Linear Regression with One Variable
Cost function
Gradient descent
Linear Regression with multiple variables
Gradient descent for multiple variables
Feature Scaling
Xi = ( Xi - Avg) / (Max - Min)
Learning rate
If a is too small: slow convergence.
If a is too large: J(θ) may not decrease on every iteration; may not converge.
Normal equation
X *θ= Y
XTX*θ= XTY
(XTX)-1(XTX)*θ= (XTX)-1XTY
θ= (XTX)-1XTY
Normal equation and non-invertibility
•Redundant features (linearly dependent).
E.g. X1 = size in feet2
X2 = size in m2
本文深入探讨了线性回归的基本概念及其应用,并详细解释了梯度下降算法在解决线性回归问题时的角色。文章还涵盖了特征缩放、学习率调整、正规方程解法以及常见问题的解决策略。

被折叠的 条评论
为什么被折叠?



