析、开发和重新设计。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

他们描述了技术和非技术方法,以确保可信的人工智能。

4.可信人工智能的政策和投资建议

4.1 使用值得信赖的人工智能在欧洲产生积极影响

以下是人工智能高级专家组 2019 年关于政策和投资的建议的要点。详细介绍人工智能高级专家组政策和投资建议的文件于 2019 年 6 月 26 日公布。我称之为“亮点”,因为这是我在报告中注意到的,你可能会注意到其他一些东西。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

该报告涉及私营部门,以及以人为中心的人工智能服务和政府作为一个平台如何催化欧洲的人工智能发展。如前所述,这是通过世界一流的研究能力和正确的基础设施以及人工智能领域的技能和教育来实现的。由此建立适当的治理和监管框架,并筹集资金和投资。特别是解决如何创造一个开放和有利可图的投资环境来奖励值得信赖的人工智能的问题。

报告分为两章和一个结论。第一份报告给出了对欧洲政策的具体建议,第二份报告更具体地介绍了“利用欧洲的促进因素”**

4.2 第一章内的重点介绍人工智能政策对欧洲产生的积极影响

人类与社会。我认为很好的第一个建议是通过欧洲各地的课程(大规模开放在线课程——mooc)提供初级人工智能培训的数字扫盲。另一个是在教育层面上更紧密地整合人工智能培训,以及在线通报教育资源和促进讨论。也有人建议每年设立一个欧洲人工智能意识日(例如在艾伦·图灵的生日)。

保护人类、社会和环境的完整性也是一个明确的建议。避免过度的大规模监控、商业监控或数字力量的不对称。

鼓励危险任务的自动化,并建立一个基金来管理转型。为开发者引入注意义务,鼓励为儿童提供更好、更安全的人工智能。

衡量和监测人工智能的社会影响据说也是一个重要的优先事项。有人谈到建立监督机制和支持民间社会组织。

(还有三个章节详细介绍私营部门、公共部门和研究&学术界)

4.3 利用欧洲可信人工智能的促成因素

投资计算机基础设施和设施网络。开发兼容的数据管理和可信数据空间,以及创建数据提供者方案。支持尖端研究和商业开发的机制,同时开发整个数据传输系统的网络安全基础设施。获得必要的技能,但是 STEM 中提到了性别能力培训。在欧洲培养和留住人才被认为很重要。

5.欧洲联盟大会

2018 年 4 月欧洲人工智能战略启动后,人工智能高级专家组(AI HLEG)成立。这个小组起草了一份关于人工智能政策和投资建议的文件。欧洲人工智能联盟与人工智能联盟同时成立。

2019 年 6 月,该集团的 500 名成员在欧洲人工智能联盟大会会面,讨论人工智能政策的最新成就及其未来前景。

这是一个有 3000 多名欧洲公民参与的论坛。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

它被视为一个多方利益攸关方论坛,可以更广泛地为欧盟决策提供投入。在提出可信人工智能的道德准则(另一份报告)后,从人工智能联盟收到的意见是制定政策和投资建议的一部分。

AI HLEG 是 AI 联盟的指导小组。

有可能在线加入论坛。如果你注册了人工智能联盟,你就可以进入欧盟的一个名为 Futurium 的平台。

人工智能联盟的目标如下:

  • 充分动员各种参与者,包括企业、消费者组织、工会和民间社会的其他代表
  • 特别是帮助制定道德准则,确保欧洲地区在人工智能领域的竞争力。
  • 引导可信人工智能的道德准则。

因此,可以说,如果一个人对人工智能领域感兴趣,就应该密切关注这一发展。

根据欧洲数字经济和社会专员玛利亚·加布里埃尔的说法,试点阶段将从人工智能联盟会议开始到 2019 年 12 月为期六个月。**

特别是,如果你对与人工智能、法规和道德相关的政策感兴趣,这将是一件好事。

PE kka Ala-pietil一直担任欧盟人工智能高级专家组(AI HLEG)主席。他在 2019 年 6 月的人工智能联盟大会上发表讲话时提到了 11 个关键点。

根据 Pekka 在 6 月大会上提出的意见,从 AI HLEG 政策和投资建议中获得的主要信息如下:**

  1. 授权和保护人类和社会****
  2. 对人工智能市场采取量身定制的方法****
  3. 确保可信人工智能的单一欧洲市场
  4. 通过部门多利益主体联盟实现人工智能生态系统
  5. 培育欧洲数据经济****
  6. 利用公共部门的多面角色****
  7. 加强并联合欧洲的研究能力****
  8. ☆教育到四次方****
  9. 对人工智能采用基于风险的治理方法,并确保适当的监管框架
  10. 刺激开放和有利可图的投资环境
  11. 采用整体工作方式,将 10 年愿景与滚动行动计划结合起来

