MiBioGen联盟倡议:综合分析人类基因组与菌群关系研究

image

Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative
DOI: 10.1186/s40168-018-0479-3

Microbiome于本月6号发布一篇公告,宣布大型研究计划MiBioGen的启动。该计划由中科院微生物所王军以及比利时和荷兰的多位科学家发起,旨在从全基因组的层面研究人体基因对肠道菌群的影响。目前MiBioGen已收集了全球18个不同人群,约19000人的肠道菌群和基因组数据,建立了完整、开源、标准化的分析流程,并邀请和号召更多研究者加入。

背景

肠道微生物的相关研究是近几年有关微生物研究中最为火热的领域之一。多数肠道微生物的研究是关于肠道微生物与各种疾病之间关联的,其中部分研究揭示了肠道微生物在疾病发展中的作用。但将环境因素考虑其中后,这些研究就仍会遗留很多还无法解释的问题。特别是在考虑到宿主的基因型作用之后,将会有很多问题。之前4篇GWAS的研究揭示了基因型与肠道微生物之间的关系,但纵观这几篇研究也只有SLIT3这一个SNPs位点出现在其中的三篇研究之中,甚至还有报道的同一个位点在不同的研究中是相悖的情况发生。不同研究之间的不协调之处可以通过加大样本数据量,从而提高统计效率,减小假阳性来部分规避。这便是多队列交叉分析能得到的好处之一,其次便是这种多队列的分析可以打破存在于特定人群数据的统计及技术误差。

image

图1. 4篇GWAS定位菌群相关基因文章总结

基于以上因素,作者决定发起名为MiBioGen的大型研究计划,该计划包括来自于全球不同国家研究组的18个队列,共计约1.9万名参与者。

image

表1. MiBioGen目前参加的18个研究队列

研究内容

该计划的主要研究目标是探索人体基因对人类肠道微生物的影响。为了实现这一目标该计划的组建者们建立了统一的数据分析流程。主要包括以下4个分析方向:

  1. 肠道微生物数据处理流程
  2. 基因型处理流程
  3. GWAS分析流程
  4. 宏数据分析

该计划的统一分析流程均可在以下网页中找到:https://github.com/alexa-kur/miQTL_cookbook

image

此处将简单介绍下这一分析流程的相关方面。基于16S rRNA的数据分析进行GWAS微生物丰度分析,包括四个主要步骤(加粗部分):

  1. 处理微生物组16S数据
  2. 处理基因组SNP数据
  3. 微生物组各分类级与基因型进行关联性研究
  4. 进行综合数据分析

每个参与组将自行执行从1到3的步骤。第4步将集中在UMCG(格罗宁根)进行分析。本流程中的所有代码脚本都可以自主本地执行。

以上内容为中国科学院微生物研究所王军研究员为第一及通讯作者发表在Microbiome上,题为“Meta-analysis of human genomemicrobiome association studies: the MiBioGen consortium initiative”

该研究计划为开放性的,欢迎更多研究者的加入(只需与文中任意一位通讯作者联系即可)。

热心肠日报导读

王军等:宿主基因组与菌群关系研究要有大动作!

mildbreeze 06-09 热心肠日报

原标题:人类基因组-微生物组关联研究的荟萃分析:MiBioGen联盟倡议

① 宿主基因影响菌群并与多种疾病有重要关联;② 以往多关注单个基因对菌群的影响,而全基因组的研究刚刚起步,如小鼠QTL和人类全基因组关联研究(GWAS),亟需增大样本量并克服不同研究间的技术差异;③ 发起大型研究计划MiBioGen,收集全球18个人群、19000人的样本(肠道菌群16S rRNA测序和全基因组SNP数据),进行大规模meta-GWAS分析;④ MiBioGen建立了完整、开源的标准化分析流程,并能够有效排除不同16S rRNA扩增区间所导致的技术误差。

Reference

  1. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative
    DOI: 10.1186/s40168-018-0479-3
    https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0479-3
  2. 王军等:宿主基因组与菌群关系研究要有大动作!https://www.mr-gut.cn/papers/read/1042154338?kf=mobile.search
  3. 分析流程 https://github.com/alexa-kur/miQTL_cookbook
  4. 微生物所参与国际大型人体菌群的宿主基因定位研究 https://mp.weixin.qq.com/s/ZvuWP54PeFQcAATHa321GQ

