最小二乘法拟合球及其相关代码实现

当我们手中握有大量的数据时,对于二维的数据,我们会对他们进行直线拟合、对数拟合,圆曲线的拟合等等。这些拟合的方法都是运用的了非常古老而又非常有效的方法,即最小二乘法。 
今天给大家介绍一种三维球面数据的拟合方法,该方法也是运用的最小二乘的方法。旨在使拟合的半径在均方意义下误差达到最小。

公式推导

设拟合后的球面的球心为(x_0,y_0,z_0)及半径r。 
对于每一点拟合后估计的值与实际值的差值为: 
1 
则误差的平方和为: 
2 
注意E是x_0,y_0,z_0,r的函数。因此令E分别对x_0,y_0,z_0,r的偏导数等于0,即可求出x_0,y_0,z_0,r,有: 
3 
令: 
4 
则有: 
5 
由(1)-(4)得 
6 
由(2)-(4)得 
7 
由(3)-(4)得 
8 
写成矩阵的形式: 
9 
求解该矩阵得到x_0,y_0,z_0值,然后带入(4)式中得到r的值。

Matlab仿真

首先生成若干个球面数据,然后加入一定能量的噪声。最后利用上述的公式计算拟合后的球心坐标和球面半径,下面给出的是matlab仿真代码:

%最小二乘的方法进行拟合
clear all;
close all
clc;
R = 2;         %球面半径
x0 = 100;      %球x坐标
y0 = 1;        %球y坐标
z0 = 76;       %球心z坐标
%********************************生成随机球面数据************************************
alfa = 0:pi/50:pi;
sita = 0:pi/50:2*pi;
num_alfa = length(alfa);
num_sita = length(sita);
x = zeros(num_alfa,num_sita);
y = zeros(num_alfa,num_sita);
z = zeros(num_alfa,num_sita);
for i = 1:num_alfa
    for j = 1:num_sita
        x(i,j) = x0+R*sin(alfa(i))*cos(sita(j));
        y(i,j) = y0+R*sin(alfa(i))*sin(sita(j));
        z(i,j) = z0+R*cos(alfa(i));
    end
end

x = reshape(x,num_alfa*num_sita,1);
y = reshape(y,num_alfa*num_sita,1);
z = reshape(z,num_alfa*num_sita,1);
figure;
plot3(x,y,z,'*');
title('生成的没有噪声的球面数据');
%加入均值为0的高斯分布噪声 
amp = 0.1;
x = x + amp*rand(num_alfa*num_sita,1);
y = y + amp*rand(num_alfa*num_sita,1);
z = z + amp*rand(num_alfa*num_sita,1);
figure;
plot3(x,y,z,'*');
title('加入噪声的球面数据');
%*******************************************************************************************
%球面拟合算法
num_points = length(x);
x_avr = sum(x)/num_points;
y_avr = sum(y)/num_points;
z_avr = sum(z)/num_points;

xx_avr = sum(x.*x)/num_points;
yy_avr = sum(y.*y)/num_points;
zz_avr = sum(z.*z)/num_points;
xy_avr = sum(x.*y)/num_points;
xz_avr = sum(x.*z)/num_points;
yz_avr = sum(y.*z)/num_points;

xxx_avr = sum(x.*x.*x)/num_points;
xxy_avr = sum(x.*x.*y)/num_points;
xxz_avr = sum(x.*x.*z)/num_points;
xyy_avr = sum(x.*y.*y)/num_points;
xzz_avr = sum(x.*z.*z)/num_points;
yyy_avr = sum(y.*y.*y)/num_points;
yyz_avr = sum(y.*y.*z)/num_points;
yzz_avr = sum(y.*z.*z)/num_points;
zzz_avr = sum(z.*z.*z)/num_points;
%计算求解线性方程的系数矩阵
A = [xx_avr - x_avr*x_avr,xy_avr - x_avr*y_avr,xz_avr - x_avr*z_avr;
     xy_avr - x_avr*y_avr,yy_avr - y_avr*y_avr,yz_avr - y_avr*z_avr;
     xz_avr - x_avr*z_avr,yz_avr - y_avr*z_avr,zz_avr - z_avr*z_avr];
b = [xxx_avr - x_avr*xx_avr + xyy_avr - x_avr*yy_avr + xzz_avr - x_avr*zz_avr;
     xxy_avr - y_avr*xx_avr + yyy_avr - y_avr*yy_avr + yzz_avr - y_avr*zz_avr;
     xxz_avr - z_avr*xx_avr + yyz_avr - z_avr*yy_avr + zzz_avr - z_avr*zz_avr];
b = b/2;

resoult = inv(A)*b;

x00 = resoult(1);     %拟合出的x坐标
y00 = resoult(2);     %拟合出的y坐标
z00 = resoult(3);     %拟合出的z坐标
r = sqrt(xx_avr-2*x00*x_avr+x00*x00 + yy_avr-2*y00*y_avr+y00*y00 + zz_avr-2*z00*z_avr+z00*z00);   %拟合出的球半径r

