2.随机变量及其分布

随机变量

定义在样本空间上具有某种可测性的实值函数
取值依赖于某个随机试验的结果,并随着试验结果不同而变化的变量,称之为随机变量。

  • 随机变量的概率分布

    X的“值域”及它在值域内取各值的“概率”

随机变量的分布函数

定义:设 X X X是一个r.v.称 F ( x ) = P ( X ≤ x ) , x ∈ R F(x)=P(X\le x),x\in R F(x)=P(Xx),xR为r.v. X X X的分布函数

性质:(1) 0 ≤ F ( x ) ≤ 1 , x ∈ R 0\le F(x)\le1,x\in R 0F(x)1,xR

​ (2) ∀ x 1 < x 2 , 有 F ( x 1 ) ≤ F ( x 2 ) \forall x_1<x_2,有F(x_1)\le F(x_2) x1<x2,F(x1)F(x2)

​ (3) F ( + ∞ ) = 1 F(+\infty)=1 F(+)=1 F ( − ∞ ) = 0 F(-\infty)=0 F()=0

​ (4) P ( X = x ) = F ( x ) − F ( x − 0 ) = lim ⁡ ϵ → 0 P ( x − ϵ < X ≤ x ) P(X=x)=F(x)-F(x-0)=\lim \limits_{\epsilon\to0}{P(x-\epsilon<X\le x)} P(X=x)=F(x)F(x0)=ϵ0limP(xϵ<Xx)

连续型r.v.

定义:设 X X X是一个 r . v . r.v. r.v. 若存在一个非负函数 f ( x ) f(x) f(x),使得 ∀ x ∈ R \forall x\in R xR F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int^x_{-\infty}f(t)dt F(x)=xf(t)dt

​ 则称 X X X是是连续型 r . v . r.v. r.v.,并称 f ( x ) f(x) f(x) r . v . X r.v.X r.v.X的概率密度

性质:

  1. f ( x ) ≥ 0 , x ∈ R f(x)\ge0,x\in R f(x)0,xR
  2. ∫ − ∞ + ∞ f ( x ) d x = 1 \int^{+\infty}_{-\infty}f(x)dx=1 +f(x)dx=1
  3. P ( x 1 < X ≤ x 2 ) = ∫ x 1 x 2 f ( x ) d x = F ( x 2 ) − F ( x 1 ) P(x_1< X\le x_2)=\int_{x_1}^{x_2}f(x)dx=F(x_2)-F(x_1) P(x1<Xx2)=x1x2f(x)dx=F(x2)F(x1)
  4. 连续型 r . v . X r.v.X r.v.X F ( x ) F(x) F(x)一定是连续函数
  5. F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)
  6. ∀ x 0 ∈ R , P ( X = x 0 ) = 0 \forall x_0 \in R,P(X=x_0)=0 x0R,P(X=x0)=0
  7. P ( x < X ≤ x + Δ x ) ≈ f ( x ) Δ x P(x<X\le x+\Delta x)\approx f(x)\Delta x P(x<Xx+Δx)f(x)Δx

二维连续随机变量

定义 设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数 F ( x , y ) F(x,y) F(x,y)。若存在非负函数 f ( x , y ) f(x,y) f(x,y),使得对于任意实数 x , y x,y x,y
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v){\rm{d}}u{\rm{d}}v F(x,y)=xyf(u,v)dudv
则称 ( X , Y ) (X,Y) (X,Y)为二维连续型随机变量,并称 f ( x , y ) f(x,y) f(x,y)为二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度,或称 X X X Y Y Y的联合概率密度。

F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x ∫ − ∞ + ∞ f ( u , v ) d u d v = ∫ − ∞ x ( ∫ − ∞ + ∞ f ( u , v ) d v ) d u F_X(x)=F(x,+\infty)=\int_{-\infty}^x\int_{-\infty}^{+\infty}f(u,v){\rm{d}}u{\rm{d}}v=\int_{-\infty}^x(\int_{-\infty}^{+\infty}f(u,v){\rm{d}}v){\rm{d}}u FX(x)=F(x,+)=x+f(u,v)dudv=x(+f(u,v)dv)du