“一个重大机遇正在敲响欧洲的大门。这个机会就是人工智能。”—PE kka Alapietil,AI HLEG 主席,2019 年 6 月

随后在关于启动可信人工智能试点流程的小组讨论中提到,人工智能专家组的某些成员将花一些时间与那些试点指南的人在一起。有人提到,针对不同的部门进行调整可能是好的。有一个问题是指导方针是否可以操作:人工智能不仅仅是技术。在这次讨论中,一个重要的方面是鼓励要求某种形式的自我评估或外部认证的做法。它被认为是测试、外部审计或自我评估之间的区别。此外,还讨论了如何将伦理与现行法律联系起来。Telefonica 的 Richard Benjamins 说,像毕马威(KPMG)、德勤(Deloitte)等咨询公司的大型技术公司的道德方法是建立团队,以便能够在欧洲做到这一点。

摘要

欧盟在伦理人工智能方面的投资是在指导方针和建议中协调的,对成员国都没有法律约束力。这导致了广泛的参与和将在整个区域推广的具体举措,例如获得由芬兰创建的翻译成成员国所有语言的免费课程(人工智能要素)。除了试行道德准则以及明确承诺投资人工智能,同时考虑到环境和气候问题,这也是该战略的一部分。它将与解决可持续性问题的以人为本的方法同时发生。这些战略文件中的预示概述了在未来十年 2020-2030 年人工智能领域的研究投资将大幅增加。欧盟目前的主要焦点是伦理使用;增加公众的了解;和实际负责任的应用程序协作。

否则

明智的做法是在这种背景下理解 DG Connect ,即:通信网络、内容和技术总局。他们的2016–2020战略计划当然是相关的。

2018 年 6 月 6 日发布了一份关于欧盟数字欧洲计划2021-2027 年预算的新闻稿,该预算拟投资 92 亿€。

我还没有调查人工智能的责任 (2019,11 月)。然而,一旦有机会,我会这样做并把它加到这个总结中。

此外,还有处于咨询阶段的人工智能 PPP 的战略研究、创新和部署议程。在这种情况下,PPP 是公私合作的缩写。

人工智能战略的一个相关方面是欧洲高性能计算联合项目 — EuroHPC 已经选择了位于 8 个不同成员国的 8 个地点作为超级计算中心,以托管新的高性能计算机。这八个地点于 2019 年 6 月 7 日公布

如果你认为我错过了任何重要的文件或者我的摘要的一部分有所欠缺,请通知我,如果给我通知,我会努力修改。

这是#500daysofAI,您正在阅读第 207 条。500 天来,我每天都在写一篇关于或与人工智能相关的新文章。我目前 100 天 200-300 的重点是人工智能的国家和国际战略。

AI——世界末日?

原文:https://towardsdatascience.com/ai-the-end-of-the-world-9277ab8bd765?source=collection_archive---------24-----------------------

—使用强化学习(并让他们玩视频游戏),教虚拟代理像人类一样学习

埃隆·马斯克对人工智能接管世界感到恐惧。

但这种担心真的有道理吗?真的有什么可担心的吗?如果世界上最聪明的人之一被该领域最近的指数级发展吓坏了,你也应该害怕吗?

如果人工智能系统只是基于一些聪明的数学和编程原理,我们真的有什么好担心的吗?

是的。

没有。

有点复杂。

让我解释一下。

为什么埃隆吓得发抖

当马斯克先生谈到机器获胜时,他最有可能指的是已经学会使用强化学习(RL)模型进行操作的系统。他已经警告我们关于 Deepmind 的 AlphaGo 的潜在危险,并建立了 OpenAI 来创造一条通往人工通用智能(AGI)的安全之路,后者也主要专注于强化学习研究。

这些发展是一件大事。目前大多数常见的人工智能系统只被编程为具有完成一项特定任务的能力,如检测物体或生成猫的图片。它们是使用监督学习技术的狭义系统。因为我们知道正确的答案是什么样的,所以我们可以预测他们理想情况下应该给出什么样的输出。我们知道它试图分类的对象是一只狗,或者如果它被这样训练,系统将总是生成一只猫的图片。

但是当我们不知道正确答案是什么的时候呢?

