Python和Miniforge安装与配置

Miniforge安装

Miniforge github地址

初始化环境

安装完成后需要初始化环境,在Windows上需要打开 miniforge3 Prompt 输入以下命令

conda init

这条命令会让命令行终端Terminal启动时配置conda环境,包括设置变量和命令别名(Alias)。
这条命令也可以设置参数,全部参数如下:

conda init [-h] [--all] [--user] [--no-user] [--system] [--reverse] [--anaconda-prompt] [--json]
                            [--console CONSOLE] [-v] [-q] [-d]
                            [SHELLS ...]

conda init --reverse 可以反向初始化取消Terminal启动时设置conda环境
成功进入conda环境,Terminal输入会显示当前的conda环境,如下图:
在这里插入图片描述
conda启动时会花费一些时间,可以通过以下命令禁止启动时进入conda环境

conda config --set auto_activate_base false

查看当前conda环境信息

conda info

环境设置

# 查看当前已有的环境
conda env list 

# 创建新环境
conda create --name myenv python=3.12 

# 激活环境
conda activate myenv

# 创建新的默认环境,覆盖任何现有的默认设置
conda create --name mybase python=3.12 --default

# 从environment.yml 导入环境
conda env create -f environment.yml

#查看当前环境已安装的包
conda list

#安装包
conda install <package_name>=<version_number>
conda install numpy

#更新包
conda update <package_name>
conda update --all #更新所有的包

#删除包
conda remove <package_name>

配置镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/
conda config --set show_channel_urls yes

Anaconda 软件仓库
conda的配置信息存储在用户目录下 ~/.condarc 文件中,可以在这里修改镜像源

pip

有些conda安装不了的库可以通过pip安装

#安装包
python -m pip install <package_name>
# pip 是独立的程序,可以直接使用
pip install <package_name>

#更新包
python -m pip install -U <package_name>

#删除包
python -m pip uninstall <package_name>

#查看已经安装的包
python -m pip list

#设置pip镜像,Windows上镜像信息存储在 C:\Users\[用户民]\AppData\Roaming\pip\pip.ini
python -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

2025年最新conda和pip国内镜像源

VSCode配置Python开发环境

  1. 创建一个单独的Profile用于开发Python,【设置->Profile->New Profile->选择Python模板】,点击创建。
  2. 打开文件夹,【设置->Profile->Python】VScode会切换到Python开发环境

运行

在【RUN AND DEBUG】选项卡中 点击 【create a lunch.josn】选择 【Python Debug】

设置运行文件和运行conda环境

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Python Debugger: Current File",
            "type": "debugpy",
            "request": "launch",
            "program": "hello.py",
            "console": "integratedTerminal",
            "python": "C:/Programs/miniforge3/envs/myenv312/python.exe"
        }
    ]
}

修改program和python两字段
tips: 可以通过 where.exe或者Get-Command获取一个exe 的位置,MacOS上可以使用which

选择Python 解释器

在这里插入图片描述
选择Python解释器用来切换Python开发和运行环境。
选择正确的Python才能保证VSCode中第三方库的提示正常。
可以使用插件管理Python Environments,激活Python环境

<think>好的,我需要帮助用户了解如何在安装Miniforge配置Python环境。首先,我应该回顾用户提供的引用内容,确保回答准确。根据引用[1]、[2]、[3],Miniforge使用conda管理环境包,默认使用conda-forge源,并且步骤包括创建环境、激活、安装包等。 用户可能已经安装Miniforge,现在需要配置具体的Python环境。我需要分步骤说明,从创建环境开始,到激活环境,安装包,管理环境,最后可能提到Mamba加速。同时,要确保命令正确,比如使用conda createconda activate。此外,需要提醒用户注意conda-forge频道的设置,可能已经默认启用,不需要额外配置。 还要考虑用户可能的疑问,比如如何指定Python版本,如何安装多个包,如何查看环境列表。根据引用[3],示例中使用了conda create -n dl-pytorch python=3.10,这可以作为例子。另外,提到使用Mamba替代conda可以更快,这也是引用[2][3]中的优化点。 需要检查是否需要初始化shell,可能在安装后需要执行conda init,但引用中的安装脚本可能已经处理了。此外,环境管理命令如列出环境、激活、退出等都需要涵盖。最后,给出一个完整的示例流程,帮助用户一步步操作,并生成相关问题,覆盖常见的使用场景问题。</think>### Miniforge环境配置分步指南 #### 一、环境创建激活 1. **创建新环境**(支持多版本共存) ```bash conda create -n your_env_name python=3.9 # 创建名为your_env_name的3.9环境 ``` *注:`python=3.9`可替换为3.8/3.10等版本,默认使用conda-forge源[^2]* 2. **查看所有环境** ```bash conda env list ``` 3. **激活环境** ```bash conda activate your_env_name ``` *激活后命令行提示符会显示当前环境名* #### 二、软件包管理 1. **安装基础包** ```bash conda install numpy pandas matplotlib # 可同时安装多个包 ``` 2. **指定安装源(可选)** ```bash conda install -c conda-forge tensorflow # -c参数指定频道 ``` 3. **使用Mamba加速(推荐)** ```bash mamba install pytorch torchvision -c pytorch # 替代conda命令 ``` *Mamba解析依赖速度比conda快10倍[^3]* #### 三、环境维护 1. **导出环境配置** ```bash conda env export > environment.yml ``` 2. **克隆环境** ```bash conda create --name new_env --clone old_env ``` 3. **删除环境** ```bash conda remove --name old_env --all ``` #### 四、完整配置示例 ```bash conda create -n ai-lab python=3.10 conda activate ai-lab mamba install numpy pandas scikit-learn jupyterlab ``` #### 五、配置建议 1. 修改`.condarc`配置文件: ```yaml channels: - conda-forge - defaults channel_priority: strict auto_activate_base: false ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值