线性模型第1讲:最小二乘法

这篇博客介绍了线性模型的基础,重点讲解了最小二乘法的概念,讨论了参数估计的唯一性条件,并通过一元线性回归的例子展示了如何用Python实现线性回归模型。
摘要由CSDN通过智能技术生成

论文合作、课题指导请联系QQ2279055353

线性模型

在一个线性模型里,假设有 p p p 个特征 x 1 , x 2 , … , x p x_1, x_2, \dots, x_p x1,x2,,xp, 目标变量 y y y 的预测值 y ^ \hat{y} y^ 有下面的数学形式:
y ^ ( w , x ) = w 0 + w 1 x 1 +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值