英文链接
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
中文翻译
https://blog.csdn.net/u010532666/article/details/79082879
通过卷积和池化层,CNN越上层的feature map越小,其感受野越大,在这里通过看上面两个博客的公式明确一下感受野的意义:某一层feature map的感受野的大小是指这一层feature map中的某一个位置的的值与原始图像中多大范围的像素有关,这个范围就是感受野。
感受野的计算公式如图上,r表示感受野的大小。对于第i层来说:
所以感受野是指数级增长,feature map 的感受野很快就能达到原始图片的大小。
更新
然而上述分析只是针对理论上的感受野,也就是只要有影响就计入感受野之内。
``Understanding the Effective Receptive Field in Deep Convolutional Neural Networks’’ 分析了实际感受野的大小与形状。该论文涉及大量概率论的推导,这里只放出结论:
- 感受野的大小的半径是与卷