目录
MARLlib: 一个多智能体强化学习库
❗ 新闻 |
---|
2023年3月 ⚓我们很高兴地宣布,一个重大更新刚刚发布。有关详细版本信息,请参阅版本信息。 |
2023年5月 好消息!MARLlib现在支持五个新任务:MATE、GoBigger、Overcooked-AI、MAPDN和AirCombat。快来试试吧! |
2023年6月 OpenAI: Hide and Seek和SISL环境已整合到MARLlib中。 |
2023年8月 🎉MARLlib已被JMLR接受发表。 |
2023年9月 最新的PettingZoo与Gymnasium在MARLlib中兼容。 |
2023年11月 我们正在编写一本关于MARL的实践书籍,并计划在2023年底前发布初稿。 |
多智能体强化学习库 (MARLlib) 是一个利用Ray及其工具包之一RLlib的MARL库。它提供了一个全面的平台,用于在各种任务和环境中开发、训练和测试MARL算法。
以下是MARLlib的使用示例:
from marllib import marl
# 准备环境
env = marl.make_env(environment_name="mpe", map_name="simple_spread", force_coop=True)
# 使用指定的超参数初始化算法
mappo = marl.algos.mappo(hyperparam_source='mpe')
# 根据环境 + 算法 + 用户偏好构建代理模型
model = marl.build_model(env, mappo, {"core_arch": "mlp", "encode_layer": "128-256"})
# 开始训练
mappo.fit(env, model, stop={'timesteps_total': 1000000}, share_policy='group')
1 为什么选择MARLlib?
这里我们提供了一个MARLlib与现有工作的比较表。
库 | 支持的环境 | 算法 | 参数共享 | 模型 |
---|---|---|---|---|
PyMARL | 1个合作环境 | 5 | 共享 | GRU |
PyMARL2 | 2个合作环境 | 11 | 共享 | MLP + GRU |
MAPPO Benchmark | 4个合作环境 | 1 | 共享 + 分离 | MLP + GRU |
MAlib |