【多智能体强化学习MARL】【MARLlib】

目录

MARLlib: 一个多智能体强化学习库

1  为什么选择MARLlib?

2 主要特点

3 安装

3.1 逐步安装(推荐)

1. 安装依赖项(基础)

2. 安装环境(可选)

3. 安装补丁(基础)

3.2 PyPI 安装

4 开始使用

4.1 准备配置

4.2 注册环境

4.3 初始化算法


MARLlib: 一个多智能体强化学习库

❗ 新闻
2023年3月 ⚓我们很高兴地宣布,一个重大更新刚刚发布。有关详细版本信息,请参阅版本信息
2023年5月 好消息!MARLlib现在支持五个新任务:MATEGoBiggerOvercooked-AIMAPDNAirCombat。快来试试吧!
2023年6月 OpenAI: Hide and SeekSISL环境已整合到MARLlib中。
2023年8月 🎉MARLlib已被JMLR接受发表。
2023年9月 最新的PettingZooGymnasium在MARLlib中兼容。
2023年11月 我们正在编写一本关于MARL的实践书籍,并计划在2023年底前发布初稿。

多智能体强化学习库 (MARLlib) 是一个利用Ray及其工具包之一RLlibMARL库。它提供了一个全面的平台,用于在各种任务和环境中开发、训练和测试MARL算法。

以下是MARLlib的使用示例:

from marllib import marl

# 准备环境
env = marl.make_env(environment_name="mpe", map_name="simple_spread", force_coop=True)

# 使用指定的超参数初始化算法
mappo = marl.algos.mappo(hyperparam_source='mpe')

# 根据环境 + 算法 + 用户偏好构建代理模型
model = marl.build_model(env, mappo, {"core_arch": "mlp", "encode_layer": "128-256"})

# 开始训练
mappo.fit(env, model, stop={'timesteps_total': 1000000}, share_policy='group')

1  为什么选择MARLlib?

这里我们提供了一个MARLlib与现有工作的比较表。

支持的环境 算法 参数共享 模型
PyMARL 1个合作环境 5 共享 GRU
PyMARL2 2个合作环境 11 共享 MLP + GRU
MAPPO Benchmark 4个合作环境 1 共享 + 分离 MLP + GRU
MAlib
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值