输入:强化学习

在这里,我们只能通过试错来学习。就像,我们给代理一个任务,让它知道如何去做,但是我们甚至不知道正确的方法去做。

大多数研究人员认为,这是我们创建通用人工智能(AGI)系统的方式,它可以知道如何完成任何任务。包括接管人类。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

If RL systems get out of control, we could have SkyNet for real

那么 RL 真的能终结人类吗?不,至少还没有。普通智力是复杂的,人类经过数百万年的进化才得以发展。在天网成为现实之前,还需要更多的研究。

目前,它最可靠的功能是玩视频游戏。让我们稍微分解一下这个过程,并弄清楚构建一个 RL 代理实际需要什么。

直观理解强化学习

假设你拿起你的第一个街机游戏,却不知道怎么玩。没有人真的会阅读说明,所以你的学习过程基本上就是不停地按按钮,然后看看你的角色在屏幕上发生了什么。除了尽可能获得高分之外,你在没有任何先验知识或预期目标的情况下想出了该做什么。

除了我们用更多的行话描述他们的过程(行话是斜体的,为了让你阅读愉快),这几乎就是 RL 代理玩视频游戏所做的事情。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Human or AI? Who knows? (I do. It’s an RL agent I trained.)

一个 RL 特工 基本上就是游戏中的玩家——射击敌人的绿色小飞船。

它的环境 就是它周围的一切——游戏或地图包括敌人和障碍。

它可以采取动作 以便与其环境互动。在像太空入侵者这样的视频游戏中,可能的动作是向左移动、向右移动、射击或什么都不做。

当它采取行动(不行动仍然是行动)时,环境给代理一个奖励,这个奖励可以是正的也可以是负的,这取决于行动的质量和将来能得到多少奖励。这就像对代理采取的任何行动的反馈——积极的行动最终会导致更高的分数,而消极的行动会导致失去生命。

每当代理完成这个循环,它就转换到一个新的状态。 这就像代理的位置——根据它的状态它可以访问环境的不同部分。就像如果我们向左移动,所有的敌人都在左边,我们就可以射杀更多的敌人。理想情况下,我们希望代理人最大化长期回报(得分)。

但是代理实际上是如何知道该做什么的呢?它如何知道从不同的场景中采取什么行动来获得可能的最高分?

输入:Q-学习

RL 代理学习一个策略 来决定他们在不同场景下的行为。他们学习 Q 值来计算从某个状态采取某个行动有多好。行动的质量取决于我们采取行动后期望从我们所处的状态得到多少回报。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这里,采取向右移动的动作将对应于高 Q 值,因为它使代理处于一个位置,可以射击更多的敌人,而这些敌人不会为了获得更高的分数而向它开火。但向左移动没有意义,也不会提高代理人获得更多长期奖励的能力,因为没有任何敌人可以射击。

所以,从这个博弈状态 中,代理人在中间,敌人在右边,代理人最有可能采取向右移动的动作。这个状态-动作对将被存储在一个 Q 表中,下次代理遇到同样的情况时,它将知道该做什么。

现在我们开始’深入’ —进入:用 DQNs 进行深度 Q 学习

实际上,遍历数十亿个可能的状态-动作对组合对于任何真正严肃的任务(如玩视频游戏)来说几乎是不可能的,所以我们将一些深度学习与经典的 Q-学习模型结合起来,以获得迄今为止最酷的 RL 时髦词——深度 Q-网络。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

DQN’s basically 1) see a game screen, 2) think about what to do, and 3) do something

我们使用 CNN——一种监督学习模型,让代理看到游戏中发生的事情。它通过 3 个卷积层查看不同的空间和纹理特征,如形状和边缘,并在 2 个完全连接的层中进行一些处理,以确定应该做出什么决定。

这个允许代理学习某些场景之间的相关性,因此它的行为可以在它们之间推广,而不局限于一个精确的状态-动作对。

那么模型实际上是如何学习和提高的呢?

大数学:损失函数和经验回放

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果我们把它分解开来,这其实并不难理解。

我们的目标网络和实际网络几乎相同——唯一真正的区别是目标网络更有信心。它知道基于某个策略该做什么(大脑在给定的状态下计算出该做什么动作),并且总是 100%确定什么是正确的动作。我们的 Q-network 对自己不太确定。它将输出执行某个动作的概率——如果这是正确的动作,那么我们使用优化器让网络学习执行更多这些动作。错了就少拿点。

随着我们的 Q 网络训练和变得更好,它对于每个状态-动作对的 Q 值变得更高。因此,随着我们网络的改善,损耗变得更低,这是有道理的,因为损耗是衡量网络表现有多差的一个指标。少亏=少坏=我们的网络玩的更好!

