电机控制(四)--- PID算法

一、介绍

        比例(Proportion)积分(Interrupt)微分(Different)控制器(PID控制器或三项控制器)是一种采用反馈控制回路机制,广泛应用于工业控制系统和需要连续调制控制的各种系统中。


二、PID系统定义与公式

1、r(t) setpoint, reference,是期望的过程值或设定值(SP);

2、y(t) output, process variable,是测量的过程值,输出值(PV);

3、e(t) error,是偏差;

4、u(t) control effort,是控制量;

5、PID控制器不断计算误差值e(t)作为所需设定点之间的差异SP=r(t)和测量的过程变量                    PV=y(t):e(t)=r(t)−y(t) ,并应用基于比例、积分和导数项的修正;

6、公式如下:

                ​​​​​​​        u(t)=K_{p}*e(t)+K_{i}*\int e(t)dt+K_{d}*\frac{de(t)}{dt}


三、代码实现(C/C++)

//首先定义PID结构体用于存放一个PID的数据
typedef struct
{
     float kp,ki,kd;//三个系数
    float error,lastError;//误差、上次误差
    float integral,maxIntegral;//积分、积分限幅
    float output,maxOutput;//输出、输出限幅
}PID;
 
//用于初始化pid参数的函数
void PID_Init(PID *pid,float p,float i,float d,float maxI,float maxOut)
{
    pid->kp=p;                //P环增益
    pid->ki=i;                //I环增益
    pid->kd=d;                //D环增益
    pid->maxIntegral=maxI;    //积分限幅
    pid->maxOutput=maxOut;    //输出限幅
}
 
//进行一次pid计算
//参数为(pid结构体,目标值,反馈值),计算结果放在pid结构体的output成员中
void PID_Calc(PID *pid,float reference,float feedback)
{
   //更新数据
    pid->lastError=pid->error;//将旧error存起来
    pid->error=reference-feedback;//计算新error
    //计算微分
    float dout=(pid->error-pid->lastError)*pid->kd;
    //计算比例
    float pout=pid->error*pid->kp;
    //计算积分
    pid->integral+=pid->error*pid->ki;
    //积分限幅
    if(pid->integral > pid->maxIntegral) pid->integral=pid->maxIntegral;
    else if(pid->integral < -pid->maxIntegral) pid->integral=-pid->maxIntegral;
    //计算输出
    pid->output=pout+dout+pid->integral;
    //输出限幅
    if(pid->output > pid->maxOutput) pid->output=pid->maxOutput;
    else if(pid->output < -pid->maxOutput) pid->output=-pid->maxOutput;
}
 
PID mypid;//创建一个PID结构体变量
 
int main()
{
    //...这里有些其他初始化代码
    PID_Init(&mypid,10,1,5,800,1000);//初始化PID参数
    while(1)//进入循环运行
    {
        float feedbackValue=...;//这里获取到被控对象的反馈值
        float targetValue=...;//这里获取到目标值
        PID_Calc(&mypid,targetValue,feedbackValue);//进行PID计算,结果在output成员变量中
        设定执行器输出大小(mypid.output);
        delay(10);//等待一定时间再开始下一次循环
    }
}