从而可知 X X X是连续型随机变量,且相应的概率密度 f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy 为边缘概率密度。

随机变量的独立性

定义 F ( x , y ) , F X ( x ) , F Y ( y ) F(x,y),F_X(x),F_Y(y) F(x,y),FX(x),FY(y)依次为 ( X , Y ) , X , Y (X,Y),X,Y (X,Y),X,Y的分布函数,若对任意实数 x , y x,y x,y F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)成立,则称 X X X Y Y Y是相互独立的。

定理 X , Y X,Y X,Y分别有概率密度函数 f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y),则 X X X Y Y Y相互独立的充要条件是 f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

充分性:
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v = ∫ − ∞ x ∫ − ∞ y f X ( u ) f Y ( v ) d u d v = ∫ − ∞ x f X ( u ) d u ∫ − ∞ y f Y ( v ) d v = F X ( x ) F Y ( y ) F(x,y)=\int_{-\infty}^x\int_{-\infty}^{y}f(u,v){\rm{d}}u{\rm{d}}v=\int_{-\infty}^x\int_{-\infty}^{y}f_X(u)f_Y(v){\rm{d}}u{\rm{d}}v\\ =\int_{-\infty}^x f_X(u){\rm{d}}u\int_{-\infty}^{y}f_Y(v){\rm{d}}v=F_X(x)F_Y(y) F(x,y)=xyf(u,v)dudv=xyfX(u)fY(v)dudv=xfX(u)duyfY(v)dv=FX(x)FY(y)
​ 则 X X X Y Y Y相互独立

必要性:若 X X X Y Y Y相互独立,则
F ( x , y ) = F X ( x ) F Y ( y ) = ∫ − ∞ x f X ( u ) d u ∫ − ∞ y f Y ( v ) d v = ∫ − ∞ x ∫ − ∞ y f X ( u ) f Y ( v ) d u d v = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x,y)=F_X(x)F_Y(y)=\int_{-\infty}^x f_X(u){\rm{d}}u\int_{-\infty}^{y}f_Y(v){\rm{d}}v\\=\int_{-\infty}^x\int_{-\infty}^{y}f_X(u)f_Y(v){\rm{d}}u{\rm{d}}v=\int_{-\infty}^x\int_{-\infty}^{y}f(u,v){\rm{d}}u{\rm{d}}v F(x,y)=FX(x)FY(y)=xfX(u)duyfY(v)dv=xyfX(u)fY(v)dudv=xyf(u,v)dudv
f X ( x ) f Y ( y ) f_X(x)f_Y(y) fX(x)fY(y) ( X , Y ) (X,Y) (X,Y)的概率密度,证毕

n维随机变量

  1. 分布函数.设 ( X 1 , X 2 , … , X n ) ( X_1 , X_2 ,…, X_n ) (X1,X2,,Xn)为 n 维随机变量, x 1 , x 2 , … , x n x_1 , x_2 ,…, x_n x1,x2,,xn为任意实数,则 n 元函数
    F ( x 1 , x 2 , … , x n ) = P ( X 1 ⩽ x 1 , X 2 ⩽ x 2 , … , X n ⩽ x n ) F (x_1 , x_2 ,…,x_n)= P ( X_1\leqslant x_1, X_2\leqslant x_2 ,…, X_n\leqslant x_n) F(x1,x2,,xn)=P(X1x1,X2x2,,Xnxn)

    称为 ( X 1 , X 2 , … , X n ) ( X_1 , X_2 ,…, X_n ) (X1,X2,,Xn)的分布函数.

