傅里叶变换(Fourier Transform)

傅里叶变换(Fourier Transform)

g ( t ) g(t) g(t) ~ G ( f ) G(f) G(f)

g ( t ) = ∫ − ∞ + ∞ G ( f ) e j 2 π f t d f g(t) = \int_{-\infty}^{+\infty} G(f) e^{{\rm j}2 \pi f t} {\rm d}f g(t)=+G(f)ej2πftdf

G ( f ) = ∫ − ∞ + ∞ g ( t ) e − j 2 π f t d t G(f) = \int_{-\infty}^{+\infty} g(t) e^{-{\rm j}2 \pi f t} {\rm d}t G(f)=+g(t)ej2πftdt

性质

函数傅里叶变换comments
g ( t ) g(t) g(t) G ( f ) G(f) G(f)
h ( t ) h(t) h(t) H ( f ) H(f) H(f)
a ⋅ g ( t ) + b ⋅ h ( t ) a \cdot g(t) + b \cdot h(t) ag(t)+bh(t) a ⋅ G ( f ) + b ⋅ H ( f ) a \cdot G(f) + b \cdot H(f) aG(f)+bH(f)Linearity
g ( a t ) , a ≠ 0 g(at), a \neq 0 g(at),a=0 1 ∣ a ∣ G ( f a ) \frac{1}{|a|}G(\frac{f}{a}) a1G(af)放缩,反转
g ( t − t 0 ) g(t - t_0) g(tt0) G ( f ) ⋅ e − j 2 π f t 0 G(f) \cdot e^{-{\rm j}2 \pi f t_0} G(f)ej2πft0Time-Shift
g ( t ) ⋅ e j 2 π f 0 t g(t) \cdot e^{{\rm j}2 \pi f_0 t} g(t)ej2πf0t G ( f − f 0 ) G(f - f_0) G(ff0)Frequency-Shift
G ( t ) G(t) G(t) g ( − f ) g(-f) g(f)Duality
g ( t ) ⊗ h ( t ) g(t) \otimes h(t) g(t)h(t) G ( f ) ⋅ H ( f ) G(f) \cdot H(f) G(f)H(f)Time-Convolution
g ( t ) ⋅ h ( t ) g(t) \cdot h(t) g(t)h(t) G ( f ) ⊗ H ( f ) G(f) \otimes H(f) G(f)H(f)Frequency-Convolution
g ∗ ( t ) g^*(t) g(t) G ∗ ( − f ) G^*(-f) G(f)共轭对称性

常用的傅里叶变换

  • sgn ( x ) \text{sgn}(x) sgn(x)符号函数
    sgn ( x ) = { − 1 x < 0 1 x ≥ 0 \text{sgn}(x) = \begin{cases} -1 &x \lt 0\\ 1 &x \ge 0 \end{cases} sgn(x)={11x<0x0

  • u ( x ) \text{u}(x) u(x)阶跃函数:
    u ( x ) = { 0 x < 0 1 x ≥ 0 \text{u}(x) = \begin{cases} 0 &x \lt 0\\ 1 &x \ge 0 \end{cases} u(x)={01x<0x0
    u ( x ) = 1 2 sgn ( x ) + 1 2 \text{u}(x) = \frac{1}{2}\text{sgn}(x) + \frac{1}{2} u(x)=21sgn(x)+21

  • Π ( x ) \Pi(x) Π(x)矩形脉冲(门函数)
    Π ( x ) = { 0 ∣ x ∣ > 1 2 1 ∣ x ∣ ≤ 1 2 \Pi(x) = \begin{cases} 0 &|x| \gt \frac{1}{2}\\ 1 &|x| \le \frac{1}{2} \end{cases} Π(x)={01x>21x21
    Π ( x ) = u ( x + 1 2 ) − u ( x − 1 2 ) = 1 2 sgn ( x + 1 2 ) − 1 2 sgn ( x − 1 2 ) \Pi(x) = \text{u}(x + \frac{1}{2}) - \text{u}(x - \frac{1}{2}) = \frac{1}{2}\text{sgn}(x + \frac{1}{2}) - \frac{1}{2}\text{sgn}(x - \frac{1}{2}) Π(x)=u(x+21)u(x21)=21sgn(x+21)21sgn(x21)

