Machine Learning Notes ——Linear Regression

本文深入探讨了线性回归的基本概念及其应用,并详细解释了梯度下降算法在解决线性回归问题时的角色。文章还涵盖了特征缩放、学习率调整、正规方程解法以及常见问题的解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Regression with One Variable


  Cost function

    


   Gradient descent




Linear Regression with multiple variables


Gradient descent for multiple variables


Feature Scaling

          Xi =   ( Xi  -  Avg) / (Max -  Min)


Learning rate

      If  a  is too small: slow convergence.
      If
 a  is too large: J(
θ may not decrease on every iteration; may not converge.


Normal equation

X *θ= Y  

XTX*θ= XTY

(XTX)-1(XTX)*θ= (XTX)-1XTY

θ= (XTX)-1XTY



Normal equation and non-invertibility

       •Redundant features (linearly dependent).
               E.g.     X1 =  size in feet2
                           X2 = size in m2

      •Too many features (e.g.   m<=n ).
                 Delete some features, or use regularization.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值