  2. 概率密度.设 F ( x 1 , x 2 , … , x n ) F (x_1 , x_2 ,…,x_n) F(x1,x2,,xn)为 n 维随机变量 ( X 1 , X 2 , … , X n ) ( X_1 , X_2 ,…, X_n ) (X1,X2,,Xn)的分布函数.若存在非负函数 f ( x 1 , x 2 , … , x n ) f(x_1 , x_2 ,…,x_n) f(x1,x2,,xn),对任意实数 x 1 , x 2 , … , x n x_1 , x_2 ,…, x_n x1,x2,,xn。有
    F ( x 1 , x 2 , … , x n ) = ∫ − ∞ x 1 ∫ − ∞ x 2 ⋯ ∫ − ∞ x n f ( t 1 , t 2 , ⋯   , t n ) d t 1 d t 2 ⋯ d t n F (x_1 , x_2 ,…,x_n)=\int_{-\infty}^{x_1}\int_{-\infty}^{x_2}\cdots \int_{-\infty}^{x_n}f(t_1,t_2,\cdots,t_n){\rm{d}}t_1{\rm{d}}t_2\cdots {\rm{d}}t_n F(x1,x2,,xn)=x1x2xnf(t1,t2,,tn)dt1dt2dtn
    则称 ( X 1 , X 2 , … , X n ) ( X_1 , X_2 ,…, X_n ) (X1,X2,,Xn)是连续型随机变量, f ( x 1 , x 2 , … , x n ) f(x_1 , x_2 ,…,x_n) f(x1,x2,,xn)称为 n 维随机变量的概率密度。

  3. n个随机变量的独立性。设 F ( x 1 , x 2 , … , x n ) F (x_1 , x_2 ,…,x_n) F(x1,x2,,xn)为n维随机变量 ( X 1 , X 2 , … , X n ) ( X_1 , X_2 ,…, X_n ) (X1,X2,,Xn)的分布函数, F X 1 ( x 1 ) , F X 2 ( x 2 ) , ⋯   , F X n ( x n ) F_{X_1}(x_1),F_{X_2}(x_2),\cdots,F_{X_n}(x_n) FX1(x1),FX2(x2),,FXn(xn)依次为 X 1 , X 2 , … , X n X_1 , X_2 ,…, X_n X1,X2,,Xn的一维边缘分布函数。若对任意实数 x 1 , x 2 , … , x n x_1 , x_2 ,…,x_n x1,x2,,xn F ( x 1 , x 2 , … , x n ) = F X 1 ( x 1 ) F X 2 ( x 2 ) ⋯ F X n ( x n ) F (x_1 , x_2 ,…,x_n)=F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n) F(x1,x2,,xn)=FX1(x1)FX2(x2)FXn(xn),则称 X 1 , X 2 , … , X n X_1 , X_2 ,…, X_n X1,X2,,Xn是相互独立的.

    对连续型随机变量,设 X 1 , X 2 , … , X n X_1 , X_2 ,…, X_n X1,X2,,Xn的概率密度分别是 f 1 ( x 1 ) , f 2 ( x 2 ) , ⋯   , f n ( x n ) f_{1}(x_1),f_{2}(x_2),\cdots,f_{n}(x_n) f1(x1),f2(x2),,fn(xn),则 X 1 , X 2 , … , X n X_1 , X_2 ,…, X_n X1,X2,,Xn相互独立的充要条件是 n 元函数 f 1 ( x 1 ) f 2 ( x 2 ) ⋯ f n ( x n ) f_{1}(x_1)f_{2}(x_2)\cdots f_{n}(x_n) f1(x1)f2(x2)fn(xn)是 n 维随机变量 X 1 , X 2 , … , X n X_1 , X_2 ,…, X_n X1,X2,,Xn的概率密度。

随机变量函数的分布

问题

X ∼ f X ( x ) X ∼   F X ( x ) Y = g ( X ) X\sim f_X(x)\quad X\sim~F_X(x)\quad Y=g(X) XfX(x)X FX(x)Y=g(X) f Y ( y ) f_Y(y) fY(y)

分布函数法

F Y ( y ) ⟹ 定义 P ( Y ≤ y ) = 代换 P ( g ( x ) ≤ y ) F_Y(y)\overset{定义}{\Longrightarrow}P(Y\le y)\overset{代换}{=}P(g(x)\le y) FY(y)定义P(Yy)=代换P(g(x)y)解不等式

  • X ∼ f X ( x ) Y = a X + b X\sim f_X(x)\quad Y=aX+b XfX(x)Y=aX+b f Y ( y ) = 1 ∣ a ∣ f X ( y − b a ) f_Y(y)=\dfrac{1}{|a|}f_X(\dfrac{y-b}{a}) fY(y)=a1fX(ayb)

