平面及其方程

平面及其方程
   我们把与一平面垂直的任一直线称为此平面的法线
   设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:
                        
   注意:此种形式的方程称为平面方程的点法式
   例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.
   解答:应用上面的公式得所求的平面方程为:
                         
         即              
   我们把形式为:
                         Ax+By+Cz+D=0.
   称为平面方程的一般式。其中x,y,z的系数A,B,C是平面的法线的一组方向数。
几种特殊位置平面的方程
  
1、通过原点
      
其平面方程的一般形式为:  
                        
Ax+By+Cz=0.
   2、平行于坐标轴
       平行于x轴的平面方程的一般形式为:
                         By+Cz+D=0.
       平行于y轴的平面方程的一般形式为:
                         Ax+Cz+D=0.
       平行于z轴的平面方程的一般形式为:
                         Ax+By+D=0.
   3、通过坐标轴
       通过x轴的平面方程的一般形式为:
                         By+Cz=0.
       通过y轴和z轴的平面方程的一般形式为:
                         Ax+Cz=0,Ax+By=0.
   4、垂直于坐标轴
       垂直于x、y、z轴的平面方程的一般形式为:
                  Ax+D=0,By+D=0,Cz+D=0.
直线及其方程
   任一给定的直线都有着确定的方位.但是,具有某一确定方位的直线可以有无穷多条,它们相互平行.如果要求直线再通过某一定点,则直线便被唯一确定,因而此直线的方程就可由通过它的方向数和定点的坐标表示出来。
   设已知直线L的方向数为{l,m,n},又知L上一点Po(x0,y0,z0),则直线L的方程可表示为:
                         
   上式就是直线L的方程,这种方程的形式被称为直线方程的对称式
   直线方程也有一般式,它是有两个平面方程联立得到的,如下:
                         
   这就是直线方程的一般式
平面、直线间的平行垂直关系
   对于一个给定的平面,它的法线也就可以知道了。因此平面间的平行与垂直关系,也就转化为直线间的平行与垂直关系。平面与直线间的平行与垂直关系,也就是平面的法线与直线的平行与垂直关系。
   总的来说,平面、直线间的垂直与平行关系,最终都转化为直线与直线的平行与垂直关系。在此我们就不列举例题了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值