ByteTrack: Multi-Object Tracking by Associating Every Detection Box (论文阅读笔记)

ByteTrack: Multi-Object Tracking by Associating Every Detection Box

在这里插入图片描述

摘要

多目标跟踪(MOT)的目的是估计视频中物体的bounding box和Id。

目前大多数的方法是通过关联得分高于阈值的检测框来获得Id。检测分数低的对象,例如被遮挡的物体,被简单地扔掉,这带来了不可忽略的真实物体丢失和碎片轨迹。

为了解决这一问题,文章提出了一种简单、有效和通用的关联方法(ByteTrack):通过关联每个检测框而不是只关联得分高的检测框进行跟踪。对于得分低的检测框,利用低分检测框和跟踪轨迹之间的相似性,恢复真正的物体并过滤掉背景。

当应用于9种不同的先进跟踪器时,该方法在IDF1评分上取得了一致的改善,提高了1-10个点。在MOT17测试集上,利用单个V100 GPU,以30 FPS的运行速度,实现了80.3 MOTA, 77.3 IDF1和63.1 HOTA。

一、介绍

在这里插入图片描述
介绍的第一句,就引用了一句黑格尔的话!还是第一次看到这样的论文,还是比较有意思的。
这句德语啥意思,有两种翻译。通俗一点的解释是:存在即合理
比较正确且专业的解释是:凡是合乎理性的东西都是现实的;凡是现实的东西都是合乎理性的

哲学是所有学科的金字塔尖,也是所有学科的金字塔底。

基于检测的跟踪是目前最有效的多目标跟踪方法。但是由于视频中复杂的场景,检测器并不能完美的预测。目前最先进的MOT方法需要权衡检测框中的真阳性/假阳性来消除低置信度检测框。但是直接去除这些低分框真的合理吗?

文章认为,低分框往往意味着被遮挡的物体。去掉这些目标意味着对于MOT造成不可逆误差、漏检和碎片轨迹。并提出了一种充分利用高低置信度检测框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值