声明:对于作者的原创代码,禁止转售倒卖,违者必究!
还记得之前推出的一期推文:“三高”论文完美复现!基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断,实现早期微弱故障诊断,MATLAB代码实现
上述这篇推文联合了VMD和MCKD两种数据处理方法实现了故障诊断。
本期的推文的整体思路与上述论文差不多,都是采用传统的数据处理方法,对故障特征进行提取,最终达到故障诊断的目的。
本文用到的方法是:变分模态提取(VME)和稀疏最大谐波噪声比解卷积(SMHD)。本期推文参考文献如下:
[1]唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(05):73-81.
01
文章摘要如下:
针对风电机组变桨轴承的损伤识别问题,提出一种优化变分模态提取结合稀疏最大谐波噪声比解卷积的新颖损伤识别方法,旨在从复合信号中提取特定信号分量。首先,以能量特征指标为适应度函数,利用白鲨优化算法对变分模态提取算法的最优影响参数组合进行搜索,确定变分模态提取的平衡因子和中心频率的最优值;其次,利用变分模态提取从振动信号中提取特定信号分量,并对提取的信号分量进行稀疏最大谐波噪声比解卷积处理,提高信号的信噪比,得到解卷积信号;最后,对解卷积信号进行包络谱分析,从中提取轴承损伤特征频率。结果表明:该方法能准确识别风电机组变桨轴承的损伤特征,具有一定的实际工程参考价值。
本期推文针对上述方法,采用MATLAB代码进行完美复现!
由于小淘缺乏文中提到的风机损伤数据,本期文章仿照PSO-VMD-MCKD这篇推文,采用的数据为:加了高斯白噪声的西储大学轴承数据外圈故障数据:130.mat。
02
代码步骤
代码步骤
-
对130.mat数据添加高斯白噪声,并进行频谱图和包络谱图的分析。
-
将添加高斯白噪声的130.mat进行VME分解,并采用麻雀优化算法对VME的两个重要参数进行优化,适应度函数为上述文献提到的能量特征指标,并展示VME分解后的包络谱;
-
将经过VME提取的信号分量进行稀疏最大谐波噪声比解卷积处理(SMHD),再次展示处理后的包络谱。
03
代码步骤预结果详解
第一步:轴承数据添加高斯白噪声,并分析
第一步是对西储大学130.mat的分析,大家也可以对其他数据进行分析。由于要模拟轴承被噪声掩盖的微弱故障信号,因此要先对原始的130.mat数据添加高斯白噪声数据。
运行Simulated_data.m文件,可以得到下面三幅图:并且会保存一个加了高斯白噪声的data.mat文件,后面第二步是要针对这个data.mat文件去优化VME参数的。
之前的推文也多次提到过,关于西储大学轴承数据130.mat的故障特征频率计算方法,本文就不在介绍。已知130.mat的故障特征频率为107.3050左右。由上面的包络谱可以看到,添加高斯白噪声的130.mat时域波形中几乎观测不出任何冲击成分,而在频谱图中,也无规律可循。对信号进一步进行包络解调,除了一倍频能清楚展示,二倍频三倍频等均被噪声淹没。
现实中有很多这种被噪声淹没的信号,而此时就需要用别的方法进行处理了!
第二步:采用SSA优化VME算法两个参数
众所周知,VMD通过预设模式数K将复合信号非递归地分解为一系列窄带信号,但VMD性能受K的影响较大,VME则不同,其仅需分离出1个所需模式,因此具有更高的分离精度和计算效率。
平衡因子α和中心频率ωa是影响VME处理结果的2个关键参数,其决定了所得信号的带宽和频域中心。由于轴承损伤多是以周期冲击为特征,表现出瞬态冲击特性;因此对时域内损伤信号x(t)进行瞬时能量计算,再对其进行傅里叶变换得到能量频谱E(f),从能量频谱中观察损伤特征。为了使VME获得更好的提取效果,设计了用于自动优化α和ωa的能量特征指标EEcI
式中:f为能量频谱中的频率;fc为能量频谱中的故障特征频率;E(fc)、E(2fc)和E(3fc)分别为能量频谱中损伤特征频率1倍频、2倍频和3倍频处的幅值;E2rms(f)为能量频谱的有效值。
能量特征指标越收敛表明损伤特征频率的能量越集中,损伤特征越明显。不同于常用的峭度、信息熵、平滑度等指标,能量特征指标不受外界偶然性冲击的干扰,且具有良好的噪声鲁棒性,能更有效地衡量损伤特征信息。
采用SSA优化VME的结果如下:
到这里可以看到,如果只对原始信号进行VME分解,即便采用了SSA算法对其参数进行优化,SSA-VME仍然得不到正确的包络谱,只能显示一倍频,而二倍频依旧被噪声影响!因此还需要再添加一种处理方法!这个时候就得SMHD上场了!
受最小熵解卷积技术的启发,SMHD采用谐波噪声比作为目标函数,通过迭代选择最佳有限脉冲响应数字滤波器系数,以最大化滤波信号的谐波噪声比。
SMHD旨在通过计算谐波噪声比估计周期来增强重噪声信号的潜在周期脉冲故障,在每一个迭代步骤中,利用稀疏因子进一步抑制噪声并提高滤波信号的信噪比,而稀疏阈值和周期的更新过程则保证了SMHD的鲁棒性。SMHD完美克服了传统解卷积方法、最小嫡解卷积和最大相关峰度解卷积的局限性。
对上述SSA-VME提取到的特征向量再次用SMHD进行处理,进一步提高特征向量的信噪比。处理后结果如下:
可以看到,经过SMHD处理后的信号,可以准确的提取出加了高斯白噪声的130.mat的轴承故障特征频率。由包络谱图可以判断为外圈故障。
04
代码目录
05代码获取
05
代码获取
点击下方下卡片获取!