点击蓝字 关注我们
炎症蛋白联合检测有利于诊断甲状腺乳头状癌和结节性甲状腺肿
研究论文
● 原文链接DOI: https://doi.org/10.1002/imo2.14
●2024年7月2日,暨南大学潘永勤、杨华团队在iMetaOmics在线发表了题为“Combined detection of inflammatory proteins is beneficial for diagnosing the papillary thyroid carcinoma and nodular goiter”的文章。
● 本研究收集了18名健康志愿者(作为健康对照)、12名结节性甲状腺肿患者和34名PTC患者,通过邻近延伸分析法分析血清炎症蛋白。受试者操作特征曲线分析用于通过曲线下面积(AUC)分析评估蛋白质差异表达的诊断潜力。这项研究为临床实践中区分PTC和结节性甲状腺肿提供了潜在的生物标志物。从LASSO算法得到的组合优于逻辑回归。
● 第一作者:潘永勤、徐铭禧
● 通讯作者:杨华(yangwah@qq.com)
● 合作作者:庄子康、谢思平、黄坤宋、王光浩、马玉华
● 主要单位:暨南大学附属第一医院甲状腺外科、暨南大学附属第一医院肥胖代谢外科、暨南大学附属第一医院病案室
亮 点
● PTC、结节性甲状腺肿和健康对照组之间共发现36种差异表达的炎症蛋白;
● TGF-α+CXCL11在区分结节性甲状腺肿和健康对照方面显示出有希望的诊断能力;
● TGF-α+CXCL11在区分PTC和健康对照方面表现出有希望的诊断能力;
● GDNF+CXCL5+ARTN在区分PTC和结节性甲状腺肿方面表现出最佳的诊断有效性;
● LASSO算法得出的组合优于逻辑回归,尽管蛋白质数量更高。
摘 要
细针穿刺细胞学和影像学检查是甲状腺乳头状癌(PTC)的常用诊断工具。然而,这些方法有一定的局限性。炎症蛋白具有作为诊断和预后标志物以及治疗靶点的潜力。然而,炎症蛋白在PTC中的表达谱和诊断作用尚不清楚。本研究收集了18名健康志愿者(作为健康对照)、12名结节性甲状腺肿患者和34名PTC患者,通过邻近延伸分析法分析血清炎症蛋白。受试者操作特征曲线分析用于通过曲线下面积(AUC)分析评估蛋白质差异表达的诊断潜力。PTC、结节性甲状腺肿和健康对照组共发现36种差异表达的炎症蛋白。Logistic回归分析得出的联合诊断在区分结节性甲状腺肿与健康对照组(AUC=0.88)、区分PTC与健康对照(AUC=889)以及区分PTC与结节性甲状腺肿大(AUC=0.087)方面显示出良好的诊断能力。而来自最小绝对收缩和选择算子(LASSO)的联合诊断在区分结节性甲状腺肿与健康对照组(AUC=0.92)、区分PTC与健康对照(AUC=0.093)以及区分PTC与结节性甲状腺肿大(AUC=0.93)方面显示出有希望的诊断能力。总的来说,这项研究为临床实践中区分PTC和结节性甲状腺肿提供了潜在的生物标志物。从LASSO算法得到的组合优于逻辑回归。
视频解读
Bilibili:https://www.bilibili.com/video/BV1oS411c79a/
Youtube:https://youtu.be/cZJ8GrZMGPE
中文翻译、PPT、中/英文视频解读等扩展资料下载
请访问期刊官网:http://www.imeta.science/imetaomics/
全文解读
引 言
甲状腺癌症是最常见的内分泌恶性肿瘤,自2000年以来,其发病率在中国和世界范围内均显著上升。然而,死亡率在同一时期保持相对稳定。2020年,全球男性甲状腺癌症的年龄标准发病率为10.1/10万,女性为3/10万,相应的死亡率分别为0.5/10万和0.3/10万。2019年,甲状腺癌症的发病率和死亡率分别为2.05/10万和0.39/10万。甲状腺癌症可根据病理类型进行分类,包括乳头状甲状腺癌(PTC)、毛囊性甲状腺癌(FTC)、髓样甲状腺癌(MTC)和间变性甲状腺癌症(ATC),其中PTC约占所有甲状腺癌的80%-85%。细针穿刺细胞学(FNAC)和影像学检查是临床上常用的PTC诊断工具。虽然影像学检查可以为甲状腺侵犯提供有价值的术前指导,但它们对早期肿瘤诊断的阳性率较低。FNAC仍然是甲状腺恶性肿瘤术前诊断的金标准。然而,这是一种侵入性手术,有严重并发症的风险,非诊断率约为10%-20%。因此,PTC的诊断仍存在一些不确定性,需要开发更方便、安全、准确的方法。