每当我们的网络经历 1)从一个状态开始,2)做一个动作,3)获得奖励,4)过渡到下一个状态的序列时,我们都会记住这个序列,并在未来的一个叫做*体验回放的过程中学习。*那些存储的经验被随机挑选出来,并作为参数(s,a,r,s `)被抛入损失函数以更新网络。

我们随机选择体验,以确保网络不会对学习特定场景感到太舒服。例如,如果我们训练我们的代理在所有敌人都在屏幕左侧的场景中扮演太空入侵者,它通常会学习如何向左移动并射击。但如果我们太频繁地这样做,当它看到右边的敌人时,它会不知道该怎么做,因为它以前从未见过。它只会做它知道的事情——向左移动并射击。但是,如果它从随机的过去经验中学习,我们可以 1)对相同的数据多次训练网络,2)它将学习如何在各种情况下表现。

酷!(理论上)——但是 AI 真的会接管世界吗?

问题是,RL 模型可能可以做人类能做的任何事情——问题只是我们能以多快的速度推进这个领域,以便让它们做所有和我们一样的任务。一旦我们到了那一步,接下来的问题就是制造一个人工智能系统,它有可能学会同时完成所有这些任务。

现在在人工智能领域有一些非常聪明的人在争论人工智能的进步将被用于什么方向。伦理辩论不仅出现在人工通用智能(可以学习做任何任务的人工智能代理)上,许多人认为这将通过 RL 策略实现,还出现在 DeepFake 算法OpenAI 的文本生成模型上,如果不道德地使用,它们可能会真正扰乱我们世界的本质。

在这种微妙的情况下,没有什么是确定的。只要记住墨菲定律:

“任何可能出错的事情都会出错”

关键要点

  • 强化学习是一个主体与其环境互动的过程,以找出在不同状态下采取的最佳行动,从而最大化长期回报
  • Q- Learning 帮助我们确定从某种状态采取某种行动的质量
  • 深度 Q 网络允许我们使用卷积层结构来计算游戏状态,并基于通过计算我们的理想目标网络和我们的实际 Q 网络之间的平方差发现的损失进行更新
  • 损失函数的参数是由状态、动作、奖励和下一状态组成的不同体验,这些体验是从过去体验的数据集中随机采样的,以便更好地训练
  • RL 模型有潜力创建能够像人类一样学习如何完成各种任务的通用系统😮

感谢你的阅读,我希望你能学到一些关于 RL 的有趣的东西!联系 LinkedIn 并访问我的 网站 ,在那里您可以注册我的 简讯 以获得我的每月进展更新!

人工智能:技术和世界的未来

原文:https://towardsdatascience.com/ai-the-future-of-technology-and-the-world-86f59d0cf720?source=collection_archive---------10-----------------------

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Ramón Salinero on Unsplash

人工智能(AI)现在已经成为一个争议比以往任何时候都大的话题。许多人担心机器人会接管世界。人工智能的概念让人们感到害怕,因为他们害怕我们正在创造的机器人,我们不知道它们是如何工作的。但是,如果我告诉你,你听到的关于人工智能的大多数说法都是不准确的,那会怎么样呢?当我说不准确时,我不仅仅是指一点点偏离;媒体在谈到 AI 的时候非常错误。当你甚至不知道人工智能是如何工作的,也没有使用它的经验时,你怎么能谈论它呢?更糟糕的是,媒体制作的大多数人工智能内容几乎没有人工智能领域专家的证据。在这一点上,如果你不信任 AI 还是可以理解的;我不指望你马上同意我的观点。但是希望在这篇文章结束时,你会对人工智能有一个新的认识。

先说说 AI 在当今世界是如何实现的。大多数人认为 AI 是未来尚未到来的事情,但他们没有意识到的是,AI 实际上在当今社会非常普遍。Gmail 使用人工智能过滤垃圾邮件。脸书用人工智能来推荐朋友。Youtube 和网飞使用人工智能来推荐其他视频和电影。听说过数据分析吗?其中很多涉及机器学习,这是人工智能的一个特定学科。新 iPhones 上的面部识别使用人工智能。如今大多数电子游戏都使用人工智能。简单地说,人工智能已经是我们今天使用的许多技术中的一个常见元素。事实是,人们对人工智能非常无知;我们认为这是理所当然的。我理解 AI 有一定的弊端。例如,如果在生产商品的工厂中实施,人工智能可以取代几个雇员,导致更多的失业。但是什么时候有过没有缺点的东西呢?不仅如此,在许多场景中,人工智能几乎没有显示出任何负面影响,人工智能有潜力解决我们今天面临的许多最大的问题。例如,人工智能已经被证明可以诊断不同的疾病,特别是癌症,比目前的方法准确率高得多。甚至有一项研究在进行中,10 名不同的放射科医生被给予不同的乳腺肿瘤的乳房 x 光片。结果是,这些放射科医生的诊断有 10-55%的差异。根据美国癌症协会,五分之一的乳房 x 光筛查被错误诊断。另一方面,由专业人员开发的人工智能已经能够以超过 85-90%的准确率进行诊断。然而,许多人说他们不信任人工智能…

