高数(下)——平面及其方程

一、曲面方程和空间曲线方程的概念

1.引入原因

  平面与空间直线是曲面和空间曲线的特例,为了讨论二者引入。

2.几何意义

  在空间解析几何中,任何曲面或曲线都是点的几何轨迹。

  可以通过判断点是否满足曲线或曲面的方程来判断它在不在曲面上。

二、平面的点法式

1.法线向量

  (1)一个非零垂直于一平面的向量。

  (2)平面上任意向量都垂直于法线向量。

  (3)过空间一点可以作且只能作一平面垂直于一直线(我的理解是 知道平面上一点的坐标和法向量,可以确定一个平面)。

  (4)求法线向量可以由两个向量叉乘求得。

2.点法式

  同济课本上给的例题:

 如图,已知的条件是:

(1)M0的坐标(x0,y0,z0);

(2)法线向量n(A,B,C);

为了求平面方程,要先确认一点:平面上所有向量与法线向量都垂直。这也就意味着平面上所有的向量与法线向量的点乘都为0(因为垂直了),本质上其实就是一个点乘的问题。

设任意点为M(x,y,z),向量MoM和n的点乘结果为0,即:

 

 这个式子就叫做点法式

三、平面的一般方程

1.和点法式的联系

  任意平面都可以用平面上一点来表示,所以由点法式方程可以看出,任何平面都可以用三元一次方程表示。

2.推导过程

(1)设一个三元一次方程:Ax+By+Cz+D=0

  (2)取任意一组数x0,y0,z0:Ax0+By0+Cz0+D=0

   (1)(2)相减可得 :

 

 3.一般方程

  

 

四、两平面的夹角

1.法向量的夹角

  在点乘之中,我们知道a .b=|a| |b| cos\theta,即

 夹角的余弦值等于两个向量相乘再除以它们的模的乘积。

cos\theta\frac{a . b}{|a| |b|}

两个法向量的夹角求法也是一样的,只不过需要注意法向量的夹角是平面之间夹角的锐角,即:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值