猜你喜欢

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外1700+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。
image

学习扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
image
点击阅读原文,跳转最新文章目录阅读
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

<think>嗯,用户需要的是关于肠道菌群疾病关系的孟德尔随机化(MR)分析的代码,用R或者Python实现。首先,我得确认MR分析的基本流程是什么样的。根据之前的引用,MR在遗传流行病学中很重要,特别是GWAS研究[^4]。所以流程可能包括数据准备、工具变量选择、MR分析本身和结果验证这些步骤。 接下来,用户可能需要具体的代码示例。R语言里有TwoSampleMR和MRPRESSO这些包,Python的话可能要用到pandas和numpy,还有可能调用R的包通过rpy2。不过用户可能更倾向于纯Python或者纯R的代码。考虑到引用[2]提到MR在肠道菌群中的应用很多,可能需要处理暴露数据和结局数据的整合,还有工具变量的筛选,比如暴露强相关且混杂因素无关。 然后,用户提到的引用[1]和[3]都涉及肠道菌群疾病的关系,比如先兆子痫和2型糖尿病。所以在代码中需要处理微生物数据,比如菌属的丰度,以及疾病结局的GWAS数据。可能需要注意工具变量的有效性,比如F统计量大于10,以及排除弱工具变量的问题。 另外,用户可能还需要敏感性分析,比如异质性检验、水平多效性检验,这些在MR分析中很重要。比如用MR-Egger回归和Cochran's Q检验。代码里应该包含这些步骤,确保结果的可靠性。 最后,生成相关问题的时候,需要围绕MR分析的步骤、工具变量选择、结果的解释以及肠道菌群的特殊考虑来提问。比如如何筛选合适的工具变量,或者如何处理肠道菌群数据的高维特性。这样能帮助用户进一步理解和应用MR分析。</think>以下是用R语言实现肠道菌群疾病关系的孟德尔随机化(MR)分析的标准流程代码及解析: ### 一、MR分析核心步骤 1. **数据准备**:需要暴露(肠道菌群)和结局(疾病)的GWAS摘要数据 2. **工具变量筛选**:选择暴露强相关(p<5e-8)且排除连锁不平衡(r²<0.001)的SNP 3. **效应量协调**:统一暴露结局的效应等位基因方向 4. **MR分析**:使用三种以上方法(IVW/MR-Egger/Weighted mode等)验证结果稳健性 5. **敏感性分析**:检验水平多效性和异质性 ### 二、R语言实现代码(使用TwoSampleMR包) ```r # 安装必要包 install.packages("TwoSampleMR") install.packages("MRPRESSO") # 数据加载 exposure_dat <- read_exposure_data("gut_microbiota.csv", sep = ",", snp_col = "SNP", beta_col = "beta", se_col = "se", effect_allele_col = "effect_allele", other_allele_col = "other_allele", pval_col = "pval") outcome_dat <- read_outcome_data("disease.csv", snps = exposure_dat$SNP, sep = ",", snp_col = "SNP", beta_col = "beta", se_col = "se", effect_allele_col = "effect_allele", other_allele_col = "other_allele") # 数据协调 dat <- harmonise_data(exposure_dat, outcome_dat) # 主分析(IVW法) res <- mr(dat, method_list = c("mr_ivw", "mr_egger_regression", "mr_weighted_mode")) # 异质性检验 het <- mr_heterogeneity(dat) # 水平多效性检验 pleio <- mr_pleiotropy_test(dat) # MR-PRESSO异常值检测 presso <- run_mr_presso(dat) # 结果可视化 mr_scatter_plot(res, dat) forest_plot(res) ``` ### 三、关键参数说明 1. **工具变量强度**:筛选F统计量>10的SNP $$ F = \frac{\beta_{exposure}^2}{SE_{exposure}^2} $$ 2. **水平多效性检验**:MR-Egger截距项p值>0.05 3. **反向因果检验**:Steiger方向性检验 ### 四、注意事项 1. 肠道菌群数据需标准化处理(CLR转换)[^3] 2. 建议使用MiBioGen联盟的GWAS汇总数据 3. 需进行多变量MR校正混杂因素[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值