但是为什么人们会害怕 AI 呢?为什么人们声称我们不能理解它?为了解决这些问题,我将讨论机器学习领域的一些算法。

人工智能真的可以归结为大量的数学和大量的逻辑。也许你听说过线性回归(也称为最佳拟合线)?如果我告诉你线性回归是人工智能的一个例子呢?的确是这样;它可能是人工智能中最基本的算法之一,但它仍然是人工智能。您输入数据以创建模型(最佳拟合线),然后基于该线进行预测。大部分 AI 都是这样工作的;算法之间的唯一区别是创建的模型和该模型的目的。

在机器学习中,有两种类型的学习:有监督的和无监督的。监督学习是我们的数据有标签的学习。标签可以被认为是一个最终结果。例如,如果我们有一个癌症数据集,每个数据点是一个肿瘤,标签可以是肿瘤是恶性还是良性。所以,在有监督的学习中,我们会得到这些标签,但是在无监督的学习中,我们没有这些标签。监督学习可以采取回归或分类的形式。在回归中,您尝试预测输入的输出值,而在分类中,您尝试预测输入所属的特定类。无监督学习主要包括聚类算法;您绘制数据,并尝试将数据的不同部分分组,以找到数据中的关系和模式。然而,不管你使用什么机器学习算法,它都是基于数学的。它实际上只是一台进行大量计算的计算机,将数字代入许多不同的方程。这背后没有智能,因此有了人工智能这个术语;这不是真正的智慧,只是看起来像而已。

有一种特定类型的机器学习称为深度学习,它基于称为神经网络的算法。这就是人工智能背后的大部分争议所在。神经网络是模拟大脑的算法;这可能会让许多人感到困惑,因为他们可能会认为神经网络有自己的智能。它们当然更难理解,但它们远没有达到人类的智力水平。神经网络有三种类型的层:输入层、输出层和位于输入层和输出层之间的隐藏层。每一层都由程序员定义的一定数量的神经元组成,每个神经元都与上一层的所有神经元相连,也与下一层的所有神经元相连。每个神经元都有一个权重;不在输入层的神经元取前一层神经元权重的加权和。每个神经元也有一个偏差,它被加到这个加权和中,以修改该神经元的不活动状态。然后,这个加权和通过一个激活函数运行,该函数将这个加权和转换成 0 到 1 范围内的一个数。这个过程从每一层到每一个神经元继续进行,直到到达输出层。就拿我之前用的乳腺癌诊断例子来说吧。如果我们要为这个问题创建一个神经网络,输入将是我们认为与乳腺肿瘤恶性程度相关的参数,输出层将有两个神经元。一个神经元代表良性,另一个代表恶性。假设我们将一个肿瘤的参数输入到网络中,良性神经元返回 0.02,而恶性神经元返回 0.98。由于恶性神经元具有较高的权重(1 表示 100%权重),我们可以预测该肿瘤是恶性的。

现在,回到层,在输入层,你把你的输入,在输出层,你得到一个输出。这些算法与任何其他类型的机器学习算法的工作原理相同。然而,到目前为止,我们并不真正了解隐藏层,但我们知道神经网络算法的目的是找到产生最准确的神经网络模型的一组权重。我们只是不确定如何解释隐藏层中发生的事情。

为了解释这种不确定性,让我们用一个神经网络来模拟一局台球。输入层的神经元每个代表一个球。输出层的神经元代表一个口袋。每个隐藏层可以代表一个影响球去向的参数。一个隐藏层可以代表球可以击中的其他球。在一场正常的撞球比赛中,我们可能很容易预测球会进入哪个球袋;因为我们唯一需要做的事情是跟踪球的去向,所以需要做的计算很少。我们可以知道,如果墙壁是平的,球将如何从墙壁上反弹,如果球是完美的球形,球将如何从其他球上反弹。这将是一个非常简单的神经网络。现在,假设我们添加了更多的球。有更多的变量可以影响球的行进方向,所以预测球将落在哪个袋中可能会变得有点困难。这个神经网络会比以前更复杂一些。但是现在,假设我们添加了更多的隐藏层。一个隐藏层可以代表墙壁,但是这一次,墙壁不是平的;它们可以是弯曲的或者有尖刺。一个隐藏层可以代表每个球的表面;如果它们不是完美的球形并且弯曲不均匀呢?一个隐藏层可以代表地;地面不再是平坦的,而是弯曲的。在这一点上,你肯定不能预测球会去哪里。它太复杂了,有太多的变量和太多的计算要做。