  • 升余弦滚降滤波器
    RCOSINE ( f ) = { T ∣ f ∣ ≤ 1 − α 2 T T cos ⁡ 2 ( π T 2 α ( ∣ f ∣ − 1 − α 2 T ) ) 1 − α 2 T ≤ ∣ f ∣ ≤ 1 + α 2 T 0 ∣ f ∣ ≥ 1 + α 2 T rcosine ( t ) = sinc ( t T ) ⋅ cos ⁡ ( π α t T ) 1 − ( 2 α t T ) 2 \text{RCOSINE}(f) = \begin{cases} T &|f| \le \frac{1 - \alpha}{2T} \\ T \cos^2 \left(\frac{\pi T}{2 \alpha} (|f| - \frac{1 - \alpha}{2T}) \right) &\frac{1 - \alpha}{2T} \le |f| \le \frac{1 + \alpha}{2T} \\ 0 &|f| \ge \frac{1 + \alpha}{2T} \end{cases} \\ \text{rcosine}(t) = \text{sinc}(\frac{t}{T}) \cdot \frac{\cos(\frac{\pi \alpha t}{T})}{1 - (\frac{2 \alpha t}{T})^2} RCOSINE(f)= TTcos2(2απT(f2T1α))0f2T1α2T1αf2T1+αf2T1+αrcosine(t)=sinc(Tt)1(T2αt)2cos(Tπαt)

函数傅里叶变换
δ ( t ) \delta(t) δ(t) 1 1 1
δ ( t − t 0 ) \delta(t - t_0) δ(tt0) e − j 2 π f t 0 e^{-{\rm j}2 \pi f t_0} ej2πft0
1 1 1 δ ( f ) \delta(f) δ(f)
e j 2 π f 0 t e^{{\rm j}2 \pi f_0 t} ej2πf0t δ ( f − f 0 ) \delta(f - f_0) δ(ff0)
1 π t \frac{1}{\pi t} πt1 − j sgn ( f ) -{\rm j}\text{sgn}(f) jsgn(f)
sgn ( t ) \text{sgn}(t) sgn(t) 1 j π f \frac{1}{{\rm j} \pi f} jπf1
u ( t ) \text{u}(t) u(t) 1 j 2 π f + 1 2 δ ( f ) \frac{1}{{\rm j} 2 \pi f} + \frac{1}{2} \delta(f) j2πf1+21δ(f)
Π ( t ) \Pi(t) Π(t) sinc ( f ) ≜ sin ⁡ ( π f ) π f \text{sinc}(f) \triangleq \frac{\sin(\pi f)}{\pi f} sinc(f)πfsin(πf)
sinc ( t ) \text{sinc}(t) sinc(t) Π ( f ) \Pi(f) Π(f)
∑ n = − ∞ + ∞ δ ( t − n T ) \displaystyle \sum_{n=-\infty}^{+\infty} \delta(t - nT) n=+δ(tnT) 1 T ⋅ ∑ k = − ∞ + ∞ δ ( f − k T ) \displaystyle \frac{1}{T} \cdot \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T}) T1k=+δ(fTk)
周期延拓: g ( t ) ⊗ ∑ n = − ∞ + ∞ δ ( t − n T ) = ∑ n = − ∞ + ∞ g ( t − n T ) g(t) \otimes \displaystyle \sum_{n=-\infty}^{+\infty} \delta(t - nT) = \displaystyle \sum_{n=-\infty}^{+\infty} g(t - nT) g(t)n=+δ(tnT)=n=+g(tnT)冲激采样: G ( f ) ⋅ [ 1 T ⋅ ∑ k = − ∞ + ∞ δ ( f − k T ) ] = 1 T ⋅ ∑ k = − ∞ + ∞ G ( k T ) ⋅ δ ( f − k T ) \displaystyle G(f) \cdot [\frac{1}{T} \cdot \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T}) ]= \displaystyle \frac{1}{T} \cdot \sum_{k=-\infty}^{+\infty} G(\frac{k}{T}) \cdot \delta(f - \frac{k}{T}) G(f)[T1k=+δ(fTk)]=T1k=+G(Tk)δ(fTk)
冲激采样: g ( t ) ⋅ ∑ n = − ∞ + ∞ δ ( t − n T ) = ∑ n = − ∞ + ∞ g ( n T ) ⋅ δ ( t − n T ) g(t) \cdot \displaystyle \sum_{n=-\infty}^{+\infty} \delta(t - nT) = \displaystyle \sum_{n=-\infty}^{+\infty} g(nT) \cdot \delta(t - nT) g(t)n=+δ(tnT)=n=+g(nT)δ(tnT)周期延拓: G ( f ) ⊗ [ 1 T ⋅ ∑ k = − ∞ + ∞ δ ( f − k T ) ] = 1 T ⋅ ∑ k = − ∞ + ∞ G ( f − k T ) \displaystyle G(f) \otimes [\frac{1}{T} \cdot \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T}) ]= \displaystyle \frac{1}{T} \cdot \sum_{k=-\infty}^{+\infty} G(f - \frac{k}{T}) G(f)[T1k=+δ(fTk)]=T1k=+G(fTk)
  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值