免疫系统在PTC的发展和进展中起着重要作用。慢性炎症与甲状腺癌症风险增加之间存在正相关关系,这作为甲状腺癌症发生的主要罪魁祸首机制越来越受到关注。炎症蛋白已被确定为潜在的诊断和预后标志物以及治疗靶点。然而,这些炎症蛋白在甲状腺癌症中的表达情况仍存在一些不确定性。
接近延伸分析(PEA)是一种创新的蛋白质检测和定量技术。PEA将蛋白质和抗体免疫反应技术与寡核苷酸扩增技术相结合,利用独特的抗体-寡核苷酸蛋白质结合和实时聚合酶链式反应(PCR)进行定量测量。PEA具有较高的特异性、敏感性和检测通量,是检测PTC生物标志物的一个有吸引力的选择。本研究旨在评估PTC患者血清中炎症蛋白的广泛表达。通过测量参与者血清中92种炎症相关蛋白,该研究旨在确定PTC患者炎症蛋白的差异表达,并确定潜在的诊断标志物。这项研究有可能揭示PTC的新诊断生物标志物,为炎症在甲状腺癌症中的作用提供有价值的见解,并有可能为改进诊断和治疗策略铺平道路。
结 果
患者特征
本研究共招募了64人,其中29人为男性,35人为女性。参与者的平均年龄为37.80±12.08岁。每组的基线数据如表S1所示。结节性甲状腺肿和PTC患者的年龄、性别、游离三碘甲状腺原氨酸和游离甲状腺素有显著变化。
健康对照组、结节性甲状腺肿和PTC患者炎症蛋白的差异
使用热图表示健康对照、结节性甲状腺肿和PTC样本中炎症蛋白的表达(图1A)。比较显示,健康对照组和结节性甲状腺肿之间有16种差异表达的炎症蛋白,健康对照和PTC之间有34种差异表达炎症蛋白,结节性甲状腺肿大和PTC之间还有2种差异表达炎性蛋白。图1B中的维恩图说明了三组的交叉点,揭示了36种差异表达的炎症蛋白。随后,对这36种蛋白进行了功能和信号通路富集分析,如图1C,D所示。分析表明,差异表达的炎症蛋白与白细胞迁移、细胞趋化性、受体配体活性、信号受体激活剂活性、细胞因子-细胞因子-受体相互作用、病毒蛋白与细胞因子和细胞因子受体的相互作用以及趋化因子、NF-κB、JAK-STAT和PI3K-Akt信号通路等过程之间存在强烈关联。此外,集中于36个基因的相关性和蛋白质网络分析如图1E,F所示。结果表明,这些蛋白质大多属于CXCL家族和白细胞介素类,表现出强大的相关性和相互联系。
图1. 分析PEA后炎症蛋白的功能、调节信号通路和相关分析
(A) 热图显示了健康对照组(HC)、结节性甲状腺肿(NG)和甲状腺乳头状癌(PTC)之间炎症蛋白水平的差异。(B) 维恩图说明了这三组的交集。(C) 对这36种蛋白质进行了功能和信号通路富集分析。(D) 对这36种蛋白质进行了信号通路富集分析。(E) 以36个基因为重点的相关分析。(F) 以36个基因为重点的蛋白质网络分析。
研究了不同蛋白质的炎症生物标志物对健康对照结节性甲状腺肿的诊断作用
使用ROC曲线分析评估了36种不同蛋白质在区分结节性甲状腺肿和健康对照方面的诊断效率。结果表明,CXCL11、CXCL10和CCL11显示出最佳的个体诊断性能(表S2)。当与三种蛋白质组合进行诊断时,CXCL11+CXCL10(C1)组合在区分结节性甲状腺肿与健康对照方面显示出最高的诊断功效(图2A和表1),而CXCL11+CXCL10(C1)的组合在区分PTC与健康对照方面方面也显示出最高诊断功效(表2B和表S3)。结合三种蛋白进行诊断,CCL11在区分PTC和结节性甲状腺肿方面表现出最佳的诊断效果。然而,与CXCL11、CXCL10和CCL11联合使用的诊断性能较差(图2C和表S4)。这些结果表明,CXCL11+CXCL10是区分结节性甲状腺肿与健康对照(AUC=0.86)和区分PTC与健康对照的潜在诊断生物标志物(AUC=0.083)。
图2. 通过受试者操作特征(ROC)曲线分析了区分健康对照组、结节性甲状腺肿和甲状腺乳头状癌(PTC)的最佳诊断效果
