计量经济学学习与Stata应用笔记(四)大样本最小二乘法

使用大样本理论要求样本容量较大,一般至少 n ≥ 30 n\geq 30 n30,此时可以抛弃小样本理论中过强的假设。

随机收敛

确定性序列 { a n } n = 1 ∞ \{a_n\}_{n=1}^\infty { an}n=1收敛与常数 a a a记作 lim ⁡ n → ∞ a n = a \lim\limits_{n\rightarrow\infty }{a_n}=a nliman=a
随机序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1依概率收敛与常数 a a a,记为 p lim ⁡ n → ∞ a n = a {\rm p}\lim\limits_{n\rightarrow\infty }{a_n}=a pnliman=a,或 x n ⟶ p   a x_n\stackrel{p}\longrightarrow\ a xnp a,如果当 n n n趋于正无穷时,有 lim ⁡ n → ∞ P ( ∣ x n − a ∣ ) > ϵ = 0 \lim\limits_{n\rightarrow\infty }{P(|x_n-a|)> \epsilon }=0 nlimP(xna)>ϵ=0
随机序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1依概率收敛于随机变量 x x x,记为 x n ⟶ p   x x_n\stackrel{p}\longrightarrow\ x xnp x,如果随机序列 { x n − x } n = 1 ∞ \{x_n-x\}_{n=1}^\infty { xnx}n=1
连续函数与依概率收敛可以交换次序
随机序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1依均方收敛于常数 a a a,如果 lim ⁡ n → ∞ E ( x n ) = a \lim\limits_{n\rightarrow\infty }{E(x_n)}=a nlimE(xn)=a lim ⁡ n → ∞ V a r ( x n ) = 0 \lim\limits_{n\rightarrow\infty }{Var(x_n)}=0 nlimVar(xn)=0
依均方收敛是依概率收敛的充要条件。
记随机序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1与随机变量 x x x的累积分布函数分别为 F n F_n Fn F F F。如果对于任何实数 c c c,均有 lim ⁡ n → ∞ F n ( c ) = F ( c ) \lim\limits_{n\rightarrow\infty }{F_n(c)}=F(c) nlimFn(c)=F(c),则随机序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1依分布收敛与随机变量 x x x,记为 x n ⟶ d   x x_n\stackrel{d}\longrightarrow\ x xnd x
g g g为连续函数,且 x n ⟶ d   x x_n\stackrel{d}\longrightarrow\ x xnd x,则 g ( x n ) ⟶ d   g ( x ) g(x_n)\stackrel{d}\longrightarrow\ g(x) g(xn)d g(x)

大数定律与中心极限定理

弱大数定律

样本无限大时,样本均值趋于总体均值,故名“大数定律”。

中心极限定理(CLT)

假设 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty { xn}n=1为独立同分布的随机序列,且 E ( x 1 ) = μ E(x_1)=\mu E(x1)=μ V a r ( x 1 ) = σ 2 Var(x_1)=\sigma^2 Var(x1)=σ2存在,则 n ( x ˉ n − μ ) ⟶ d N ( 0 , σ 2 ) \sqrt n(\bar x_n-\mu)\stackrel{d}\longrightarrow N(0,\sigma^2) n (xˉnμ)dN(0,σ2)
注意: x ˉ n − μ \bar x_n-\mu xˉnμ依概率收敛到0,且其收敛到0的速度与 1 / n 1/\sqrt n 1/n 收敛到0的速度类似,这被称为“ n \sqrt n n 收敛”。
一维情况下,中心极限定理可以等价写为
x ˉ n − μ σ 2 / n ⟶ d N ( 0 , 1 ) \frac{\bar x_n-\mu}{\sqrt {\sigma^2/n}}\stackrel{d}\longrightarrow N(0,1) σ2/n xˉnμdN(0,1)
多维情况下, n ( x ˉ n − μ ) ⟶ d N ( 0 , Σ ) \sqrt n(\pmb {\bar x_n}-\pmb\mu)\stackrel{d}\longrightarrow N(\pmb0,\Sigma) n (xˉnxˉnxˉnμμμ)dN(000,Σ)

统计量的大样本性质

均方误差MSE

以估计量 β ^ \hat \beta β^来估计参数 β \beta β,则均方误差
M S E ( β ^ ) = E [ ( β ^ − β ) 2 ] MSE(\hat \beta)=E[(\hat \beta-\beta)^2] MSE(β^)=E[(β^β)2]
定义偏差为
B i a s ( β ^ ) = E ( β ^ ) − β Bias(\hat \beta)=E(\hat \beta)-\beta Bias(β^)=E(β^)β
如果偏差为0,则估计量为无偏估计量。
均方误差可以分解为方差与偏差的平方和
M S E ( β ^ ) = V a r ( β ^ ) + [ B i a s ( β ^ ) ] 2 MSE(\hat \beta)=Var(\hat \beta)+[Bias(\hat \beta)]^2 MSE(β^)=Var(

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值