TwinCAT Vision模块GigE相机连接及图像处理

本文介绍了如何使用TwinCAT Vision模块连接GigE相机并进行图像处理。首先,详细阐述了安装EtherCAT和TwinCAT驱动的过程,然后展示了如何在PLC中编写程序读取摄像头数据。接着,讨论了相机与PLC的映射、系统配置,包括内存分配和CPU核设置。在图像处理部分,提到了霍夫变换法和轮廓-外接圆法的效果。此外,还讲解了多台相机的连接方法,并在结尾总结了常见问题及解决策略,如相机未连接、图像跳动等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

显示Vision模块

在这里插入图片描述

安装EtherCAT驱动

安装TwinCAT网卡驱动
在这里插入图片描述
在这里插入图片描述
选择相机网卡,并点击右侧Install,完成安装。

有时安装后(有的电脑)在for demo use only,有时安装后(有的电脑)在realtime capable,不知是何原因。第一种情况貌似是后面不出现Online(失败)的原因,待考证。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
选择对应的网卡
在这里插入图片描述
在这里插入图片描述
搜索相机在这里插入图片描述
在这里插入图片描述

显示为Online即表示连接成功在这里插入图片描述

重启后,有时需再次确认相机
在这里插入图片描述

编写PLC程序读取摄像头

PROGRAM MAIN
VAR
  hr : HRESULT;
  fbCamera : FB_VN_SimpleCameraControl;
  eState : ETcVnCameraState;
  ipImageIn : ITcVnImage;
  ipImageInDisp : ITcVnDisplayableImage;
END_VAR

eState := fbCamera.GetState();
CASE eState OF
TCVN_CS_INITIAL, TCVN_CS_OPENING, TCVN_CS_OPENED, TCVN_CS_STARTACQUISITION:
  hr := fbCamera.StartAcquisition();
TCVN_CS_ACQUIRING:
  hr := fbCamera.GetCurrentImage(ipImageIn);
	…….
  hr := F_VN_CopyIntoDisplayableImage(ipImageIn, ipImageInDisp, hr);
TCVN_CS_ERROR:
  hr := fbCamera.Reset();
END_CASE

生成PLC程序。

相机和PLC映射

在这里插入图片描述
在这里插入图片描述

系统配置

内存分配 SYSTEM > Real-Time > Settings > Router Memory (Mbyte).
在这里插入图片描述
CPU核分配:SYSTEM > Real-Time > Settings
在这里插入图片描述
在这里插入图片描述
Read from Target ,左侧3表示共享核,右侧1表示单独核,把视觉的Task置于单独的核中,设置好后Set on target,重启生效。
在这里插入图片描述
Floating point exceptions 取消勾选;Watchdog stack勾选。

在这里插入图片描述
设置网卡,仅保留图中所示的TwinCAT Ethernet Protocol和IPv4。

在这里插入图片描述
在这里插入图片描述
Promiscuous Mode (use with Wireshark only) 取消。

若出现如下提示,点击否:在这里插入图片描述

  • 注意:不要更改VnTaskADS和VnTaskImgAcq任务的周期

Taks添加job task,并设置如下:
在这里插入图片描述
Job Task不要和Vision PLC task、PlcAuxTask同核,多个Job Task不要同核。

图像处理

  • 霍夫变换法:
PROGRAM MAIN
VAR
	hr					:	HRESULT;
	fbCamera			:	FB_VN_SimpleCameraControl;
	eState				:	ETcVnCameraState;
	
	ipImageIn			: 	ITcVnImage;
	ipImageInDisp		: 	ITcVnDisplayableImage;	
	ipImageRes			: 	ITcVnImage;
	ipImageResDisp		:	ITcVnDisplayableImage;	
	ipImageTempDisp		:	ITcVnDisplayableImage;
	
	//???
	hrWD				:	HRESULT;
	tStop				:	DINT := 500000000;
	tRest				:	DINT;
	nFraction			:	UDINT;
	