(A-C)ROC曲线用于确定CXCL11、CXCL10和CCL11对来自健康对照(A)的结节性甲状腺肿、来自健康对照的PTC(B)和来自结节性甲状腺肿大的PTC(C)的诊断性能;C1表示CXCL11+CXCL10;C2表示CXCL11+cc11;C3表示CXCL10+cc11;C4表示CXCL11+CXCL10+CCL11。(D-F)ROC曲线用于确定TGF-α、CXCL11和CXCL10对健康对照组PTC(D)、健康对照组的PTC(E)和结节性甲状腺肿PTC(F)的诊断性能;C1表示TGF-α+CXCL11;C2表示TGF-α+CXCL10;C3表示CXCL11+CXCL10;C4表示TGF-α+CXCL11+CXCL10。(G-J)ROC曲线用于确定GDNF、MMP-1、CXCL5和ARTN对结节性甲状腺肿PTC(G和H)、健康对照PTC(I)和结节性甲状腺肿大PTC(J)的诊断性能;C1表示GDNF+MMP-1;C2表示GDNF+CXCL5;C3表示GDNF+ARTN;C4表示MMP-1+CXCL5;C5表示MMP-1+ARTN;C6表示CXCL5+ARTN;C7表示GDNF+MMP-1+CXCL5;C8表示GDNF+MMP-1+ARTN;C9:GDNF+CXCL5+ARTN;C10表示MMP-1+CXCL5+ARTN;C11表示GDNF+MMP-1+CXCL5+ARTN。
表1. CXCL11、CXCL10和CCL11在区分结节性甲状腺肿和健康对照中的诊断准确性
研究了不同蛋白质的炎症生物标志物用于诊断健康对照的PTC
使用ROC曲线分析评估了36种不同蛋白质在区分PTC和健康对照方面的诊断效率。结果表明,TGF-α、CXCL11和CXCL10显示出最佳的个体诊断性能(表S2)。当与三种蛋白质组合用于诊断时,TGF-α+CXCL11(C1)、TGF-α+CXCL11(C2)和TGF-α+CXCL11+CXCL10(C4)的组合在区分PTC与健康对照方面显示出最高的诊断功效(图2D和表2)。此外,三种类型的组合具有相似的诊断功效。TGF-α、CXCL11和CXCL10的联合诊断进一步评估了结节性甲状腺肿与健康对照的区别,TGF-α+CXCL11(C1)和TGF-α+CXCL11+CXCL10(C4)的联合诊断效果最高(图2E和表S5)。然而,当区分PTC和结节性甲状腺肿时,联合TGF-α、CXCL11和CXCL10的诊断性能较差(图2F和表S6)。这些结果表明,TGF-α+CXCL11是区分结节性甲状腺肿与健康对照(AUC=0.88)和区分PTC与健康对照的潜在诊断生物标志物(AUC=889)。
表2. TGF-α、CXCL11和CXCL10在区分甲状腺乳头状癌和健康对照中的诊断准确性
研究不同蛋白质的炎症生物标志物对结节性甲状腺肿PTC的诊断价值
使用ROC曲线分析评估了36种不同蛋白质在区分PTC和结节性甲状腺肿方面的诊断效率。结果表明,GDNF、MMP-1、CXCL5和ARTN显示出最佳的个体诊断性能(表S2)。当结合三种蛋白质进行诊断时,GDNF+CXCL5+ARTN(C8)和GDNF+MMP-1+CXCL5+ARTN(C11)的组合在区分PTC和结节性甲状腺肿方面显示出最高的诊断功效(图2G、H和表3)。GDNF、MMP-1、CXCL5和ARTN的联合诊断在区分结节性甲状腺肿和健康对照方面得到了进一步评估,GDNF+CXCL5+ARTN(C8)的联合诊断效果最高(图2I和表S7)。然而,当区分PTC与健康对照时,联合GDNF、MMP-1、CXCL5和ARTN的诊断性能较差(图2J和表S8)。总的来说,这些结果表明GDNF+CXCL5+ARTN是区分PTC与结节性甲状腺肿(AUC=0.87)和区分结节性甲状腺肿大与健康对照(AUC=0.084)的潜在诊断生物标志物。
表3. GDNF、MMP-1、CXCL5和ARTN在区分甲状腺乳头状癌和结节性甲状腺肿中的诊断准确性
利用最小绝对收缩和选择算子(LASSO)算法开发了甲状腺癌症的诊断标志物
为了诊断健康对照组的结节性甲状腺肿,进行了LASSO算法,并确定了六种生物标志物,用于诊断健康对照的结节性甲肿(图3A)。为了诊断健康对照组的PTC,进行了LASSO算法,并确定了五种生物标志物用于诊断健康对照的PTC(图3B)。为了诊断结节性甲状腺肿的PTC,进行了LASSO算法,并确定了八种用于诊断结节性甲肿PTC的生物标志物(图3C)。LASSO算法显示出最佳诊断效果后,将这些蛋白质组合用于诊断(表4)。