    X ∼ N ( μ , σ 2 ) Y = a X + b X\sim N(\mu,\sigma^2)\quad Y=aX+b XN(μ,σ2)Y=aX+b Y ∼ N ( a μ + b , a 2 σ 2 ) Y\sim N(a\mu+b,a^2\sigma^2) YN(aμ+b,a2σ2)

二维随机变量函数的分布

  • 和的分布:设 ( X , Y ) (X,Y) (X,Y)服从联合分布 f ( x , y ) f(x,y) f(x,y)
    Z = X + Y , F Z ( z ) = P ( Z ⩽ z ) = P ( X + Y ⩽ z ) = ∬ x + y ⩽ z f ( x , y ) d x d y = ∫ − ∞ + ∞ ( ∫ − ∞ z − x f ( x , y ) d y ) d x Z=X+Y,F_Z(z)=P(Z\leqslant z)=P(X+Y\leqslant z)=\iint\limits_{x+y\leqslant z}f(x,y)dxdy=\int_{-\infty}^{+\infty}(\int_{-\infty}^{z-x}f(x,y)dy)dx Z=X+Y,FZ(z)=P(Zz)=P(X+Yz)=x+yzf(x,y)dxdy=+(zxf(x,y)dy)dx

    y = u − x y=u-x y=ux,得 F Z ( z ) = ∫ − ∞ + ∞ ( ∫ − ∞ z f ( x , u − x ) d u ) d x = ∫ − ∞ z ( ∫ − ∞ + ∞ f ( x , u − x ) d x ) d u F_Z(z)=\int_{-\infty}^{+\infty}(\int_{-\infty}^{z}f(x,u-x)du)dx=\int_{-\infty}^{z}(\int_{-\infty}^{+\infty}f(x,u-x)dx)du FZ(z)=+(zf(x,ux)du)dx=z(+f(x,ux)dx)du

    则其概率密度为 f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx fZ(z)=+f(x,zx)dx,同理可得 f Z = ∫ − ∞ + ∞ f ( z − y , y ) d y f_Z=\int_{-\infty}^{+\infty}f(z-y,y)dy fZ=+f(zy,y)dy
    X X X Y Y Y是独立的,则由上式可得 f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y = f X ∗ f Y f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)dy=f_X *f_Y fZ(z)=+fX(x)fY(zx)dx=+fX(zy)fY(y)dy=fXfY

条件分布

定义 y y y取定值,对任意 Δ y > 0 \Delta y>0 Δy>0,均有 P ( y − Δ y < Y ⩽ y + Δ y ) > 0 P(y-\Delta y<Y\leqslant y+\Delta y)>0 P(yΔy<Yy+Δy)>0.若极限 lim ⁡ Δ y → 0 + P ( X ⩽ x ∣ y − Δ y < Y ⩽ y + Δ y ) > 0 \lim\limits_{\Delta y\to 0^+}P(X\leqslant x|y-\Delta y<Y\leqslant y+\Delta y)>0 Δy0+limP(XxyΔy<Yy+Δy)>0存在,则称此极限为在 Y = y Y=y Y=y的条件下 X X X的条件分布函数,记为 P ( X ⩽ x ∣ Y = y ) = lim ⁡ Δ y → 0 + P ( X ⩽ x ∣ y − Δ y < Y ⩽ y + Δ y ) P(X\leqslant x|Y=y)=\lim\limits_{\Delta y\to 0^+}P(X\leqslant x|y-\Delta y<Y\leqslant y+\Delta y) P(XxY=y)=Δy0+limP(XxyΔy<Yy+Δy),简记为 F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FXY(xy);并定义在 Y = y Y=y Y=y的条件下 X X X的条件概率密度为满足下式的非负函数 f X ∣ Y ( x ∣ y ) f_{X|Y}(x|y) fXY(xy) F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u F_{X|Y}(x|y)=\int_{-\infty}^{x}f_{X|Y}(u|y)du FXY(xy)=xfXY(uy)du

( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y),边缘概率密度为 f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y),并设 f ( x , y ) , f X ( x ) , f Y ( y ) f(x,y),f_X(x),f_Y(y) f(x,y),fX(x),fY(y)都连续,且 f X ( x ) f Y ( y ) > 0 f_X(x)f_Y(y)>0 fX(x)fY(y)>0,则
P ( X ⩽ x ∣ Y = y ) = lim ⁡ Δ y → 0 + P ( X ⩽ x , y − Δ y < Y ⩽ y + Δ y ) P ( y − Δ y < Y ⩽ y + Δ y ) = lim ⁡ Δ y → 0 + F ( x , y + Δ y ) − F ( x , y − Δ y ) F Y ( y + Δ y ) − F Y ( y − Δ y ) = lim ⁡ Δ y → 0 + ( F ( x , y + Δ y ) − F ( x , y − Δ y ) ) / 2 Δ y ( F Y ( y + Δ y ) − F Y ( y − Δ y ) ) / 2 Δ y = ∂ F ( x , y ) ∂ y d F Y ( y ) d y = ∫ − ∞ x f ( u , y ) d u f Y ( y ) P(X\leqslant x|Y=y)=\lim\limits_{\Delta y\to 0^+}\dfrac{P(X\leqslant x,y-\Delta y<Y\leqslant y+\Delta y)}{P(y-\Delta y<Y\leqslant y+\Delta y)}\\=\lim\limits_{\Delta y\to 0^+}\dfrac{F(x,y+\Delta y)-F(x,y-\Delta y)}{F_Y(y+\Delta y)-F_Y(y-\Delta y)}\\ =\lim\limits_{\Delta y\to 0^+}\dfrac{\left(F(x,y+\Delta y)-F(x,y-\Delta y)\right)/2\Delta y}{\left(F_Y(y+\Delta y)-F_Y(y-\Delta y)\right)/2\Delta y}\\ =\dfrac{\frac{\partial F(x,y)}{\partial y}}{\frac{dF_Y(y)}{dy}}=\dfrac{\int_{-\infty}^x f(u,y)du}{ f_Y(y)} P(XxY=y)=Δy0+limP(yΔy<Yy+Δy)P(Xx,yΔy<Yy+Δy)=Δy0+limFY(y+Δy)FY(yΔy)F(x,y+Δy)F(x,yΔy)=Δy0+lim(FY(y+Δy)FY(yΔy))/2Δy(F(x,y+Δy)F(x,yΔy))/2Δy=dydFY(y)yF(x,y)=fY(y)xf(u,y)du
F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u F_{X|Y}(x|y)=\int_{-\infty}^x\dfrac{f(u,y)}{f_Y(y)}du FXY(xy)=xfY(y)f(u,y)du

由此可见,在 Y = y Y=y Y=y的条件下, X X X的条件概率密度 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) , f Y ( y ) > 0 f_{X|Y}(x|y)=\dfrac{f(x,y)}{f_Y(y)},f_Y(y)>0 fXY(xy)=fY(y)f(x,y),fY(y)>0

同理,在 X = x X=x X=x的条件下, Y Y Y的条件概率密度 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) , f X ( x ) > 0 f_{Y|X}(y|x)=\dfrac{f(x,y)}{f_X(x)},f_X(x)>0 fYX(yx)=fX(x)f(x,y),fX(x)>0

随机变量的统计独立性

统计独立: p ( x , y ) = p ( x ) p ( y ) p(x,y)= p(x)p(y) p(x,y)=p(x)p(y)

  • 不相关性: E [ x y T ] = E [ x ] E [ y ] T E[xy^T]=E[x]E[y]^T E[xyT]=E[x]E[y]T
  • 独立性可推出不相关性,反之不行
  • 对于高斯分布来说,独立性=不相关性
  • 条件独立性和独立性无法互推

独立同分布

归一化积

对于同一个随机变量的两个不同的概率密度函数 p 1 ( x ) p_1(\boldsymbol{x}) p1(x) p 2 ( x ) p_2(\boldsymbol{x}) p2(x),他们的归一化积定义为:
p ( x ) = η p 1 ( x ) p 2 ( x ) p(\boldsymbol{x})=\eta p_1(\boldsymbol{x}) p_2(\boldsymbol{x}) p(x)=ηp1(x)p2(x)
其中
η = ( ∫ p 1 ( x ) p 2 ( x ) d x ) − 1 \eta=\left( \int p_1(\boldsymbol{x}) p_2(\boldsymbol{x}){\rm d}\boldsymbol{x} \right)^{-1} η=(p1(x)p2(x)dx)1
是一个常值的归一化因子,用于确保 p ( x ) p(\boldsymbol{x}) p(x)满足全概率公理。

