构建整车七自由度模型

首先汽车七自由度模型包括车身的横摆,纵向和侧向,以及四个车轮的转动。

这里主要用到了车身坐标系x-y;和大地坐标系X-Y。

一、首先计算在车身坐标系下,汽车的纵向和侧向的加速度:

图1. 汽车运动时车身坐标系和大地坐标系的关系

 这里的汽车的纵向速度为u,侧向速度为v

\dot{R}= u\ast i+v\ast j           (1)

两边求导可得    

\ddot{R}=\dot{u}*i+u*\dot{i}+\dot{v}*j+v*\dot{j}           (2)

这里主要解决\dot{i}\dot{j}就可以求出纵向和侧向的加速度了;

方法1:

图2. 车身坐标系的变化

这里的变化可以看成在一个微小时间段的变化:可以得出

\Delta i=r*\Delta t*j; \Delta j=-r*\Delta t*i;      (3)

(3)两边同时除以\Delta t在求极限可以得出

\dot{i}=r*j;\dot{j}=-r*i;          (4)

带入(2)中整理可得

\ddot{R}=\left ( \dot{u}-v*r \right )*i+\left ( \dot{v}+u*r \right )*j;      (5)

方法2、

 图3.车身坐标系和大地坐标系的相对位置

其中\theta为车辆横摆角,r为横摆角速度

有上图可以得出坐标转换公式为

i=i_{F}*cos(\theta )+j_{F}*sin(\theta); j=-i_{F}*sin(\theta)+j_{F}*cos(\theta);      (6)

对了(6)两边求导后可得到(4),之后即可得到(5)

二、整车模型公式

1.车身纵向、横向和横摆的平衡方程

 图4.汽车简化模型

纵向力平衡:

m*(\dot{u}-v*r)=(F_{xfl}+F_{xfr})*cos(\delta )-(F_{yfl}+F_{yfr})*sin(\delta )+F_{xrl}+F_{xrr}

侧向力平衡:

m*(\dot{v}+u*r)=(F_{xfl}+F_{xfr})*sin(\delta )+(F_{yfl}+F_{yfr})*cos(\delta)+F_{yrl}+F_{yrr}

绕Z轴转矩平衡:

I_{z}*\dot{r}=((F_{yfl}+F_{yfr})*cos(\delta)+(F_{xfl}+F{xfr})*sin(\delta))*a-(F_{yrl}+F_{yrr})*b+((F_{xfr}-F{xfl})*cos(\delta)+(F_{yfl}-F_{yfr})*sin(\delta))*\frac{t_{w1}}{2}+(F_{yrr}-F_{yrl})*\frac{t_{w2}}{2}

其中I_{z}为整车绕Z轴的转动惯量,a为汽车的前轴距,b为汽车的后轴距,t_{w1}为前轮距,t_{w2}为后轮距,\delta为方向盘转角,F_{ijk}为轮胎受力(i=x,y,z分别表示纵向,侧向力,垂向力;j=f,r表示前后,k=l,r表示左右)。

2.垂直载荷的计算

垂直载荷由三部分组成,静载荷和动载荷(前后载荷转移和左右载荷转移)

F_{zfl}=\frac{mgb}{2l}-\frac{mh_{g}(\dot{u}-vr)}{2l}-\frac{mh_{g}(\dot{v}+ur)b}{t_{w1}l}

F_{zfr}=\frac{mgb}{2l}-\frac{mh_{g}(\dot{u}-vr)}{2l}+\frac{mh_{g}(\dot{v}+ur)b}{t_{w1}l}

F_{zrl}=\frac{mga}{2l}+\frac{mh_{g}(\dot{u}-vr)}{2l}-\frac{mh_{g}(\dot{v}+ur)a}{t_{w2}l}

F_{zrr}=\frac{mga}{2l}+\frac{mh_{g}(\dot{u}-vr)}{2l}+\frac{mh{g}(\dot{v}+ur)a}{t_{w2}l}

3.各个轮胎侧偏角的计算:

\alpha _{fl}=\delta-arctan \frac{v+ar}{u-\frac{t_w1}{2}r}

\alpha _{fr}= \delta - arctan \frac{v+ar}{u+ \frac{t_{w1}}{2}r}

\alpha_{rl} = -arctan \frac{v-br}{u- \frac{t_{w2}}{2}r}

\alpha_{rr}= -arctan \frac{v-br}{u+ \frac{t_{w2}}{2}r}

这里的计算推到过程:假设车辆是刚体,轮胎速度包括车身的速度和轮胎绕质心旋转的速度,可以得出前左轮的纵向速度为u- \frac{t_{w1}}{2}r,侧向速度为v+ar,而 车辆实际运动方向为\delta- \alpha_{fl},通过公式变换即可得到\alpha_{fl},其他同理可得。

4.各个车轮轮心的纵向速度:

V_{T_{fl}}=(u- \frac{t_{w1}}{2}r)*cos(\delta)+(v+ar)*sin(\delta)

V_{T_{fr}}= (u+ \frac{t_{w1}}{2}r)*cos(\delta)+(v+ar)*sin(\delta)

V_{T_{rl}}= u- \frac{t_{w2}}{2}r

V_{T_{rr}}=u+ \frac{t_{w2}}{2}r

5.轮胎滑移率的计算:

\lambda _{fl}= \frac{W_{fl}R-V_{T_{fl}}}{V_{T_{fl}}}

\lambda_{fr}= \frac{W_{fr}R-V_{T_{fr}}}{V_{T_{fr}}}

\lambda_{rl}= \frac{W_{rl}R-V_{T_{rl}}}{V_{T_{rl}}}

\lambda_{rr}=\frac{W_{rr}R-V_{T_{rr}}}{V_{T_{rr}}}

最后是魔术轮胎的建模,这里我单独发了一篇写魔术轮胎

三、整车模型模块化输入输出

 图5.各变量输入输出关系

 整车模型的构建按照上述公式在simulink中搭建好模块后进行输入输出的连接即可。

 四、结果说明

这里的车辆工况是在1s后方向盘瞬间转角80度,车辆以50km\h的速度行驶。

一个七自由度模型输出结果包括:方向盘转角,横摆角速度,质心侧偏角,侧向加速度,四轮轮胎侧偏角,行驶轨迹。结果如下图所示

图6. 方向盘转角

图7. 横摆角速度

图8. 质心侧偏角

说明:\beta =arctan \frac{u}{v}\approx \frac{u}{v} 在\beta角较小时成立

图9. 侧向加速度

图10. 四轮轮胎侧偏角

图11. 汽车行驶轨迹图

这里的行驶轨迹的求解由图3可以得出:

\dot{X}=ucos(\theta)-vsin(\theta)

\dot{Y}=usin(\theta)+vcos(\theta)

五、建模注意事项

1.在垂直载荷的输入是,注意和魔术轮胎要求的垂直载荷单位一致;

2.方向盘转角的输入,必须乘以相应的转速比,比进行角度和弧度的换算;

六、参考文献;

(3条消息) 七自由度车辆稳定性数学模型和simulink求解_studyer_domi的博客-CSDN博客_七自由度车辆动力学模型

七自由度车辆模型浅谈 - 知乎 (zhihu.com)

车辆操作动力学理论与应用

声明:本文的撰写仅作为学习,转载标明出处。

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值