【Python实例第27讲】增量PCA

本文介绍了增量主成分分析(IPCA),一种适用于大规模数据集的降维技术。通过使用IPCA,可以在内存有限的情况下对数据进行低秩近似处理。示例中,通过sklearn.decomposition库展示了如何设置2个主成分,对数据集进行PCA近似投影,并通过可视化进行检查。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

主成分是一种重要的降维技术,将数据分解压缩成少数的几个主成分表示。当待分解的数据集太大而不能在内存里拟合时,通常使用增量主成分(Incremental principal component analysis, IPCA)代替普通的主成分方法。IPCA使用独立于样本量的内存容量,创建一个输入数据的低秩近似。它仍然依赖输入数据的特征,只是考虑到内存的处理限制,改变了批次处理的规模。

在这个例子里,我们可视化地检查IPCA找到数据到PCA的一个近似投影,而一次仅仅处理少量的样本。这里仍然使用Iris数据集,使用sklearn.decomposition模块里的IPCA实现函数IncrementalPCA, 设置2个主成分。

代码详解

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA, IncrementalPCA

iris = load_iris()
X = iris.data
y = iris.target

n_components = 2
ipca = IncrementalPCA(n_components=n_components, batch_size=10)
X_ipca = ipca.fit_transform(X)

pca = PCA(n_components=n_components)
X_pca = pc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值