图3. 使用最小绝对收缩和选择算子(LASSO)算法开发了健康对照、结节性甲状腺肿和甲状腺乳头状癌(PTC)的诊断标志物
(A) LASSO系数曲线、LASSO系数筛查和ROC曲线用于诊断健康对照的结节性甲状腺肿。(B) LASSO系数曲线、LASSO系数筛查和ROC曲线用于诊断健康对照的PTC。(C) LASSO系数曲线、LASSO系数筛查和ROC曲线诊断结节性甲状腺肿PTC。
表4. 通过最小绝对收缩和选择算子算法区分健康对照、结节性甲状腺肿和甲状腺乳头状癌(PTC)的诊断准确性
结节性甲状腺肿和PTC发生的危险因素分析
将差异蛋白以及年龄和性别纳入二元逻辑回归分析模型。在控制了年龄和性别等混杂因素后,与健康对照组相比,发现TNFSF14、CCL11、ARTN、VEGFA、TGF-α、CXCL11和CXCL10等7种蛋白质是结节性甲状腺肿发生的危险因素(表5);此外,与健康对照组相比,发现28种蛋白质,包括TGF-α、CXCL11、CCL4、MCP4、VEGFA、DNER、HGF、CXCL10、CCL28、TWEAK、MCP-1、OSM、TNFSF14、CCL3、AXIN1、LAP-TGF-β1、MCP2、IL7、CCL11、β-NGF、IL8、IL2、GDNF、IL6、LIF、IFN-γ、CX3CL1、CXCL6是PTC发生的风险因素(表6)。此外,与健康对照组相比,包括TNFSF14、CCL11、VEGFA、TGF-α、CXCL11和CXCL10在内的六种蛋白质被发现是结节性甲状腺肿和PTC发生的常见风险因素。
表5. 列出了影响结节性甲状腺肿发生的危险因素
注:采用二元物流回归分析模型,评价36种差异蛋白对结节性甲状腺肿发生的影响。控制了年龄和性别的混淆因素。只有具有显著影响的蛋白质才会出现在结果中。
表6. 列出了影响甲状腺乳头状癌(PTC)发生的危险因素
注:使用二元物流回归分析模型来评估36种差异蛋白对PTC发生的影响。控制了年龄和性别的混淆因素。只有具有显著影响的蛋白质才会出现在结果中。
炎症蛋白主要差异的表达
最佳诊断方案(包括逻辑回归和LASSO算法)中包括的蛋白质的表达水平,即CXCL11、CCL11、TGF-α、GDNF、CXCL5、ARTN、TNFSF14、CXCL9、CXCL10、HGF、OSM、TWEAK、MMP-1和CXCL5,以及与常见风险因素相关的蛋白质,即TNFSF15、CCL111、VEGFA、TGF-a、CXCL11和CXCL10,如图5所示。相比之下,与健康对照组相比,结节性甲状腺肿的CXCL11、TGF-α、CXCL5、ARTN、TNFSF14、CCL11、VEGFA、CXCL10、CXCL9和HGF蛋白显著升高。类似地,PTC显示蛋白CXCL11、TGF-α、GDNF、TNFSF14、CCL11、VEGFA、CXCL10、OSM、TWEAK和MMP-1显著升高。此外,与结节性甲状腺肿组相比,PTC组的CXCL5和ARTN蛋白显著降低。
图4. 显示了CXCL11、TGF-α、GDNF、CXCL5、ARTN、TNFSF14、CCL11、VEGFA、CXCL10、CXCL9、HGF、OSM、TWEAK和MMP-1的蛋白表达
使用邻近延伸测定检测方法检测炎症蛋白的表达水平。通过散点图显示健康对照组(HC,n=18)、结节性甲状腺肿组(NG,n=12)和甲状腺乳头状癌(PTC,n=34)的蛋白质表达*p<0.05**p<0.01***p<0.001。
讨 论