根据贝叶斯理论,归一化积可用于融合同一个随机变量的多次估计(以概率密度函数的形式表示),只要假设其先验为均匀分布即可。设 x \boldsymbol{x} x为待估计变量, y 1 , y 2 \boldsymbol{y_1},\boldsymbol{y_2} y1,y2为两次独立测量,那么:
p ( x ∣ y 1 , y 2 ) = η p ( x ∣ y 1 ) p ( x ∣ y 2 ) p(\boldsymbol{x}\vert\boldsymbol{y_1},\boldsymbol{y_2})=\eta p(\boldsymbol{x}\vert\boldsymbol{y_1})p(\boldsymbol{x}\vert\boldsymbol{y_2}) p(xy1,y2)=ηp(xy1)p(xy2)
同理,是一个用于满足概率公理的归一化系数

p ( x ∣ y 1 , y 2 ) = p ( y 1 , y 2 ∣ x ) p ( x ) p ( y 1 , y 2 ) p(\boldsymbol{x}\vert\boldsymbol{y_1},\boldsymbol{y_2})=\dfrac{p(\boldsymbol{y_1},\boldsymbol{y_2}\vert \boldsymbol{x})p(\boldsymbol{x})}{p(\boldsymbol{y_1},\boldsymbol{y_2})} p(xy1,y2)=p(y1,y2)p(y1,y2x)p(x)
给定 x \boldsymbol{x} x,假设 y 1 , y 2 \boldsymbol{y_1},\boldsymbol{y_2} y1,y2统计独立(即观测中的噪声统计独立),有
p ( y 1 , y 2 ∣ x ) = p ( y 1 ∣ x ) p ( y 2 ∣ x ) = p ( x ∣ y 1 ) p ( y 1 ) p ( x ) p ( x ∣ y 2 ) p ( y 2 ) p ( x ) = p ( x ∣ y 1 ) p ( x ∣ y 2 ) p ( y 1 ) p ( y 2 ) p 2 ( x ) p(\boldsymbol{y_1},\boldsymbol{y_2}\vert\boldsymbol{x})=p(\boldsymbol{y_1}\vert \boldsymbol{x})p(\boldsymbol{y_2}\vert \boldsymbol{x})=\dfrac{p(\boldsymbol{x}\vert\boldsymbol{y_1})p(\boldsymbol{y_1})}{p(\boldsymbol{x})} \dfrac{p(\boldsymbol{x}\vert\boldsymbol{y_2})p(\boldsymbol{y_2})}{p(\boldsymbol{x})}=p(\boldsymbol{x}\vert\boldsymbol{y_1})p(\boldsymbol{x}\vert\boldsymbol{y_2})\dfrac{p(\boldsymbol{y_1})p(\boldsymbol{y_2})}{p^2(\boldsymbol{x})} p(y1,y2x)=p(y1x)p(y2x)=p(x)p(xy1)p(y1)p(x)p(xy2)p(y2)=p(xy1)p(xy2)p2(x)p(y1)p(y2)

p ( x ∣ y 1 , y 2 ) = η p ( x ∣ y 1 ) p ( x ∣ y 2 ) p(\boldsymbol{x}\vert\boldsymbol{y_1},\boldsymbol{y_2})=\eta p(\boldsymbol{x}\vert\boldsymbol{y_1})p(\boldsymbol{x}\vert\boldsymbol{y_2}) p(xy1,y2)=ηp(xy1)p(xy2)
其中
η = p ( y 1 ) p ( y 2 ) p ( y 1 , y 2 ) p ( x ) \eta=\dfrac{p(\boldsymbol{y_1})p(\boldsymbol{y_2})}{p(\boldsymbol{y_1},\boldsymbol{y_2})p(\boldsymbol{x})} η=p(y1,y2)p(x)p(y1)p(y2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shilong Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值