TA入门笔记(三)

参考may佬《技术美术百人计划》
拓展知识!!!矩阵的运用

图形1.2.2 矩阵运算

线性代数

一次方程为线性方程,具有可加性和比例性

  • 可加性: f ( x 1 + x 2 ) = f ( x 1 ) + f ( x 2 ) f(x_1+x_2)=f(x_1)+f(x_2) f(x1+x2)=f(x1)+f(x2)
  • 比例性: f ( k x ) = k f ( x ) f(kx)=kf(x) f(kx)=kf(x)

线性空间:直线变换后依旧是直线,并且等比;坐标原点保持不变

在这里插入图片描述

  • 非线性空间:空间扭曲、非等距、原点位移

矩阵的定义

什么是矩阵

m × n m\times n m×n个数 a i j ( i = 1 , 2 , . . . m ; j = 1 , 2 , . . . n ) a_{ij}(i=1,2,...m;j=1,2,...n) aij(i=1,2,...m;j=1,2,...n)排组成的m行n列的数表称为m行n列的矩阵,简称 m × n m\times n m×n矩阵。

A = [ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a m , 1 a m , 2 ⋯ a m , n ] A=\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \\ \end{bmatrix} A=a1,1a2,1am,1a1,2a2,2am,2a1,na2,nam,n

解线性方程组

矩阵最开始用作解线性方程组

{ 2 x + 3 y = 1 x + y = 2 \begin{cases} 2x+3y=1\\ x+y=2\\ \end{cases} {2x+3y=1x+y=2

提取未知数,写成矩阵和向量的形式

[ 2 3 1 1 ] [ x y ] = [ 1 2 ] \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}=\begin{bmatrix} 1 \\ 2 \end{bmatrix} [2131][xy]=[12]

其中 A = [ 2 3 1 1 ] A=\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} A=[2131]是矩阵, x ⃗ = [ x y ] \vec x=\begin{bmatrix}x \\ y \end{bmatrix} x =[xy] b ⃗ = [ 1 2 ] \vec b=\begin{bmatrix}1 \\ 2 \end{bmatrix} b =[12]是向量。

通过这种方法将线性方程组转化成向量方程,在已知矩阵 A A A和向量 b ⃗ \vec b b 的情况下求未知向量 x ⃗ \vec x x

以矩阵方式解线性方程组

{ 2 x + 3 y = 1 x + y = 2 \begin{cases} 2x+3y=1\\ x+y=2\\ \end{cases} {2x+3y=1x+y=2

隐藏 x y xy xy,将等号右边的数字提出来,形成增广矩阵

[ 2 3 1 1 1 2 ] \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix} [213112]

每行可以单独乘系数或者每行相加减

[ 2 3 1 1 1 2 ] \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix} [213112] r 2 ′ = r 1 − 2 r 2 r_2'=r_1-2r_2 r2=r12r2得到 [ 2 3 1 0 1 − 3 ] \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & -3 \\ \end{bmatrix} [203113]

[ 2 3 1 0 1 − 3 ] \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & -3 \\ \end{bmatrix} [203113] r 1 ′ = 1 2 ( r 1 − 3 r 2 ′ ) r_1'=\frac{1}{2}(r_1-3r_2') r1=21(r13r2)得到 [ 1 0 5 0 1 − 3 ] \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -3 \\ \end{bmatrix} [100153]

[ 1 0 5 0 1 − 3 ] \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -3 \\ \end{bmatrix} [100153]等同于 { x + 0 y = 5 0 x + y = − 3 \begin{cases} x+0y=5\\ 0x+y=-3\\ \end{cases} {x+0y=50x+y=3 得出 x = 5 x=5 x=5, y = 3 y=3 y=3

矩阵变换

通过列空间去理解矩阵变换的意义
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

特殊矩阵

  • 方阵: 行列数均等于n的矩阵被称为n阶矩阵或n阶方阵
    • [ 1 2 3 4 ] \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} [1324] 二阶方阵
    • [ 1 2 3 4 5 6 7 8 9 ] \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} 147258369 三阶方阵
  • 单位矩阵: n×n矩阵,对角线元素为1,其余为0
    • [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} [1001] 二阶单位矩阵
    • [ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} 100010001 三阶单位矩阵
  • 零矩阵:元素都是0的矩阵
    • [ 0 0 0 0 ] \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} [0000] 二阶零矩阵
    • [ 0 0 0 0 0 0 0 0 0 ] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} 000000000 三阶零矩阵

矩阵运算

矩阵加法

  • 对应位置相加
  • 只有行数列数都相等的同型矩阵才能进行加减运算
  • [ 1 2 3 4 ] + [ 4 3 2 1 ] = [ 1 + 4 2 + 3 3 + 2 4 + 1 ] = [ 5 5 5 5 ] \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}+\begin{bmatrix} 4 & 3 \\ 2 & 1 \\ \end{bmatrix}=\begin{bmatrix} 1+4 & 2+3 \\ 3+2 & 4+1 \\ \end{bmatrix}=\begin{bmatrix} 5 & 5 \\ 5 & 5 \\ \end{bmatrix} [1324]+[4231]=[1+43+22+34+1]=[5555]
  • 满足交换律和结合律
    • A + B = B + A A+B=B+A A+B=B+A
    • ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)
  • 减法: A − B = A + ( − B ) A-B=A+(-B) AB=A+(B)

