统计学习(四):多重检验与控制程序

本文介绍了多重检验的概念,包括假阳性和假阴性,以及在进行多重检验时如何控制错误率。通过硬币抛掷的例子解释了多重检验导致的Type I错误率增加问题。接着,文章探讨了控制家庭错误率(FWER)的方法,如Bonferroni校正,并介绍了控制假发现率(FDR)的Benjamini-Hochberg程序。
摘要由CSDN通过智能技术生成

多重检验

多重检验( Multiple Testing )也称多重比较( Multiple Comparisons ), 即同时检验多个假设。假设有 m 个检验,记为 H1,H2,,Hm . 称检验是显著的( significant ), 如果拒绝零假设;否则,称检验是不显著的( non-significant ). 下表定义不同类型的错误:

/ 零假设为真 备择假设为真 总计
significant V S R
non-significant U T mR
总计 m0 mm0 m

其中, m 是检验个数, m0 是真的零假设个数(未知参数), mm0 是真的备择假设个数。 V 是假阳性( false positives, Type I error )数,也称假发现( false discoveries )。 S 是真阳性( true positives )数,也称真发现。 U 是真阴性( true negatives )数, T 是假阴性( false negatives, Type II error )数。 R=V+S 是拒绝零假设的个数,也称发现( discoveries ). 在 m 个检验中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值