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77

运行的结果如下: 
10 
11 
拟合后的x00=100.0502, y00=1.0491, z00=76.0512, r=2.0009与真实的x0=100, y0=1, z0=76, R=2非常的接近。

当然如果得到的球面数据不是在整个球面均匀分布的也可以得到很不错的拟合结果,当得到的数据如下图所示: 
12 
13 

拟合后的x00=100.0510, y00=1.0537, z00=76.0540, r= 1.9952与真实值依然很接近。

原文地址

http://blog.csdn.net/hj199404182515/article/details/53462512

但是个人感觉他的求导推导有问题

欢迎大家一起来讨论一下:


红色标记部分

欢迎高手给以解释,非常感谢

扫码关注我们:跟着数理化走天下


获得更多的信息哦,一起交流,一起成长哦:微信号:跟着数理化走天下,纯属个人的交流,无盈利目的


最小二乘法是一种常用的拟合方法,可以用来拟合线性和非线性函数。这里介绍如何用最小二乘法拟合非线性函数,并提供Matlab和Excel实现代码。 ## 一、最小二乘法拟合非线性函数 最小二乘法的基本思想是将实验数据拟合到一个数学模型中,使得实验数据与模型预测值之间的误差最小。对于非线性函数,最小二乘法的数学模型可以表示为: $$y=f(x,\theta)+\varepsilon$$ 其中,$y$是实验数据,$f(x,\theta)$是非线性函数模型,$\theta$是模型的参数,$\varepsilon$是误差项。我们的目标是找到最优的参数 $\theta$,使得误差最小。 最小二乘法的思路是通过最小化残差平方和来确定参数 $\theta$。残差指的是实验数据与模型预测值之间的差异,残差平方和可以用以下公式表示: $$S=\sum_{i=1}^{n}(y_i-f(x_i,\theta))^2$$ 其中,$n$是实验数据的个数。我们的目标是找到最小化 $S$ 的参数 $\theta$。 ## 二、Matlab实现 以下是用Matlab实现最小二乘法拟合非线性函数的代码: ```matlab % 实验数据 x = [1,2,3,4,5]; y = [0.5,0.8,1.2,1.5,2]; % 非线性函数模型 f = @(x,theta) theta(1)*x./(theta(2)+x); % 初始参数值 theta0 = [1,1]; % 最小化残差平方和 theta = fminsearch(@(theta) sum((y-f(x,theta)).^2),theta0); % 绘图显示拟合结果 plot(x,y,'o',x,f(x,theta),'-') legend('实验数据','拟合结果') ``` 这段代码首先定义了实验数据 $x$ 和 $y$,然后定义了非线性函数模型 $f$ 和初始参数值 $\theta_0$。接着,用 `fminsearch` 函数最小化残差平方和,并得到最优的参数 $\theta$。最后,用 `plot` 函数绘制实验数据和拟合结果的图形,并用 `legend` 函数添加图例。 ## 三、Excel实现 以下是用Excel实现最小二乘法拟合非线性函数的步骤: 1. 将实验数据 $x$ 和 $y$ 分别输入Excel表格中的两列。 2. 在Excel表格中选择两个空白单元格,输入非线性函数模型的公式,例如 `=A1*B1/(B1+A1)`。 3. 将这个公式拖动到所有实验数据的行中,得到所有模型预测值。 4. 在Excel表格中选择一个空白单元格,输入残差平方和的公式,例如 `=SUM((C2:C6-B2:B6)^2)`。 5. 调整参数 $\theta$ 的值,使得残差平方和最小化。 6. 可以用Excel的绘图功能绘制实验数据和拟合结果的图形。 这里需要注意的是,在Excel中实现最小二乘法需要手动调整参数 $\theta$ 的值,比较繁琐。如果数据量较大,建议使用Matlab等专业的数据分析工具实现
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值