矩阵数乘

  • 常数 k k k与矩阵 A A A的每一项相乘,乘积为矩阵,记作 k A kA kA
  • k A = A k = [ k a 1 , 1 k a 1 , 2 ⋯ k a 1 , n k a 2 , 1 k a 2 , 2 ⋯ k a 2 , n ⋮ ⋮ ⋱ ⋮ k a m , 1 k a m , 2 ⋯ k a m , n ] kA=Ak=\begin{bmatrix} ka_{1,1} & ka_{1,2} & \cdots & ka_{1,n} \\ ka_{2,1} & ka_{2,2} & \cdots & ka_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m,1} & ka_{m,2} & \cdots & ka_{m,n} \\ \end{bmatrix} kA=Ak=ka1,1ka2,1kam,1ka1,2ka2,2kam,2ka1,nka2,nkam,n

矩阵乘法

  • m×n的矩阵只能和n×p的矩阵相乘,结果为m×p的矩阵(前行乘后列)

  • [ 2 1 0 3 5 4 ] × [ 7 6 8 9 ] = [ ( 2 , 1 ) ⋅ ( 7 , 8 ) 2 × 6 + 1 × 9 0 × 7 + 3 × 8 0 × 6 + 3 × 9 5 × 7 + 4 × 8 5 × 6 + 4 × 9 ] \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 5 & 4\end{bmatrix}\times\begin{bmatrix} 7 & 6 \\ 8 & 9 \\ \end{bmatrix}=\begin{bmatrix} (2,1)·(7,8) & 2\times6+1\times9 \\ 0\times7+3\times8 & 0\times6+3\times9 \\ 5\times7+4\times8 & 5\times6+4\times9 \end{bmatrix} 205134×[7869]=(2,1)(7,8)0×7+3×85×7+4×82×6+1×90×6+3×95×6+4×9

  • 几何意义:矩阵×矩阵=矩阵,矩阵×向量=向量

  • 复合变换左乘在这里插入图片描述

  • 运算律

    • 交换律 不一定满足
    • 数乘交换律 k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB)
    • 结合率 ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
    • 分配律 A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
  • 常见矩阵在这里插入图片描述

    • 位移矩阵是仿射变换,不是线性变换(原点改变)
  • 三维空间的坐标变换

    • 缩放矩阵 [ x 0 0 0 0 y 0 0 0 0 z 0 0 0 0 1 ] \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x0000y0000z00001
    • 绕x轴旋转矩阵 [ 1 0 0 0 0 cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} 10000cosθsinθ00sinθcosθ00001
    • 绕y轴旋转矩阵 [ cos ⁡ θ 0 sin ⁡ θ 0 0 1 0 0 − sin ⁡ θ 0 cos ⁡ θ 0 0 0 0 1 ] \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} cosθ0sinθ00100sinθ0cosθ00001
    • 绕z轴旋转矩阵 [ cos ⁡ θ − sin ⁡ θ 0 0 sin ⁡ θ cos ⁡ θ 0 0 0 0 1 0 0 0 0 1 ] \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} cosθsinθ00sinθcosθ0000100001
      • unity中的旋转顺序是z-x-y
    • 位移矩阵 [ 1 0 0 t x 0 1 0 t y 0 0 1 t z 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} 100001000010txtytz1

矩阵转置

将矩阵的行和列进行互换, A A A转置后得到的转置矩阵记作 A T A^T AT

  • A = ( a i , j ) , A T = ( a j , i ) A=(a_{i,j}),A^T=(a_{j,i}) A=(ai,j),AT=(aj,i)

  • 在这里插入图片描述在这里插入图片描述
    请添加图片描述

  • 运算性质

    • ( A T ) T = A (A^T)^T=A (AT)T=A

    • ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

      • 在这里插入图片描述在这里插入图片描述
        请添加图片描述
    • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT

矩阵的逆

矩阵与逆矩阵相乘得到单位矩阵

  • I = A A − 1 = A − 1 A I=AA^{-1}=A^{-1}A I=AA1=A1A
  • 常用作矩阵变换之后再次矩阵变换回原来的初始位置
  • 在这里插入图片描述
  • 运算规律
    • A A A可逆,则 A − 1 A^{-1} A1也可逆, ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
    • A A A可逆,数 λ ≠ 0 \lambda\not=0 λ=0,则 λ A \lambda A λA可逆, ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1}=\frac{1}{\lambda}A^{-1} (λA)1=λ1A1
    • A 、 B A、B AB为同阶矩阵且均可逆,则 A B AB AB也可逆, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
    • A A A可逆,则 A T A^T AT也可逆, ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值