这正是我们对神经网络的问题。大多数已被使用的神经网络接受具有许多不同参数的大型数据集,因此神经网络最终变得过于复杂而难以理解。我们可以试着分解它来了解发生了什么,但是那会花费太长的时间。神经网络本身可能需要几分钟到一周的时间来训练。我们将很难组织好所有的东西,也很难把所有的东西放在一起。神经网络就像其他机器学习算法一样,实际上并不具备真正的智能;他们太复杂了,好像他们有自己的思想。神经网络的问题不是我们缺乏对它们的控制;这是他们的可解释性。我们很难理解这个算法是如何得到它的预测的。然而,大量的研究正在进行,关于我们如何能制造更精确、可解释和有效的神经网络。神经网络有很大的潜力。它们可以达到很高的精确度,有些精确度超过 90%。它们还可以用于非常复杂的任务,如图像分类/识别和自然语言处理(文本分析)。想想神经网络的潜在应用。它们的影响是巨大的。例如,机器学习在癌症诊断方面已经变得很受欢迎。在生物信息学中实现机器学习可以帮助患者在早期得到治疗,挽救许多生命。

人工智能有能力解决许多现实世界的问题。不仅如此,事实证明,人工智能可以比现代方法更准确地解决这些问题。多亏了人工智能,我们可以取得很大的进步。然而,今天许多人在人工智能上声称的错误言论只是阻碍了这一进展。话虽如此,重要的是要考虑到人工智能的缺点。有人担心机器人会抢走人们的工作,导致更多人失业。如果有人工智能可以创造人工智能呢?即使对我来说,那也很可怕。但是人工智能并不是我们遇到的第一样东西,它太多了是不好的。有太多的药物并不好,因为细菌会产生抗生素耐药性,但在需要的时候没有药物也不好。工作太多不好,因为你需要足够的睡眠,但你也需要工作来赚足够的钱。为了有效和恰当地使用人工智能,需要有一个平衡。应该普遍支持人工智能的使用,但也应该有关于人工智能可以做什么的规定。人工智能应该得到推广,但我们必须确保我们不会制造可以创造其他人工智能的人工智能,因为在那个时候,我们不会对程序有太多的控制权。只要我们能够实现这一点,人工智能将是技术的未来,它将有助于世界成为一个更快乐、更健康的地方。

要了解更多关于我和我所做的工作,请随时查看我的 Github 作品集 ,并在LinkedIn上与我联系。

人工智能:未来还是创造未来的工具?

原文:https://towardsdatascience.com/ai-the-future-or-a-tool-to-create-it-7e4a09686a0?source=collection_archive---------27-----------------------

还记得你最喜欢的电视节目第一次播出时,你完全被它迷住了吗?即使你每集都学到了更多,你还是不断回来。然而,很少有什么东西会毫无瑕疵地一直给予下去。也许,你会发现,尽管虚构的情节令人惊叹,但现实生活中的演员却相当离奇。嗯,那种感觉不仅仅适用于电视剧…

最近,我有机会与许多新技术一起工作,这些新技术似乎有无穷无尽的应用,最有趣的是人工智能。似乎每天,我都会上网或看新闻,听说研究人员找到了另一种方法来解决一个重大问题。因此,我期待着为每个新项目编码,并不完全知道最终产品能容纳什么。然而,随着我越来越多地使用这项技术,我似乎发现了一把双刃剑。人工智能真的是我曾经认为的革命吗?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

A marvellous technology can hold hidden drawbacks upon closer look. Photo by Shane Aldendorff on Unsplash.

