ComfyUI学习笔记,案例四:inpaint

背景

ComfyUI学习笔记,案例四:inpaint,就是将一张图抠掉一块区域后还原,或者在一个图上重绘某个区域,感觉还是比较简单的。

它包含四个案例:

  1. inpaint_example,正向提示词 closeup photograph of maine coon (cat:1.2) in the yosemite national park mountains nature,翻译为:“在约塞米蒂国家公园的山脉自然环境中拍摄的缅因猫(猫:1.2)的特写照片。”

  2. inpain_model_outpainting,正向提示词为:outdoors in the yosemite national park mountains nature,翻译为“在约塞米蒂国家公园的户外山地自然环境中”。

  3. inpain_model_woman,正向提示词 photograph of young blonde (woman) standing outdoors in the yosemite national park mountains nature, blue eyes,翻译为“一位年轻金发女性(蓝眼睛)站在约塞米蒂国家公园山地自然环境中的户外照片”。

  4. inpaint_anythingv3_woman,正向提示词 (girl) blue eyes, blonde hair, in the yosemite national park mountains nature,翻译为“约塞米蒂山野中的金发碧眼少女”。

流程导入

拖拽案例流程图到 Comfy UI 编辑区,得到流程图:

在这里插入图片描述
流程图比较常规,用到了 512-inpainting-ema.safetensors 模型。

Hf 镜像仓库搜索 512-inpainting-ema 没有结果后,继续在 Gitee 搜到了,点击 模型下载 后添加到本机 \models\checkpoints 目录。

运行案例

点击 Run 按钮,运行模型,等待模型执行完成:

在这里插入图片描述

其他几个案例都拖入工作区域,提示词不同,重绘的图片结果也不同。

机器配置不适合运行 AI 绘图,出一张图需要20分钟左右,太慢了!没有耐心等待,姑且先出了第一张小猫的那个图。

第二个户外风光图,生成的图片是将一块崎岖区域去掉了,变成了一块光秃秃的地面,效果图如下:

在这里插入图片描述

奇怪的是,这个案例出的图,跟官方案例里面的运行结果的图完全一样,不像之前那个 2pass-Text2Img,一样的流程,出来的图每次都不一样。

基于gcc的stm32环境搭建源码+文档说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的
cv::inpaint函数是OpenCV库中用于图像修复的函数。它可以通过根据图像中的已知信息来填补缺失或损坏的区域,从而还原图像的完整性。 函数原型如下: ```cpp void cv::inpaint( InputArray src, InputArray inpaintMask, OutputArray dst, double inpaintRadius, int flags ) ``` 参数说明: - src:输入图像,可以是8位无符号整数(CV_8U)或浮点数(CV_32F)。 - inpaintMask:输入的掩膜图像,用于指示需要修复的区域,非零像素表示需要修复的区域。 - dst:输出图像,与输入图像具有相同的尺寸和类型。 - inpaintRadius:修复区域的半径大小。 - flags:修复算法的标志,可以是INPAINT_NS或INPAINT_TELEA。 使用示例: ```cpp #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat image = imread("input.jpg"); Mat mask = imread("mask.jpg", 0); // 读取灰度图作为掩膜 Mat inpainted; cv::inpaint(image, mask, inpainted, 3, INPAINT_TELEA); imshow("Input", image); imshow("Mask", mask); imshow("Inpainted", inpainted); waitKey(); return 0; } ``` 在示例中,我们首先加载输入图像和掩膜图像,然后调用cv::inpaint函数进行图像修复。修复后的图像将显示在窗口中。 需要注意的是,掩膜图像必须与输入图像具有相同的尺寸,并且非零像素表示需要修复的区域。另外,inpaintRadius参数用于指定修复区域的半径大小,而flags参数可以选择不同的修复算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值