给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/
9 20
/
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/
4 4
返回 false
思路:依据平衡二叉树的概念,判断左子树与右子树之间的高度差是否存在大于1的情况,如果存在则不是平衡二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
static const auto init = []() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
return nullptr;
}();
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (root == NULL)
return true;
return this->checkIsBalanced(root);
}
bool checkIsBalanced(TreeNode* root)
{
if (root == NULL)
return true;
int left = this->getHeight(root->left);// 左子树高度
int right = this->getHeight(root->right);
if (abs(left - right) > 1)
return false;
else
{
return this->checkIsBalanced(root->left) && this->checkIsBalanced(root->right);
}
}
// 获取二叉树高度
int getHeight(TreeNode* root)
{
if (root == NULL)
return 0;
else {
int LH = this->getHeight(root->left);
int RH = this->getHeight(root->right);
return 1 + max(LH, RH);
}
}
};