NAR | 浙大朱峰组全球首个综合耐药性数据库DRESIS(drug resistance)

7c68a873dbb4d72239675df468171fbb.gif

近日,浙江大学药学院朱峰教授团队在Nucleic Acids Research发表题为《DRESIS: the first comprehensive landscape of drug resistance information》的文章,介绍了全球首个综合耐药性数据库DRESIS(http://dresis.idrblab.net/)。该研究工作构建的DRESIS,首次系统地提供了现有六种类型的耐药分子机制,涵盖了现有数据库中最广泛的疾病,并描述了临床/实验证实的20000多种药物的耐药数据。

8d9b84326d8db08ea79bd69054695376.png

图1. 已报道的发挥重要作用的六种耐药性机制示意图

DRESIS与其他同类数据库相比,具有更全面、更详细、更高效和持续更新完善的特点。通过采用机器学习算法和网络分析等技术,DRESIS提供方便用户进行数据查询和分析的功能,并提供清晰准确的数据展示和可交互型的可视化。

76bcb481527a7d706960318444f2c0ad.png

图2.药物阿霉素的耐药性信息

2def1c77db66fe07ce1e1cc03530ae33.png

图3.药物阿霉素的多种耐药机制交互式图

84b5a80e37051da82c48c6982e604b87.png

图4. 乳腺癌耐药性药物全景图

DRESIS的推出为耐药性问题的研究提供了新途径。它不仅可以帮助科研人员更好地理解药物的耐药性机制,还可以为开发新型药物、提高治疗效果提供重要支持。 

4b7aec92c484a3cbab919a489e8d2e31.png

论文链接:

https://doi.org/10.1093/nar/gkac812

880dc074ceb21837ec942ccef21941d0.png

END

0d0784d43953ce15cbf87137d459b7e9.png

图文编辑 | 张梦晴

图文排版 | 张桂阳

图文审核 | 张桂阳

猜你喜欢

iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
NAR(Nonlinear AutoRegressive)是一种基于神经网络的时间序列预测模型。与传统的ARMA、ARIMA等线性模型相比,NAR模型可以更好地处理非线性关系,并且可以处理多维时间序列数据。 在进行NAR模型的可行性分析时,需要考虑以下几个方面: 1. 数据的稳定性和平稳性:NAR模型需要的是平稳的时间序列数据,因此需要对数据进行平稳化处理。如果数据本身不平稳,则需要进行差分或者其他平稳化处理,以保证模型的可行性。 2. 数据的数量和质量:NAR模型需要足够的数据量来训练模型,同时也需要高质量的数据来保证模型的准确性。如果数据量不足或者数据质量较差,则可能会影响模型的可行性。 3. 模型的选择和参数调优:在进行NAR模型的可行性分析时,需要选择合适的模型结构和参数,并进行参数调优。如果模型结构不合适或者参数选择不当,则可能会影响模型的准确性和可行性。 4. 计算资源和时间成本:NAR模型需要较大的计算资源和时间成本来训练和预测。在进行NAR模型的可行性分析时,需要考虑计算资源和时间成本是否可行,并根据实际情况进行选择。 综上所述,NAR模型在时间序列预测方面具有较高的可行性,但需要注意数据的稳定性和平稳性、数据的数量和质量、模型的选择和参数调优、计算资源和时间成本等问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值