本研究利用PEA技术分析了三组96种炎症蛋白的表达。此外,我们还研究了这些组中差异表达蛋白的诊断潜力。Logistic回归结果显示,TGF-α+CXCL11在区分结节性甲状腺肿与健康对照组(AUC=0.88)和区分PTC与健康对照(AUC=889)方面表现出良好的诊断能力;GDNF+CXCL5+ARTN(AUC=0.87)在区分PTC和结节性甲状腺肿方面表现出最佳的诊断有效性。LASSO算法结果显示,TGF-α+CXCL11+TNFSF14+CCL11+CXCL9+ARTN(AUC=0.92)在区分结节性甲状腺肿和健康对照方面表现出良好的诊断能力;TGF-α+CXCL11+CXCL10+HGF+OSM(AUC=0.93)显示出作为区分PTC与健康对照的诊断生物标志物的潜力;α+TWEAK+CL11+GDNF+CXCL9+MMP-1+CXCL5+ARTN(AUC=0.93)在区分PTC和结节性甲状腺肿方面显示出最佳的诊断有效性。最后,本研究表明,与健康对照组相比,六种蛋白质,即TNFSF14、CCL11、VEGFA、TGF-α、CXCL11和CXCL10,是结节性甲状腺肿和PTC发生的常见风险因素。
随着医学成像技术的进步,甲状腺结节的检出率在最常见的甲状腺结节类型中显著提高,即PTC和结节性甲状腺肿。外科切除术通常用于治疗PTC,而许多结节性甲状腺肿病例不需要手术。射频消融和激光消融通常是热消融结节性甲状腺肿的主要方法。甲状腺结节的术前诊断不确定和良性结节的过度诊断问题日益突出。不必要的手术增加了患者及其家人的负担,同时降低了患者的生活质量。甲状腺细针穿刺活检被认为是术前诊断的金标准;然而,这是一种侵入性手术,会增加患者的身心压力以及经济负担。因此,迫切需要找到一种无创、更准确的术前诊断方法。先前的研究表明,蛋白质可能是区分PTC、结节性甲状腺肿和健康对照的潜在诊断生物标志物。术前血清标志物甲状腺球蛋白和1-25-二羟基维生素D被认为是鉴别甲状腺癌症的潜在工具。与健康对照组和良性甲状腺结节患者相比,甲状腺癌症患者血清胰岛素样生长因子1水平显著升高,突出了其作为区分PTC和健康对照组的诊断标志物的潜力(AUC=0.71)。术前结合甲状腺刺激激素、全身免疫炎症指数、淋巴细胞-单核细胞比率和超声特征的测量,可以准确区分PTC和良性甲状腺结节(AUC=0.808)。此外,ISG15和PLXNB2的联合诊断可以将PTC与健康对照区分开来,甚至可以将I期PTC与健康控制区分开来。然而,对炎症标志物在PTC中的诊断作用缺乏系统的研究。在癌症胆道中,PEA结果显示IL-6和IL-15的组合是最强的生存预测因素。CEA+IL6联合诊断可作为癌症早期诊断的生物标志物。在本研究中,逻辑回归和LASSO算法的结合都表现出良好的诊断性能;然而,从LASSO算法导出的组合优于逻辑回归,尽管具有更高数量的蛋白质特征。
趋化因子是一类分泌的小细胞信号蛋白,在与癌症相关的炎症介导网络中发挥着至关重要的作用,有助于维持和发展肿瘤相关炎症。趋化因子及其受体有助于形成癌症甲状腺的免疫微环境。本研究确定CXCL11、CXCL5、CXCL10、CXCL9和CCL11为PTC的潜在诊断标志物或风险因素。先前的研究表明,CXCL11在PTC患者中的表达增强,与促进内皮细胞迁移和血管生成有关。此外,晚期PTC患者的CCL11水平显著升高。在先前研究结果的基础上,本研究加强了CXCL11和CCL11表达增强与PTC的联系,以及它们作为PTC发生的风险因素的作用。此外,还观察到TC细胞和组织中CXCL5的上调。然而,这项研究发现,尽管CXCL5表达上调,但PTC组和健康对照组之间没有显著上调。此外,CXCL10在PTC中下调,并与甲状腺癌症患者较低的总生存率有关。与之前的研究相反,这项研究表明CXCL10在PTC中高度表达,是其发生的风险因素。它需要进一步分析,扩大样本量,以阐明这种差异的原因。
此外,该研究表明VEGFA和TGF-α是PTC发生的危险因素。TGF-α在PTC中过表达,抑制TGF-α已被证明可增强TC细胞对顺铂的敏感性并抑制肿瘤生长。VEGF-A促进PTC中的肿瘤血管生成和生长。研究表明,TGF-α在癌症中促进VEGF-A表达,从而刺激肿瘤血管生成中的作用。与以往的研究一致,本研究重申了VEGFA和TGF-α在PTC中的高表达,强调了它们作为PTC发生的危险因素的重要性。