	//????
<think>嗯,用户想了解好用的工控软件开发框架和视觉检测相关的技术。首先,我需要确定工控软件和视觉检测的具体需求。工控软件通常需要实时性、可靠性和硬件兼容性,而视觉检测则涉及图像处理、算法效率和准确性。 先从工控开发框架开始。常见的框架有哪些呢?比如CODESYS,这个好像很多PLC都用,开源而且支持IEC 61131-3标准。然后还有Ignition,它擅长SCADA和HMI,可能适合需要可视化监控的场景。ROS2工业版可能更适合机器人集成,MATLAB的Simulink适合仿真和控制算法设计。TwinCAT3是Beckhoff的,实时性应该不错。 接下来是视觉检测部分。OpenCV是基础库,功能强大但需要自己搭建。Halcon和VisionPro是商业软件,性能好但成本高。深度学习方面,PyTorch和TensorFlow可以用于复杂检测,但可能需要GPU加速。EasyOCR处理文字识别,可能和视觉检测结合使用。 用户可能需要结合工控框架和视觉库,比如用CODESYS控制硬件,用OpenCV处理图像。还要考虑实时性,比如TwinCAT3的实时扩展。另外,集成方式也很重要,比如用Ignition的Python模块调用OpenCV。 还要注意工业环境中的稳定性,比如抗干扰、长时间运行。开源和商业方案的平衡,以及是否需要深度学习模型的高精度需求。可能需要举几个应用案例,比如生产线质检用Halcon+CODESYS,物流分拣用ROS2+OpenCV。 最后要总结选型要点,帮助用户根据具体需求选择合适的技术组合。确保提到的工具和框架有实际应用,避免推荐不成熟的技术。检查是否有遗漏的框架,比如Node-RED可能不太适合工控核心,但可以作为补充。保持回答结构清晰,分点说明,让用户容易理解。</think>### 工控软件开发框架与视觉检测技术选型指南 #### 一、工控软件开发框架推荐 1. **CODESYS** - **特点**:开源、符合IEC 61131-3标准,支持PLC、运动控制、HMI开发 - **适用场景**:多品牌PLC兼容、复杂逻辑控制 - **示例代码结构**: ```st PROGRAM Main VAR counter : INT := 0; END_VAR counter := counter + 1; ``` 2. **Ignition by Inductive Automation** - **优势**:基于Web的SCADA系统,支持Python脚本、数据库集成 - **核心功能**:实时数据监控、MES系统对接、跨平台部署 - **典型应用**:工厂能源管理系统、产线可视化看板 3. **ROS2 Industrial** - **定位**:机器人控制系统开源框架 - **关键技术**:分布式通信(DDS)、实时轨迹规划 - **公式支持**:机器人运动学计算 $$ \theta = \arctan\left(\frac{y}{x}\right) + \frac{\pi}{2} \cdot \text{sgn}(x) $$ 4. **MATLAB/Simulink** - **优势**:控制算法快速原型开发 - **典型应用**:电机控制系统仿真、PID参数整定 - **代码生成**:支持直接生成C/C++代码部署到PLC #### 二、视觉检测技术栈选择 1. **基础图像处理库** - **OpenCV** - 开源,支持C++/Python - 核心功能:特征提取、模板匹配、边缘检测 - 示例代码: ```python import cv2 edges = cv2.Canny(image, 100, 200) ``` 2. **工业级视觉软件** - **Halcon** - 商业软件,提供亚像素级检测精度 - 典型算法:形态学处理、3D点云分析 - 性能指标:处理速度可达$$ 10^4 \text{帧/秒} $$(取决于硬件) - **Cognex VisionPro** - 易用性突出,支持拖拽式编程 - 专利技术:PatMax几何匹配算法 3. **深度学习方案** - **PyTorch Lightning** - 优势:快速构建分类/检测模型 - 典型网络:YOLOv8缺陷检测模型 $$ \text{mAP} = \frac{1}{n}\sum_{i=1}^{n} \int_{0}^{1} p_i(r) dr $$ - **TensorRT** - NVIDIA GPU加速推理框架 - 性能提升:延迟可降低至$$ <10\text{ms} $$ #### 三、系统集成方案 1. **硬件协同架构** ```mermaid graph LR PLC[PLC控制器] --Modbus--> IPC[工控机] IPC --GigE Vision--> Camera[工业相机] IPC --OPC UA--> MES[MES系统] ``` 2. **实时性保障方案** - Xenomai实时Linux内核补丁 - 优先级设置:视觉线程 > 控制线程 > 通信线程 - 周期抖动控制:$$ \sigma < 50\mu s $$ 3. **典型应用场景** - **PCB板检测**:Halcon + CODESYS 检测项:焊点完整性、元件偏移量 公式:$$ \Delta x = |x_{\text{实测}} - x_{\text{标定}}| $$ - **包装缺陷检测**:YOLOv5 + Ignition 性能指标:漏检率$$ <0.1\% $$,过检率$$ <0.5\% $$ #### 四、选型建议 1. **需求优先级排序** $$ \text{选型权重} = 0.4\times\text{实时性} + 0.3\times\text{精度} + 0.2\times\text{成本} + 0.1\times\text{易用性} $$ 2. **推荐组合** | 场景 | 推荐方案 | |---------------------|--------------------------| | 高精度质检 | Halcon + TwinCAT3 | | 柔性生产线 | ROS2 + OpenCV | | 老旧设备改造 | Ignition + EasyOCR | 3. **验证步骤** 1. PoC验证核心算法精度 2. 压力测试(连续72小时运行) 3. 现场环境适应性测试(光照、振动等) #### 五、发展趋势 1. **AI芯片集成**:如NVIDIA Jetson边缘部署 2. **5G+机器视觉**:传输延迟$$ \leq 5ms $$ 3. **数字孪生**:虚拟调试效率提升$$ 40\% $$ 建议根据具体检测精度要求(如亚毫米级需Halcon)、预算(开源方案可节省$$ 10-50\text{万} $$授权费)、现有设备接口(如Camera Link vs USB3.0)综合决策。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值