PID电机控制目录 第1 章 数字PID 控制 1.1 PID 控制原理 1.2 连续系统的模拟PID 仿真 1.3 数字PID 控制 1.3.1 位置式PID 控制算法 1.3.2 连续系统的数字PID 控制仿真 1.3.3 离散系统的数字PID 控制仿真 1.3.4 增量式PID 控制算法及仿真 1.3.5 积分分离PID 控制算法及仿真 1.3.6 抗积分饱和PID 控制算法及仿真 1.3.7 梯形积分PID 控制算法 1.3.8 变速积分PID 算法及仿真 1.3.9 带滤波器的PID 控制仿真 1.3.10 不完全微分PID 控制算法及仿真 1.3.11 微分先行PID 控制算法及仿真 1.3.12 带死区的PID 控制算法及仿真 1.3.13 基于前馈补偿的PID 控制算法及仿真 1.3.14 步进式PID 控制算法及仿真 第2 章 常用的PID 控制系统 2.1 单回路PID 控制系统 2.2 串级PID 控制 2.2.1 串级PID 控制原理 2.2.2 仿真程序及分析 2.3 纯滞后系统的大林控制算法 2.3.1 大林控制算法原理 2.3.2 仿真程序及分析 2.4 纯滞后系统的Smith 控制算法 2.4.1 连续Smith 预估控制 2.4.2 仿真程序及分析 2.4.3 数字Smith 预估控制 2.4.4 仿真程序及分析 第3 章 专家PID 控制和模糊PID 控制 3.1 专家PID 控制 3.1.1 专家PID 控制原理 3.1.2 仿真程序及分析 3.2 模糊自适应整定PID 控制 3.2.1 模糊自适应整定PID 控制原理 3.2.2 仿真程序及分析 3.3 模糊免疫PID 控制算法 3.3.1 模糊免疫PID 控制算法原理 3.3.2 仿真程序及分析 第4 章 神经PID 控制 4.1 基于单神经元网络的PID 智能控制 4.1.1 几种典型的学习规则 4.1.2 单神经元自适应PID 控制 4.1.3 改进的单神经元自适应PID 控制 4.1.4 仿真程序及分析 4.1.5 基于二次型性能指标学习算法的单神经元自适应PID 控制 4.1.6 仿真程序及分析 4.2 基于BP 神经网络整定的PID 控制 4.2.1 基于BP 神经网络的PID 整定原理 4.2.2 仿真程序及分析 4.3 基于RBF 神经网络整定的PID 控制 4.3.1 RBF 神经网络模型 4.3.2 RBF 网络PID 整定原理 4.3.3 仿真程序及分析 4.4 基于RBF 神经网络辨识的单神经元PID 模型参考自适应控制 4.4.1 神经网络模型参考自适应控制原理 4.4.2 仿真程序及分析 4.5 基于CMAC(神经网络)与PID 的并行控制 4.5.1 CMAC 概述 4.5.2 CMAC 与PID 复合控制算法 4.5.3 仿真程序及分析 4.6 CMAC 与PID 并行控制的Simulink 仿真 4.6.1 Simulink 仿真方法 4.6.2 仿真程序及分析 第5 章 基于遗传算法整定的PID 控制 5.1 遗传算法的基本原理 5.2 遗传算法的优化设计 5.2.1 遗传算法的构成要素 5.2.2 遗传算法的应用步骤 5.3 遗传算法求函数极大值 5.3.1 遗传算法求函数极大值实例 5.3.2 仿真程序 5.4 基于遗传算法的PID 整定 5.4.1 基于遗传算法的PID 整定原理 5.4.2 基于实数编码遗传算法的PID 整定 5.4.3 仿真程序 5.4.4 基于二进制编码遗传算法的PID 整定 5.4.5 仿真程序 5.5 基于遗传算法摩擦模型参数辨识的PID 控制 5.5.1 仿真实例 5.5.2 仿真程序 第6 章 先进PID 多变量解耦控制 6.1 PID 多变量解耦控制 6.1.1 PID 解耦控制原理 6.1.2 仿真程序及分析 6.2 单神经元PID 解耦控制 6.2.1 单神经元PID 解耦控制原理 6.2.2 仿真程序及分析 6.3 基于DRNN 神经网络整定的PID 解耦控制 6.3.1 基于DRNN 神经网络参数自学习PID 解耦控制原理 6.3.2 DRNN 神经网络的Jacobian 信息辨识 6.3.3 仿真程序及分析 第7 章 几种先进PID 控制方法 7.1 基于干扰观测器的PID 控制 7.1.1 干扰观测器设计原理 7.1.2 连续系统的控制仿真 7.1.3 离散系统的控制仿真 7.2 非线性系统的PID 鲁棒控制 7.2.1 基于NCD 优化的非线性优化PID 控制 7.2.2 基于NCD 与优化函数结合的非线性优化PID 控制 7.3 一类非线性PID 控制器设计 7.3.1 非线性控制器设计原理 7.3.2 仿真程序及分析 7.4 基于重复控制补偿的高精度PID 控制 7.4.1 重复控制原理 7.4.2 基于重复控制补偿的PID 控制 7.4.3 仿真程序及分析 7.5 基于零相差前馈补偿的PID 控制 7.5.1 零相差控制原理 7.5.2 基于零相差前馈补偿的PID 控制 7.5.3 仿真程序及分析 7.6 基于卡尔曼滤波器的PID 控制 7.6.1 卡尔曼滤波器原理 7.6.2 仿真程序及分析 7.6.3 基于卡尔曼滤波器的PID 控制 7.6.4 仿真程序及分析 7.7 单级倒立摆的PID 控制 7.7.1 单级倒立摆建模 7.7.2 单级倒立摆控制 7.7.3 仿真程序及分析 7.8 吊车-双摆系统的控制 7.8.1 吊车-双摆系统的建模 7.8.2 吊车-双摆系统的仿真 第8 章 灰色PID 控制 8.1 灰色控制原理 8.1.1 生成数列 8.1.2 GM 灰色模型 8.2 灰色PID 控制 8.2.1 灰色PID 控制的理论基础 8.2.2 连续系统灰色PID 控制 8.2.3 仿真程序及分析 8.2.4 离散系统灰色PID 控制 8.2.5 仿真程序及分析 8.3 灰色PID 的位置跟踪 8.3.1 连续系统灰色PID 位置跟踪 8.3.2 仿真程序及分析 8.3.3 离散系统灰色PID 位置跟踪 8.3.4 仿真程序及分析 第9 章 伺服系统PID 控制 9.1 伺服系统低速摩擦条件下PID 控制 9.1.1 Stribeck 摩擦模型描述 9.1.2 一个典型伺服系统描述 9.1.3 仿真程序及分析 9.2 伺服系统三环的PID 控制 9.2.1 伺服系统三环的PID 控制原理 9.2.2 仿真程序及分析 9.3 二质量伺服系统的PID 控制 9.3.1 二质量伺服系统的PID 控制原理 9.3.2 仿真程序及分析 第10 章 PID 实时控制的C++语言设计及应用 10.1 M 语言的C++转化 10.2 基于C++的三轴飞行模拟转台伺服系统PID 实时控制 10.2.1 控制系统构成 10.2.2 系统各部分功能的软件设计 10.2.3 仿真程序及分析 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二灰酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值