此外,本研究发现GDNF、ARTN、HGF、TWEAK、OSM和MMP-1可成为PTC的诊断标志物。GDNF激活GFRα1/RET,促进甲状腺癌症细胞增殖,并发挥致癌基因的作用。ARTN蛋白是神经胶质细胞源性神经营养因子(GDNF)家族配体(GFL)的一种亚型,是GDNF家族的第四个成员。最近的研究表明,ARTN蛋白在促进细胞趋化、粘附和迁移方面发挥着重要作用,因此在介导肿瘤细胞侵袭和转移方面具有重要意义。ARTN在宫颈癌症组织中过表达,促进宫颈癌症细胞的增殖、侵袭和迁移。HGF和MMP-1在PTC中的表达明显增加,并促进PTC的发展。这项研究表明,与结节性甲状腺肿患者相比,PTC患者的GDNF和ARTN水平增加,尤其是ARTN水平显著增加。此外,与健康对照组相比,PTC患者的HGF、TWEAK、OSM和MMP-1均增加,而PTC和结节性甲状腺肿患者的这些变化没有明显变化。
目前的研究有几个局限性。首先,这项研究的样本量很小,需要在未来进行扩展以验证结果。其次,分析依赖于PEA结果,并且需要使用ELISA或其他蛋白质检测技术进行验证。此外,采集标本的年龄和性别差异可能会给结果带来偏差。此外,这项研究只收集了一家医院的样本,这可能会影响结果的可靠性。因此,在随后的实验中,我们将收集外部医院样本进行验证。其次,在临床实践中还没有相关的试剂盒来检测联合诊断蛋白;如果直接使用Olink Target 96炎症面板进行测试,成本将相对昂贵(2500元人民币)。
结 论
这项研究为临床实践中区分PTC和结节性甲状腺肿提供了潜在的生物标志物,从而有助于制定治疗策略和减轻过度治疗。此外,与逻辑回归相比,LASSO算法的结果显示出更好的诊断效果,尽管需要更多的蛋白质组合(表S9)。这意味着,虽然LASSO算法产生了优越的诊断结果,但它也带来了更高的成本。因此,需要进一步的研究来在诊断准确性和医疗支出之间取得平衡。
方 法
患者选择
这项研究的重点是2023年1月至2023年6月期间我院甲状腺外科的结节性甲状腺肿和PTC患者。PTC患者根据组织病理学结果使用世界卫生组织概述的标准进行评估和分类。具体而言,PTC患者的术后组织病理学诊断证实了PTC的存在,而结节性甲状腺肿患者则是通过病理结果在术后诊断的。参与研究的健康志愿者在我院接受了全面的身体检查,并在甲状腺超声检查后确认无甲状腺相关疾病。此外,所有参与者在纳入研究之前都提供了知情同意书。研究参与者的排除标准为:(1)存在涉及高血压、糖尿病、心血管、胃肠道、肾脏或肺部疾病或其他癌症的全身性疾病。(2) 复发性PTC。(3) 自身免疫性甲状腺疾病的存在。(4) 研究前6个月内的手术史。(5) 吸烟。(6) 测试前使用甲状腺相关药物。制定这些标准是为了确保研究专注于特定的队列,并最大限度地减少潜在的混杂因素。
样品收集和储存
该研究包括18名健康志愿者(健康对照)、12名结节性甲状腺肿患者和34名PTC患者。从每个参与者收集5mL的血样,然后进行离心以获得血清。将血清样品储存在-80°C下进行进一步分析。
PEA测试
为了评估炎症蛋白,使用Olink Target 96炎症小组(Olink Bioscience,Uppsala,Sweden)进行PEA分析。实验程序遵循Olink Target 96炎症小组提供的说明。简言之,从20μL血清中提取的蛋白质与Olink Target 96炎症小组中提供的寡核苷酸序列进行免疫连接。然后,使用DNA聚合酶扩增成对的寡核苷酸序列。通过qPCR检测(Signature Q100,Olink)测量扩增的序列,并且使用NPX Signature软件(Olink)将qPCR检测的数据表示为标准化蛋白表达(NPX)。NPX的定义可以在之前的研究中找到。
统计分析
数据分析采用SPSS 19.0版软件进行。连续变量表示为平均值±标准差,并通过单因素方差分析进行分析。计数数据以百分比表示,并使用Fisher精确检验进行分析。在线网站上分析了基因本体论术语和京都基因和基因组百科全书(KEGG)途径富集分析(https://www.xiantaozi.com/products),FDR阈值<0.05。蛋白质网络通过STRING数据库进行分析。受试者操作特征(ROC)曲线分析评估了曲线下面积(AUC)、临界值、敏感性和特异性。诊断有效性随着AUC的增加而提高。此外,使用LASSO算法开发了甲状腺癌症的联合诊断标志物(https://www.xiantaozi.com/products). 通过Spearman相关系数评估不同炎症蛋白之间的相关性。最后,应用二元逻辑回归模型分析风险因素,炎症蛋白作为自变量,年龄和性别作为混杂因素。
