计量经济学学习与Stata应用笔记(二)小样本最小二乘法

最小二乘法(OLS)是最基本的线性回归模型估计方法。

小样本OLS

古典线性回归模型假定

古典线性回归模型有以下几个假定。
线性假定:
总体模型为
y i = β 1 x i 1 + β 2 x i 2 + ⋯ + β K x i K + ϵ i    ( i = 1 , ⋯   , n ) y_i=\beta_1x_{i1}+\beta_2x_{i2}+\cdots+\beta_Kx_{iK}+\epsilon_i\,\,(i=1,\cdots,n) yi=β1xi1+β2xi2++βKxiK+ϵi(i=1,,n)
解释变量的第一个下标表示第 i i i个观测值,第二个下标表示第 k k k个观测变量,共有 K K K个解释变量。 β k \beta_k βk为待估参数(回归系数)。
线性假设指的是没个解释变量对于被解释变量的边际效应均为常数,即 ∂ E ( y i ) ∂ x i k = β k \frac{\partial E(y_i)}{\partial x_{ik}}=\beta_k xikE(yi)=βk为常数。线性假设不考虑解释变量的次数,可以引入高次项如 x i k 3 x_{ik}^3 xik3或交互项如 x i 1 x i 2 x_{i1}x_{i2} xi1xi2,此时只要把这些项当做解释变量看待即可。总体模型用矩阵形式表达为 y = X β + ϵ \pmb y=\pmb X\pmb\beta+\pmb\epsilon yyy=XXXβββ+ϵϵϵ
严格外生性假定
E ( ϵ i ∣ X ) = 0 E(\epsilon_i|\pmb X)=0 E(ϵiXXX)=0
在给定矩阵 X \pmb X XXX的情况下,扰动项 ϵ i \epsilon_i ϵi的条件期望为0。 ϵ i \epsilon_i ϵi均值独立于所有解释变量的观测数据。事实上,当 E ( ϵ i ∣ X ) = c E(\epsilon_i|\pmb X)=c E(ϵiXXX)=c时均值独立也成立,此时可以将 c c c归入常数项中。
定义如果随机变量 X , Y X,Y X,Y满足 E ( X Y ) = 0 E(XY)=0 E(XY)=0,则称 X , Y X,Y X,Y正交(orthogonal)。则解释变量与扰动项正交。
不存在严格多重共线性假定
即数据矩阵 X \pmb X XXX满列秩, r a n k ( X ) = K {\rm rank}(\pmb X)=K rank(XXX)=K
如果不满足此条件,则 X \pmb X XXX中存在多余的变量。
球型扰动项假定
扰动项满足同方差和无自相关。
V a r ( ϵ ∣ X ) = E ( ϵ ϵ T ∣ X ) = σ 2 I n = [ σ 2 0 ⋱ 0 σ 2 ] Var(\pmb \epsilon|\pmb X)=E(\pmb \epsilon \pmb \epsilon^T|\pmb X)=\sigma^2\pmb I_n=\begin{bmatrix}\sigma^2& &0\\ &\ddots& \\0& &\sigma^2\end{bmatrix} Var(ϵϵϵXXX)=E(ϵϵϵϵϵϵTXXX)=σ2IIIn=σ200σ2
一方面,协方差矩阵主对角线元素均为 σ 2 \sigma^2 σ2。另一方面,非主对角线元素均为0。

OLS的推导

被解释变量与解释变量在抽样之前可以看作随机变量,在抽样之后可以看做随机变量的实现值。
记未知参数向量 β \pmb \beta βββ的假想值为 β ~ \pmb {\tilde \beta} β~β~β~,记第 i i i个残差(residual)为 e i = y i − x i T β ~ e_i=y_i-\pmb x_i^T\pmb {\tilde \beta} ei=yixxxiTβ~β~β~,因此残差向量可以表示为 e = y − X T β ~ \pmb e=\pmb y-\pmb X^T\pmb {\tilde \beta} eee=yyyXXXTβ~β~β~。最小二乘法的思想在于寻找使残差平方和(Sum of Squared Residuals, SSR) ∑ i = 1 n e i 2 \sum_{i=1}^ne_i^2 i=1nei2最小的 β ~ \pmb {\tilde \beta} β~β~β~。此问题为
min ⁡ β ~ S S R ( β ~ ) = ∑ i = 1 n e i 2 = ( y − X T β ~ ) T ( y − X T β ~ ) = y T y − 2 y T X β ~ + β ~ T X T X β ~ \min_{\pmb {\tilde \beta}} SSR(\pmb {\tilde \beta})=\sum_{i=1}^ne_i^2=(\pmb y-\pmb X^T\pmb {\tilde \beta})^T(\pmb y-\pmb X^T\pmb {\tilde \beta})=\pmb y^T \pmb y-2\pmb y^T\pmb X\pmb {\tilde \beta}+\pmb {\tilde \beta}^T\pmb X^T\pmb X\pmb {\tilde \beta} β~β~β~minSSR(β~β~β~)=i=1nei2=(yyyXXXTβ~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值