人工智能的巨大可用性带来了突破性的应用

对我来说,这一切都是从我建立第一个识别手写数字的神经网络开始的,这仅仅是一次计算机视觉实验。最初,它只是众多解决问题的算法中的一种。然而,我从来没有想到的是,同样的算法同样可以用于各种各样的其他问题。例如,我然后使用基本相同的算法来识别不同类型的衣服。与此同时,我知道对视觉效果进行分类的问题会延伸到现实生活中的重大情况,比如检测自动驾驶汽车中的行人。这些也不仅仅是未来的目标;像特斯拉和 Waymo 这样的颠覆性公司正在改变汽车行业的创新**现在,**这个行业只是众多行业之一。

本质上,与人工智能合作意味着不断尝试新项目。有一天,我会创建一个 CNN 来分析图像,另一天,我会创建一个 RNN 来人为地改写莎士比亚的戏剧。这不仅仅是一些没有实际应用的个人愚蠢行为的展示。在技术代码的背后,总有一种感觉,那就是这项工作在更大范围内可能产生的真实效果。然而,最重要的是,小项目带来了实际的机会;目前,我正在从事人工智能医疗保健研究,这是微软资助的一项竞赛的一部分。人工智能让我在不到一年的研究时间内解决了世界上一些最大的问题。话虽如此,如果你问我是否会在未来直接研究人工智能,我肯定会说不会(这肯定不是因为我讨厌钱)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

I’m as surprised with the possibilities of AI as people are when I tell them I don’t want to work with it as a career. Photo by Ben White on Unsplash.

工具的好坏取决于它带来的用途

在我看来,人工智能最大的好处之一也是我未来不想直接追求它的原因;它适用于大量的行业。等等…那不是好的吗???当然,许多领域的应用使人工智能更加有用,然而,这种使用使它更像一种工具,而不是一种职业。人工智能是解决世界上一些最大问题的巨大资源,但它只是一个工具。如果有人从事医疗保健、商业或任何其他行业,人工智能是解决重要问题的关键,但它本身不如一种职业有吸引力。想一想;不能和任何人一起用的魔术有什么好处?

魔术师的艺术是创造奇迹。——道格·亨宁

正如魔术的应用是为了创造奇迹,工具的应用是为了解决问题。然而,两者诱人的细节在于它们的应用,而不仅仅是它们没有目的。人工智能就是这样;它在任何行业都有惊人的优势,但它本身就相当缺乏光泽。

接下来的限制是,与人工智能打交道有相当大的学习曲线(然而,它正在迅速缩小**),这使它成为你技能组合中更有价值的竞争优势。然而,这也带来了自己的缺点,因为人工智能不断加快的创新步伐如果不受监管,可能会产生负面后果。目前,着手解决世界上最大的问题比以往任何时候都容易(我个人从参加微软的竞赛中学到了这一点),但对于造成伤害的能力来说也是如此。作为一个例子,考虑某人如何通过对无辜用户使用预测行为分析来破坏在线隐私。这还没有开始考虑这项技术的长期影响,它有可能扰乱我们今天知道的一些最大的就业市场。很难预见这个有用工具带来的重要问题,更不用说准备解决它们了。**

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

A small amount of clarity isn’t enough to plan your future path. Photo by Josh Calabrese on Unsplash.

总的来说,人工智能确实是我们今天可以想象的许多创新【和危险】的游戏规则改变者,但它只是许多工具中的一种。最后,把一生的工作奉献给一个工具,还是奉献给这个工具可以解决的大量问题,哪个更有意义?

关键要点

  • 没有什么是完美的。最美丽的东西是你可以爱的,尽管它们不完美。
  • 人工智能的独特之处在于,它可以使用近乎相同的算法来解决完全不同的问题。
  • 虽然聪明的设计可能很有趣,但它真正的价值在于它被应用于解决问题时(这些问题可能领先于我们的时代)。
  • 你不可能准备好去解决一场你看不到的灾难。

在反思人工智能的用途时,我谈到了我以前在人工智能方面的工作。如果你想看看我的推理背后的背景,请阅读更多关于我最近在这个领域的工作。

艾——人类手中的阿拉丁神灯

原文:https://towardsdatascience.com/ai-the-lamp-of-aladdin-in-the-hands-of-mankind-b2d298bea746?source=collection_archive---------24-----------------------

为最佳人工智能做准备

人类举着阿拉丁的灯,随着 AI 的发展摩擦着出现了神怪……我们的命令应该是什么?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Yeshi Kangrang on Unsplash

人们期望个人和公司在未来三到五年内保持一种愿景,一种支持实现目标的计划的战略,这最终将成为他们愿景的体现。

一个没有远见的人或公司(无论大小)就像一艘没有舵的船。方向是由不断变化的天气条件决定的,唯一关心的是如何度过当前的风暴或无风的一天。

欧洲议会选举刚刚在 28 个国家进行,覆盖超过 5 亿人口,AI 和第四次工业革命(4IR)在竞选活动中几乎没有提到。在实际涵盖的主题的大多数解决方案中,完全忽略了这两个关键角色。

人类的愿景是什么——我们的共同目标是什么?