代码和数据可用性
本文不生成新的测序数据和脚本。支持信息(表格、图形摘要、幻灯片、视频、中文翻译版本和更新材料)可在在线DOI或iMeta Science中找到http://www.imeta.science/imetaomics/。
引文格式:
Yongqin Pan, Mingxi Xu, Tsz Hong Chong, Siping Xie, Kunsong Huang, Guanghao Wang, Yuhua Ma, Jinyi Li, Wah Yang. 2024. "Combined detection of inflammatory proteins is beneficial for diagnosing the papillary thyroid carcinoma and nodular goiter". iMetaOmics 1: e14. https://doi.org/10.1002/imo2.14
作者简介
潘永勤(第一作者)
● 副主任医师,外科学博士,硕士研究生导师。
● 从事外科临床工作15年,擅长经胸、经口、经颏下前庭腔镜及开放甲状腺及甲状旁腺的手术治疗,甲状腺恶性肿瘤综合治疗,手术风格精巧细腻,治愈了多例高难度甲状腺手术患者,擅长甲状腺肿瘤的穿刺及消融手术,具有彩色超声上岗证和消融治疗手术资质,技术精准,深受患者好评。多次被评为医院先进个人,医德考评优秀个人。研究方向:甲状腺及甲状旁腺疾病的诊治,喉返神经损伤的修复。主持省部课题一项,其它课题多项,在柳叶刀等国内外权威和核心期刊上发表学术论文十余篇。社会任职:广东省医师协会甲状腺专业委员会委员,广东省医师协会甲状腺专业委员会青年委员,广东省医学教育协会专业委员会委员,广州市医学会甲状腺疾病分会委员。
徐铭禧(第一作者)
● 在读暨南大学外科学硕士。
● 目前研究的主要课题为甲状腺乳头状癌生物标记物。
杨华(Wah Yang)(通讯作者)
● 暨南大学肥胖代谢研究所副所长。
● 暨南大学附属第一医院肥胖代谢外科/减重中心临床研究及培训主管,国际肥胖代谢外科青年联盟(Young IFSO)主席,亚太肥胖与肌肉衰减代谢联盟(APAOSM)办公室主任兼秘书长,全球肥胖协作组(Global Obesity Collaborative, GOC)主管,美国肥胖代谢外科学会(ASMBS)国际发展委员会委员,国际肥胖代谢外科联盟(IFSO)学术委员会(Scientific Committee)委员,国际机器人外科学会(TROGSS)创始成员兼顾问,中国肥胖代谢外科研究协作组及数据库(COMES Collaborative & Database)主管,中国营养保健食品协会体重管理专业委员会常务委员,中国医师协会外科医师分会肥胖代谢外科综合管理专家工作组(CSMBS IH)委员兼秘书,暨南大学创新创业训练计划导师:获国家级创新创业项目立项,国内期刊:中华肥胖与代谢病电子杂志(编辑部主任);中国普通外科杂志(中青年编委),国际期刊:Obesity Surgery, iMeta, iMetaOmics, MTOD, MIS, ABS等副主编;JMR编辑部主任;PN, JMBS, JBS等期刊编委;英国外科学杂志(BJS)青年委员;Advanced Science, International Journal of Surgery, American Journal of Gastroenterology等审稿专家,IFSO Scholarship获奖者(全球仅4个名额)。专注肥胖代谢外科交叉学科研究,减重手术专用光导胃管发明人,获多项国家专利。其研发的减重专用营养补充代餐,广泛应用于临床。以第一/通信/共同作者在NEJM, LANCET, LANCET Diabetes & Endocrinology, LANCET Global Health, LANCET Digital Health, JAMA Surgery, Nature Communications, Cell子刊Trends in Endocrinology and Metabolism, Cell Reports Medicine, Journal of Hepatology, Anaesthesia, Annals of Surgery, International Journal of Surgery, American Journal of Gastroenterology, British Journal of Surgery等期刊发表论文100多篇,单篇最高IF>202 (LANCET, 2021年)。Google Scholar 总被引>4400次(2024年7月),H指数28,入选ESI高被引论文。全球学者库2021年度中国学者发表四大顶级医学期刊论文影响力排名Top 25。
