各种排序方法比较

各种排序方法比较



在这个 表格中,n是要被 排序的纪录数量以及k是不同键值的数量。

稳定的

冒泡排序(bubble sort) — O(n^2)
鸡尾酒排序(Cocktail sort,双向的 冒泡排序) — O( n^2)
插入排序(insertion sort)— O( n^2)
桶排序(bucket sort)— O( n); 需要 O( k) 额外空间
计数排序(counting sort) — O( n+ k); 需要 O( n+ k) 额外空间
合并排序(merge sort)— O( nlog  n); 需要 O( n) 额外空间
原地 合并排序— O( n^2)
二叉排序树排序 (Binary tree sort) — O( nlog  n)期望时间; O( n^2)最坏时间; 需要 O( n) 额外空间
鸽巢排序(Pigeonhole sort) — O( n+ k); 需要 O( k) 额外空间
基数排序(radix sort)— O( n· k); 需要 O( n) 额外空间
Gnome 排序— O( n^2)
图书馆排序— O( nlog  n) with high probability,需要 (1+ε) n额外空间

不稳定的

选择排序(selection sort)— O( n^2)
希尔排序(shell sort)— O( nlog  n) 如果使用最佳的现在版本
组合排序— O( nlog  n)
堆排序(heapsort)— O( nlog  n)
平滑排序— O( nlog  n)
快速排序(quicksort)— O( nlog  n) 期望时间,O( n^2) 最坏情况; 对于大的、乱数列表一般相信是最快的已知排序
Introsort— O( nlog  n)
Patience sorting— O( nlog  nk) 最坏情况时间,需要 额外的 O( nk) 空间,也需要找到最长的递增子串行(longest increasing subsequence)

不实用的排序算法

Bogo排序— O( n×  n!) 期望时间,无穷的最坏情况。
Stupid sort— O( n^3); 递归版本需要 O( n^2) 额外 存储器
珠排序(Bead sort) — O( n) or O(√ n),但需要特别的硬件
Pancake sorting— O( n),但需要特别的硬件
stooge sort——O(n^2.7)很漂亮但是很耗时

因为有证明过凡是通过比较来进行排序的算法时间复杂度至少都需要O(nlogn)次比较。因此快速排序接近最优算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值