【Computer Graphics】平面方程及相关计算

本文深入探讨了计算机图形学中的平面方程,包括参数化表达式、求平面法向量、计算点到平面的距离、求直线与平面的交点以及解决三个平面斜交的问题。通过数学公式和直观解释,阐述了这些关键计算方法。
摘要由CSDN通过智能技术生成

内容

  1. 参数化表达式
  2. 求平面法向量
  3. 求点到平面的距离
  4. 求直线与平面交点
  5. 求三个平面斜交

1.  参数化表达式

三维平面可以看做是点的集合,已知一个平面上一点 \small P 和法向量 \small N
           设点 \small Q 为平面上任意一点,那么 \small PQ 一定与平面法向量 \small N 垂直,表达式为:

 \small N\cdot (Q-P)=0

除此之外,平面方程还有一种常用的表达方式:

 \small Ax+By+Cz+D=0

这里的 \small A\small B\small C其实就是法向量\small N的 \small x\small y\small z 分量,而 \small D=-N \cdot P


2. 求平面法向量

  • 已知平面上两条不共线的直线 \small a = (l,m,n)\small b=(o,p,q),求法向量:

而根据叉积的定义,两个向量的叉积所得的向量和这两个向量垂直;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值