CNN中的receptive filed(感受野)

英文链接
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
中文翻译
https://blog.csdn.net/u010532666/article/details/79082879

通过卷积和池化层,CNN越上层的feature map越小,其感受野越大,在这里通过看上面两个博客的公式明确一下感受野的意义:某一层feature map的感受野的大小是指这一层feature map中的某一个位置的的值与原始图像中多大范围的像素有关,这个范围就是感受野。

在这里插入图片描述
感受野的计算公式如图上,r表示感受野的大小。对于第i层来说:

在这里插入图片描述
所以感受野是指数级增长,feature map 的感受野很快就能达到原始图片的大小。


更新

然而上述分析只是针对理论上的感受野,也就是只要有影响就计入感受野之内。

``Understanding the Effective Receptive Field in Deep Convolutional Neural Networks’’ 分析了实际感受野的大小与形状。该论文涉及大量概率论的推导,这里只放出结论:

  • 感受野的大小的半径是与卷
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值