【sklearn第四讲】数据集变换

本文介绍了scikit-learn的数据变换库,包括如何使用管道(Pipeline)进行链式估计量操作,以及如何利用FeatureUnion组合特征空间。Pipeline方便了预处理步骤的串联,FeatureUnion则允许并行特征变换,两者结合可以构建复杂的数据处理流程。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

scikit-learn提供了一个数据变换库,可以实现清洗、缩减、扩展或产生特征表示。类似其它估计量,这些都由具有fit方法的类表示。fit方法从训练集学习模型参数(例如均值和标准差),transform方法应用这个变换模型到未知数据上。而fit_transform方法可以更方便高效地同时建模和变换训练数据。

管道:链式估计量

Pipeline能够把多个估计量链成一个。当预处理数据存在一个固定的步骤顺序时,例如,特征选择、归一化、分类,它是有用的。Pipeline服务于两个目的:

  • 便利和打包

只需在你的数据上调用一次fit, predict, 就可以拟合整个估计过程。

  • 联合参数选择

你可以在pipeline里立即grid search所有估计量的参数。

除了最后一个,在pipeline里的所有估计量,都必须被变换(即,必须有一个transform方法),最后的估计量可以是任何类型的(transformer, classifier等)。

使用方法

使用一个(key, value)对列表创建pipeline, 在这里key是一个字符串,表示你想要的步骤名字,value是一个估计量对象。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值