iMetaOmics
更多资讯
● iMeta姊妹刊iMetaOmics(定位IF>10)欢迎投稿!(2024.2.27)
● iMeta姊妹刊iMetaOmics编委招募 (定位IF>10) (2024.3.2)
● iMeta姊妹刊iMetaOmics电子版和印刷版ISSN申请获批(2024.4.1)
● iMeta姊妹刊iMetaOmics投稿系统正式上线(2024.4.17)
● iMeta姊妹刊iMetaOmics主编正式官宣(2024.4.22)
● 出版社iMetaOmics主页正式上线!(2024.4.28)
● iMetaOmics | 浙江大学宗鑫组揭示两猪种宿主-肠道菌群互作差异
● iMetaOmics | 罗鹏/袁硕峰/苗凯/程全发表STAGER: 生成式人工智能可靠性的标准化测试和评估推荐
● iMetaOmics | 徐州医科大杨欢组揭秘沙门氏菌-宿主-微生物群在免疫与代谢中的相互作
● iMetaOmics | 中科院动物所金坚石组综述16S rRNA基因扩增子测序技术的“前世今生”
● iMetaOmics | 浙大张天真组完成二倍体棉种泛基因组构建
●iMetaOmics | 张勇/李福平-先进糖蛋白组学在男性生殖研究中的潜在应用
更多推荐
(▼ 点击跳转)
iMeta | 引用13000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据
iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法
1卷1期
1卷2期
1卷3期
1卷4期
2卷1期
2卷2期
2卷3期
2卷4期
3卷1期
2卷2期封底
2卷4期封底
3卷2期
3卷3期
3卷3期封底
期刊简介
“iMeta” 是由威立、肠菌分会和本领域数百千华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 20)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、前3年免出版费、50万用户的社交媒体宣传等。2022年2月正式创刊发行!发行后相继被Google Scholar、ESCI、PubMed、DOAJ、Scopus等数据库收录!2024年6月获得首个影响因子23.7,位列全球SCI期刊前千分之五(107/21848),微生物学科2/161,仅低于Nature Reviews,同学科研究类期刊全球第一,中国大陆11/514!
“iMetaOmics” 是“iMeta” 子刊,主编由中国科学院北京生命科学研究院赵方庆研究员和香港中文大学于君教授担任,定位IF>10的高水平综合期刊,欢迎投稿!
联系我们
iMeta主页:
http://www.imeta.science
姊妹刊iMetaOmics主页:
http://www.imeta.science/imetaomics/
出版社iMeta主页:
https://onlinelibrary.wiley.com/journal/2770596x
出版社iMetaOmics主页:
https://onlinelibrary.wiley.com/journal/29969514
iMeta投稿:
https://wiley.atyponrex.com/journal/IMT2
iMetaOmics投稿:
https://wiley.atyponrex.com/journal/IMO2
邮箱:
office@imeta.science