我们需要开始关注人类的愿景和目标,特别是与我们新的和不断发展的魔杖 AI 和 4IR 的关系。也许为全人类设定一个单一的愿景是不现实的。尽管如此,我们仍然需要头脑风暴、思想交流和关于未来方向的辩论,以保持控制,并确保在十年、二十年或三十年后,现实将有利于全球大多数人口。

联合国确定了可持续发展目标,这是解决我们今天面临的问题的一个很好的方法。尽管如此,没有一个目标是直接与指导 AI/4IR 在一个特定的方向上与我们社会的最佳想法相关的。

全球变暖的争议症状

几十年来,气候一直在变化,科学家们一直对此发出警告,而其他人一直否认这一点。与此同时,气候变化越来越严重。

AI/4IR 也是类似的情况,对于这些变化的根本性和全面性以及它们的到来速度有很多不同意见。与此同时,发展正在加速,每天都在产生新的成果。

今天,最大的人工智能竞赛是开发第一个人工通用智能 (AGI)的竞赛。AGI 是一种类似人类的智能,旨在解决一般任务,而不仅仅是单一的特定任务。第一个成功的国家或公司将获得巨大的优势,一旦开始运作,它将每周 7 天、每天 24 小时不断改进自己。事实上,每天都有数以百万计的资金投入到 AGI 的项目中,这证明了投资者对此的重视程度,也有力地表明了人工智能工程师已经走了多远。

愿景以及 Genie 如何提供帮助

当试图预测未来的 AI/4IR 世界时,经常提到的三个主题

工作——有多少人会因为机器人和人工智能而失业?

资源共享——谁将拥有机器人和人工智能?

工作还是不工作,这是个问题

老实说,我觉得讨论人工智能和 4IR 是否会导致失业很奇怪。我认为这是整个概念的一部分。提出能帮助人们工作的解决方案或者甚至为他们工作。假设 AI/4IR 不会减少员工数量是不符合逻辑的。为什么要开发一个解决方案,让一个工作变得多余,然后在另一个地方创造一个新的工作呢?这是徒劳的。

这就是我把阿拉丁和他的灯带进来的地方。如果你手里拿着神灯,精灵出现了,你的第一个愿望会是“请让我保住工作直到退休”吗?我想没有。大多数人都在寻找

安全、食物、健康、衣服和住所

影响/控制他们自己的生活

实现他们潜力的可能性

而且是的;爱和接受

如果 AI 和 4IR 至少能为你提供前两颗子弹呢?这将给你时间和自由去探索最后两颗子弹中的无限可能性,无论是独自还是与他人一起。愿景不是整天躺在沙发上患上抑郁症。这是关于拥有足够的资源去追求你从未有时间真正探索的激情。想象这样一个世界——它可能在本世纪成为现实。

共享资源——你的、我的和我们的

当然,当工作岗位减少时,收入会明显减少。再加上全世界数百万劳动人民的工资如此之低,以至于他们几乎不能满足自己的基本需求,这已经成为当今全球社会的一个日益严重的问题。

Thiel Capital 董事总经理、数学家和物理学家埃里克·温斯坦(Eric Weinstein)是众多对当前经济体系的状况和能力感到担忧的人之一。在他的文章“人类资本主义和新噱头经济”中,他提出了一个思想实验,即资本主义可能是“19-20 世纪发达世界在空间和时间上的快乐巧合”的短暂产物。在麻省理工学院的莱克斯·弗里德曼的采访中,他对资本主义和社会面临的挑战做了一个非常清晰的陈述

我认为超级资本主义必须与超级社会主义相结合

埃里克·温斯坦

泰尔资本董事总经理

请记住,资本主义是始于 18 世纪末的第一次工业革命的结果。4IR 呼吁重大变革,甚至可能是一个全新的系统。这提出了两个问题;这个新系统应该是什么样的?我们如何保障和谐的过渡?

不管奇异点和 AGI 会在什么时候发生,现在需要有意识地为转变做准备。

我对精灵的愿望是:

“请确保每个人都有足够的食物,富足被公平分配,所有人都是真正自由的,都有机会接受教育和医疗保健,没有人被剥削”

也许资本主义甚至可以提供这一点。我只是认为我们应该跳出框框,看看是否有其他选择。

你的愿望是什么?你希望 20 到 40 年后的社会是什么样的?以及如何看待人类与 AI 一起生活,以及 4IR 的后果?

许下你自己的愿望…

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Photo by Riya Kumari from Pexels

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值