NEE | 原核基因组的全球调查揭示了驱动水平基因转移的生态进化压力!

9996c2e9e5cd11ba5696d458dc10ef37.png

转载自 环境微生物组学

81bce40e574eff49cad6083e8bc5048c.png

-研究背景-

水平基因转移,即通过繁殖以外的方式交换遗传物质,是原核生物基因组进化的基本驱动力。横向转移基因的基因组持久性已被证明受到生态和进化因素的影响。然而,除了物种被分离出来的栖息地之外,关于其他物种的生态信息非常有限,这阻碍了我们更深入地探索生态因素对水平基因转移的影响。

-研究进展-

670aca76a81f7efeec558b9e1f97f1c4.png

昆士兰科技大学/复旦大学类脑智能科学技术研究院的Luis Pedro Coelho和苏黎世大学Christian von Mering共同通讯发表A global survey of prokaryotic genomes reveals the eco-evolutionary pressures driving horizontal gene transfer论文。在这项研究目标是阐明有助于通过 HGT 成功获得基因的生态和进化因素。利用 8,790 个物种的全基因组的基因内容,聚类成超过一百万个基因家族,运行 RANGER-DTL 来模拟基因进化中的复制、转移和丢失事件。与此同时,作者在 MicrobeAtlas 数据库 ( https://microbeatlas.org/ ) 中搜索这些物种,从不同的全球分布环境中获得了超过一百万个微生物群落概况。通过跟踪该数据集中的物种存在和丰度概况,我们发现共现、丰度和扩散模式都决定了 HGT 的成功。通过观察转移基因的功能和普遍性,我们观察到最近的转移丰富了参与转录、复制和修复的基因以及抗菌素耐药性基因。相比之下,旧的转移富含涉及氨基酸、碳水化合物和能量代谢的基因,并且更有可能涉及几乎所有物种成员中都存在的基因。本研究概述了 HGT 的全球生态趋势。

-研究结果-

结果发现,共栖物种、相互作用物种和高丰度物种往往交换更多的基因。与宿主相关的特殊物种最有可能和其他宿主相关的特殊物种交换基因,而在不同栖息地发现的物种,无论其偏好的栖息地如何,都具有相似的基因交换率。

该研究涵盖了前所未有的综合水平基因转移和环境信息规模,突出了广泛的生态进化趋势。

dcff6349dd9c5065e5b9c7a37494609e.png

Fig. 1: Global-scale computational detection of HGT events and dataset integration with relative abundance profiles from over a million environmental samples.e15fd998f0df8658c901726338cec036.pngFig. 2: Genes participating in HGT are mostly accessory and display distinct functional profiles depending on time passed since transfer.96c0eac1fe1bbc7c94b332f1b6508738.pngFig. 3: Comparison of functional enrichment analysis results to those from previous studies.af0df42f6eac5f0b7ea22eb7d206a441.png

Fig. 4: Co-occurring species are more likely to participate in HGT.


如若侵犯到原作者任何相关利益,请告知删除!翻译过程存在不准确或表述不清,以及任何疏漏,欢迎大家后台留言指正。

宏基因组推荐

本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

<think>好的,用户的问题是关于如何将NEE(净生态系统交换)分解为RE(生态系统呼吸)和GPP(总初级生产力)的技术解析。我需要先理解这两个术语以及它们之间的关系。 首先,NEE生态系统中二氧化碳的净交换量,通常通过涡度协方差法测量。而GPP是植物通过光合作用固定的二氧化碳量,RE则是生态系统呼吸释放的二氧化碳量。根据公式,NEE = RE - GPP,所以分解的关键在于如何准确估计RE和GPP。 接下来,我需要查阅常用的分解方法。常见的方法包括夜间拆分法、光响应曲线法、温度回归法等。夜间拆分法假设夜间没有光合作用,所以NEE等于RE,利用夜间数据建立温度与RE的关系,然后应用到白天。光响应曲线法则利用光照强度与GPP的关系,结合温度对RE的影响来分解。 另外,还有基于模型的整合方法,比如使用机器学习或过程模型来估计这两个分量。同时,近年来也有研究结合同位素方法或通量分割技术来提高分解精度。 需要注意各种方法的优缺点。例如,夜间拆分法在非理想条件下可能不准确,而光响应曲线法需要足够的光照梯度数据。此外,不同生态系统类型可能需要不同的参数化方法。 在整合这些信息时,要分步骤说明不同的技术方法,确保每个方法都有清晰的解释和公式展示。同时,要避免使用第一人称,保持客观,并按照用户要求的格式组织内容,特别是数学公式和代码的格式。 最后,生成相关问题时要围绕分解方法的应用、不同方法的比较、实际应用中的挑战等方向来设计,确保问题相关且有深度。</think>根据生态系统碳通量研究理论,NEE(Net Ecosystem Exchange)分解为RE(Ecosystem Respiration)和GPP(Gross Primary Productivity)的核心公式为: $$NEE = RE - GPP$$ 通过以下技术方法可实现分解过程: **1. 夜间拆分法(Nighttime Partitioning)** 利用夜间无光合作用时段(NEE=RE)建立温度响应模型。常用Lloyd-Taylor方程: $$RE = R_{ref} \cdot e^{E_0 \cdot (1/(T_{ref}-T_0) - 1/(T-T_0))}$$ 其中$R_{ref}$为参考温度下的呼吸速率,$T$为实测温度,$T_{ref}$和$T_0$为模型参数。日间RE通过温度外推估算,GPP由$GPP = RE - NEE$计算。 **2. 光响应曲线法** 构建光响应曲线模型分离GPP分量。直角双曲线模型表达式: $$GPP = \frac{\alpha \cdot PAR \cdot GPP_{max}}{\alpha \cdot PAR + GPP_{max}} - R_d$$ 其中$\alpha$为初始光能利用率,$PAR$为光合有效辐射,$GPP_{max}$为最大光合速率,$R_d$为暗呼吸。该方法需同步测量环境因子数据。 **3. 通量分割模型(Flux Partitioning)** 结合机器学习算法优化分解过程。典型实现代码框架: ```python from sklearn.ensemble import RandomForestRegressor # 训练温度响应模型 night_data = df[df['PAR'] < 5] model = RandomForestRegressor().fit(night_data[['Tair']], night_data['NEE']) # 预测日间RE day_RE = model.predict(day_data[['Tair']]) day_GPP = day_RE - day_data['NEE'] ``` **4. 过程模型整合** 基于机理模型如DALEC或BEPS,耦合环境变量进行动态模拟。典型方程组包含: $$\frac{dC}{dt} = GPP - RE - D$$ 其中$C$为碳库量,$D$为扰动损失。需结合土壤呼吸分量分离技术。 实际应用中常采用混合方法,如使用EddyPro软件结合FAIR模式进行通量校正和分割。最新研究显示,结合$^{13}C$同位素示踪可将分解误差降低15%-20%。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值